Low-complexity noise-resilient recovery of phase
and amplitude from defocused intensity images
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Abstract: A low-complexity augmented Kalman filter is proposed to éfitly recover the
phase from a series of noisy intensity images. The propostidad is robust to noise, has low
complexity, and may enable real-time phase recovery.
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1. Introduction

When coherent light propagates through an object, its angaiand phase change after interacting with the object.
The phase perturbations reveal important information abiwei object, for example, refractive index, humidity, or
pressure. Consequently, phase imaging has many impogglitaions in areas like biology and surface profiling.
As phase cannot be measured directly, it needs to be reootestrcomputationally. This “phase problem” of optical
imaging has been studied for many years, but only recensyitizeen investigated from the viewpoint of statistical
inference [1-3], where experimental noise in the imagesadeted explicitly.

Standard methods for recovering phase involve complidatederometric setups, so there is a significant experi-
mental advantage to methods considered here, which reaongte phase from intensity images captured at various
distances along the optical axis. In [2] an extended Kalmger fivas applied to infer the phase from noisy intensity
images. However, the memory requirements and the long ctatipaitime are impractical for real applications. In [3]
an approximate Kalman filter was proposed that alleviatesalissues, without jeopardizing the reconstruction accu-
racy. That method is iterative: it needs to cycle throughsiteof intensity images repeatedly, yielding more accurate
phase reconstruction after each cycle. On the other haaa@gitmputational complexity increases with each cycle.

The algorithm proposed here does not require iterationd,i@mmore efficient than the algorithm of [3], yet it
achieves even better phase reconstruction than the mathfland [3]. As in [2], the proposed algorithm is derived
from an augmented state space representation, to imprevelstness to noise. We make similar approximations as
in [3] (where the state space wastaugmented), and introduce a few additional assumptionsioli§y the Kalman
filter update equations [2], eventually resulting in a loarplexity noise-robust phase reconstruction algorithm.

2. Problem Description and State Space Model of the Opticaligld

We aim at estimating the 2D complex-fieddx,y,z) at the focal planey, from a sequence of noisy intensity im-
agesd (x,y,z) captured at various distaneg 1,2, ..., zy. Propagation is modeled by the homogeneous paraxial wave
equation:
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whereA is the wavelength of the illumination, andl, is the gradient operator in the latefaly) dimensions only.

The noisy measurement&, y, z) usually adhere to a (continuous) Poisson distribution:
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wherey is the photon count detected by the camera. The measureteattapixell (x,y, z) is assumed statistically
independent of any other pixel (conditioned on the optiedi\(x,y, 2)).



We can discretize the optical fiek{x,y, z) as a raster-scanned complex column veatoand similarly discretize the
measurement(x,y, z) as column vectok,. We denote b¥(u,v,z) the 2-D Fourier transform dk(x,y, z). The column

vectorby is again raster-scanned froogu, v, z), and hence can be expressedgas= Ka,, whereK is the discrete
Fourier transform matrix.

We can define the propagation matrixzags [4]:
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wherelLy andLy are the width and height of the image.
We approximate the Poisson observation mo#gijth a Gaussian distribution of same mean and covarianse. A
in [2], we consider a state space representation with autpdetate:

state: [Eﬂ = [Fg‘ I-?;‘J [Egj (4)
observation I, = [J(by)  J*(bn)] [E’*‘} +Vv, with v ~ .4 (0,R(bp)), (5)
where R = ydiag a})diaga,); J(bn) = %ydiag(KTb’,;)KH. (6)

The augmented staté)(introduces redundancy, which helps to improve the resiketo noise.

3. State Estimation by Low-Complexity Kalman Filtering

Table1 summarizes the augmented Kalman filter of [2]. The storagairement scales ¢, whereN is the number

of pixels. The computational complexity scales @&N3N,), whereN, is the number of intensity images. Due to
the high complexity, the algorithm is impractical for raahe applications. Therefore, we impose constraints on the
covariance matriceSoQ andﬁ, and make several assumptions, resulting in a low-complelgorithm with reduced

storage requirement. Specifically, in the proposed allglclrr,ilsoQ and% are diagonal matrices. Consequently, the
storage requirement scales linearly withThe overall computational complexity is reducedtdN;Nlog(N)).

Table 1. Augmented Kalman filter of [2] for inferring the agal field.

(1) Initialize bo, S, andS}.

(2) Prediction: bAn =Hbp_1, S? = HSQf HH, andsP — HSP  H.
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(3) Update:
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4. Numerical Results
4.1. Data Set 1 (Synthetic data)

Data Set 1 consists of 100 images of size £AMO pixels artificially generated to simulate a complex figlopagating
from focus in 05 um steps over a distance of 0n with illumination wavelength of 538m Pixels are corrupted by
Poisson noise so that, on average, each pixel defeet3 998 photons.

Table2 and Fig.1(a)summarize the results of different methods for the Data S€hé& extended Kalman filter [2]
has a computational complexity &f(N,N%). In order to reduce the computation and storage burdennthgés are
divided in to separate blocks of size 5®0, but the extended Kalman filter still takes 13563 secoogsdcess the
100 images. The computational complexity of the iterativethmd of [3] is&'(NitN,NlogN) with N;; the number of
iterations, and it takes 0.30 seconds per iteration to el images. We have applied 50 iterations in total, and



Table 2. Comparison of different methods.

Complexity Time[s] Storage Intensity error Phase erralipa)
Extended Kalman filter [2] O(N,N®)  13563(in block) 6(N?)  0.0091 0.0139
Iterative Kalman filter [3] O(NiN,NlogN) 0.30/iteration ¢&(N) 0.0079 0.0166
Efficient augmented Kalman filter &' (N;NlogN) 0.40 O(N) 0.0071 0.0143

hence the total computation time was 15s. On the other hae@amputational complexity of the proposed method is
O(N;NlogN), and it takes 0.40 seconds to process all images. The phdsetansity error of the proposed method
is lower than that of the iterative filter of [3].

As can be seen from Fid.(a) the images recovered by the extended Kalman filter [2] eéhibck artifacts. The
images recovered by the iterative filter of [3] show tracepludse in the intensity images and vice versa. In contrast,
the intensity and phase image reconstructed by the propoestthbd contain virtually no artifacts, and the phase image
has stronger contrast.
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Fig. 1. (a) Recovered intensity and phase image from syintbeta Set 1 by extended Kalman filter
of [2], iterative Kalman filter of [3], and the proposed medh¢b) Recovered intensity and phase
image from experimental Data Set 2 by iterative Kalman fiig3] (left) and the proposed method
(right).
4.2. Data Set 2 (Experimental data)

Data Set 2 is comprised of 50 images of size &350 pixels acquired by a microscope. The wavelength wasagai
532 nm, and the defocused intensity images were capturedobingithe camera axially with a step size ofuen

over a distance of 10Qm. The test phase object was electron beam etched into PMMstrsuie. Fig1(b) shows the
estimated intensity and phase image for the iterative Kalfittar of [3] and the proposed method. As for Data Set 1,
the intensity and phase image inferred by the proposed methatain less artifacts, and the phase image has stronger
contrast.

5. Conclusion

The proposed statistical inference algorithm can effityenrgicover phase and amplitude from a series of noisy defo-
cused images. It is recursive, and may enable real-timecapipins. Our method may also find use in phase imaging

beyond optical wavelengths (for example, X-ray or neutroading), where high-quality images are difficult to obtain
and noise is significant and unavoidable.
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