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Abstract: A low-complexity augmented Kalman filter is proposed to efficiently recover the
phase from a series of noisy intensity images. The proposed method is robust to noise, has low
complexity, and may enable real-time phase recovery.

© 2012 Optical Society of America

OCIS codes: 100.5070, 100.3010.

1. Introduction

When coherent light propagates through an object, its amplitude and phase change after interacting with the object.
The phase perturbations reveal important information about the object, for example, refractive index, humidity, or
pressure. Consequently, phase imaging has many important applications in areas like biology and surface profiling.
As phase cannot be measured directly, it needs to be reconstructed computationally. This “phase problem” of optical
imaging has been studied for many years, but only recently has it been investigated from the viewpoint of statistical
inference [1–3], where experimental noise in the images is modeled explicitly.

Standard methods for recovering phase involve complicatedinterferometric setups, so there is a significant experi-
mental advantage to methods considered here, which reconstruct the phase from intensity images captured at various
distances along the optical axis. In [2] an extended Kalman filter was applied to infer the phase from noisy intensity
images. However, the memory requirements and the long computation time are impractical for real applications. In [3]
an approximate Kalman filter was proposed that alleviates those issues, without jeopardizing the reconstruction accu-
racy. That method is iterative: it needs to cycle through theset of intensity images repeatedly, yielding more accurate
phase reconstruction after each cycle. On the other hand, the computational complexity increases with each cycle.

The algorithm proposed here does not require iterations, and is more efficient than the algorithm of [3], yet it
achieves even better phase reconstruction than the methodsof [2] and [3]. As in [2], the proposed algorithm is derived
from an augmented state space representation, to improve the robustness to noise. We make similar approximations as
in [3] (where the state space wasnot augmented), and introduce a few additional assumptions to simplify the Kalman
filter update equations [2], eventually resulting in a low-complexity noise-robust phase reconstruction algorithm.

2. Problem Description and State Space Model of the Optical Field

We aim at estimating the 2D complex-fieldA(x,y,z0) at the focal planez0, from a sequence of noisy intensity im-
agesI(x,y,z) captured at various distancez0,z1,z2, ...,zN. Propagation is modeled by the homogeneous paraxial wave
equation:

∂A(x,y,z)
∂z

=
iλ
4π

∇2
⊥A(x,y,z), (1)

whereλ is the wavelength of the illumination, and∇⊥ is the gradient operator in the lateral(x,y) dimensions only.
The noisy measurementsI(x,y,z) usually adhere to a (continuous) Poisson distribution:

p[I(x,y,z)|A(x,y,z)] = e−γ|A(x,y,z)|2 (γ|A(x,y,z)|2)I(x,y,z)

I(x,y,z)!
, (2)

whereγ is the photon count detected by the camera. The measurement at each pixelI(x,y,z) is assumed statistically
independent of any other pixel (conditioned on the optical fieldA(x,y,z)).



We can discretize the optical fieldA(x,y,z) as a raster-scanned complex column vectoran, and similarly discretize the
measurementI(x,y,z) as column vectorIn. We denote byb(u,v,z) the 2-D Fourier transform ofA(x,y,z). The column
vectorbn is again raster-scanned fromb(u,v,z), and hence can be expressed asbn = Kan, whereK is the discrete
Fourier transform matrix.
We can define the propagation matrix atzn as [4]:
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whereLx andLy are the width and height of the image.
We approximate the Poisson observation model (2) with a Gaussian distribution of same mean and covariance. As

in [2], we consider a state space representation with augmented state:
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observation: In =
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][bn

b∗
n

]
+ v, with v ∼ N (0,R(bn)), (5)

where R = γ diag(a∗n)diag(an);J(bn) =
1
2

γ diag(KTb∗
n)K

H
. (6)

The augmented state (4) introduces redundancy, which helps to improve the resilience to noise.

3. State Estimation by Low-Complexity Kalman Filtering

Table1 summarizes the augmented Kalman filter of [2]. The storage requirement scales asN2, whereN is the number
of pixels. The computational complexity scales asO(N3Nz), whereNz is the number of intensity images. Due to
the high complexity, the algorithm is impractical for real-time applications. Therefore, we impose constraints on the
covariance matricesSQ

0 andSP
0 , and make several assumptions, resulting in a low-complexity algorithm with reduced

storage requirement. Specifically, in the proposed algorithm, SQ
0 and SP

0 are diagonal matrices. Consequently, the
storage requirement scales linearly withN. The overall computational complexity is reduced toO(NzN log(N)).

Table 1. Augmented Kalman filter of [2] for inferring the optical field.

(1) Initialize b0, SQ
0 , andSP

0 .

(2) Prediction: b̂n = Hbn−1, ŜQ
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n−1H.
(3) Update:
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2). (10)

4. Numerical Results

4.1. Data Set 1 (Synthetic data)

Data Set 1 consists of 100 images of size 100×100 pixels artificially generated to simulate a complex fieldpropagating
from focus in 0.5 µmsteps over a distance of 50µmwith illumination wavelength of 532nm. Pixels are corrupted by
Poisson noise so that, on average, each pixel detectsγ = 0.998 photons.

Table2 and Fig.1(a)summarize the results of different methods for the Data Set 1. The extended Kalman filter [2]
has a computational complexity ofO(NzN3). In order to reduce the computation and storage burden, the images are
divided in to separate blocks of size 50×50, but the extended Kalman filter still takes 13563 seconds to process the
100 images. The computational complexity of the iterative method of [3] isO(NitNzN logN) with Nit the number of
iterations, and it takes 0.30 seconds per iteration to process all images. We have applied 50 iterations in total, and



Table 2. Comparison of different methods.

Complexity Time[s] Storage Intensity error Phase error[radian]

Extended Kalman filter [2] O(NzN3) 13563(in block)O(N2) 0.0091 0.0139
Iterative Kalman filter [3] O(NitNzN logN) 0.30/iteration O(N) 0.0079 0.0166

Efficient augmented Kalman filter O(NzN logN) 0.40 O(N) 0.0071 0.0143

hence the total computation time was 15s. On the other hand, the computational complexity of the proposed method is
O(NzN logN), and it takes 0.40 seconds to process all images. The phase and intensity error of the proposed method
is lower than that of the iterative filter of [3].

As can be seen from Fig.1(a), the images recovered by the extended Kalman filter [2] exhibit block artifacts. The
images recovered by the iterative filter of [3] show traces ofphase in the intensity images and vice versa. In contrast,
the intensity and phase image reconstructed by the proposedmethod contain virtually no artifacts, and the phase image
has stronger contrast.
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Fig. 1. (a) Recovered intensity and phase image from synthetic Data Set 1 by extended Kalman filter
of [2], iterative Kalman filter of [3], and the proposed method. (b) Recovered intensity and phase
image from experimental Data Set 2 by iterative Kalman filterof [3] (left) and the proposed method
(right).

4.2. Data Set 2 (Experimental data)

Data Set 2 is comprised of 50 images of size 150×150 pixels acquired by a microscope. The wavelength was again
532 nm, and the defocused intensity images were captured by moving the camera axially with a step size of 2µm
over a distance of 100µm. The test phase object was electron beam etched into PMMA substrate. Fig.1(b)shows the
estimated intensity and phase image for the iterative Kalman filter of [3] and the proposed method. As for Data Set 1,
the intensity and phase image inferred by the proposed method contain less artifacts, and the phase image has stronger
contrast.

5. Conclusion

The proposed statistical inference algorithm can efficiently recover phase and amplitude from a series of noisy defo-
cused images. It is recursive, and may enable real-time applications. Our method may also find use in phase imaging
beyond optical wavelengths (for example, X-ray or neutron imaging), where high-quality images are difficult to obtain
and noise is significant and unavoidable.
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