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Abstract—Several clinical studies have reported that EEG 

synchrony is affected by Alzheimer’s disease (AD). In this 

paper a frequency band analysis of AD EEG signals is 

presented, with the aim of improving the diagnosis of AD using 

EEG signals. In this paper, multiple synchrony measures are 

assessed through statistical tests (Mann–Whitney U test), 

including correlation, phase synchrony and Granger causality 

measures. Moreover, linear discriminant analysis (LDA) is 

conducted with those synchrony measures as features. For the 

data set at hand, the frequency range (5-6Hz) yields the best 

accuracy for diagnosing AD, which lies within the classical 

theta band (4-8Hz). The corresponding classification error is 

4.88% for directed transfer function (DTF) Granger causality 

measure. Interestingly, results show that EEG of AD patients is 

more synchronous than in healthy subjects within the 

optimized range 5-6Hz, which is in sharp contrast with the loss 

of synchrony in AD EEG reported in many earlier studies. This 

new finding may provide new insights about the 

neurophysiology of AD. Additional testing on larger AD 

datasets is required to verify the effectiveness of the proposed 

approach. 

 

I. INTRODUCTION 

Alzheimer’s disease (AD) is a brain disease that is 
characterized by a progressive loss of structure or function of 
neurons, including death of neurons. It is the most common 
form of dementia; third most expensive disease and sixth 
leading cause of death in the United States. In particular, it 
affects more than 10% of Americans above the age of 65, 
roughly 50% of people older than 85, and it is expected that 
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the number of  AD cases will triple within the next 50 years 
[1, 2]. 

The electroencephalography (EEG) is considered as a 
promising diagnostic tool for AD because of its non-invasive, 
safe, and easy-to-use properties. EEG has the potential to 
complement or replace some of the current traditional AD 
diagnostic methods. However, diagnosing AD in EEG signals 
remains a challenging problem [3, 4]. 

Medical studies have shown that many 
neurophysiological diseases, such as AD, are often associated 
with abnormalities in neural synchrony. It has frequently 
been reported that AD causes signals from different brain 
regions to become less correlated [5]. In this paper, we 
investigate the efficacy of EEG synchrony measures within 
different frequency bands to distinguish mild AD patients 
from healthy subjects. As a result, we identify several narrow 
EEG frequency ranges that improve the diagnosis of AD 
compared to the wider range of 4−30Hz. 

Several earlier studies [6, 7] have applied a variety of 
synchronous measures to EEG data of patients with AD. 
Those studies indicated a statistically significant loss in EEG 
synchrony between patients with AD and healthy subjects. In 
an earlier study [6], multiple synchrony measures were 
applied to study the statistical significance of EEG synchrony 
loss due to Mild AD in the frequency range [4,30 Hz]. Here 
we consider the same data set, but systematically explore 
narrower frequency bands. Surprisingly perhaps, we observe 
that in mild AD patients, EEG synchrony significantly 
increases in narrow frequency bands (e.g., 5-6Hz). 

In earlier work, we have used relative power of EEG in 
optimized frequency bands to detect mild AD [8].  We 
observed in that study that several narrow-band frequency 
ranges (4-7Hz, 8-15Hz and 19-24Hz) improve the detection 
accuracy. 

This paper is structured as follows: in Section II the EEG 
data set is described (Mild AD), and in Section III the 
synchrony measures used in this paper are briefly reviewed; 
in Section IV we discuss the methodology used to distinguish 
AD patients from healthy subjects; in Section V we present 
our results, and we offer concluding remarks in Section VI. 

II. EEG DATA SET 

We consider EEG data of mild-AD patients and age-
matched control subjects. The EEG data set has been 
analyzed in previous studies [9-11]; the data was obtained 
using a strict protocol from Derriford Hospital, Plymouth, 
U.K., and had been collected using standard hospital 
practices [10]. EEGs were recorded during a resting period 
with various states: awake, drowsy, alert and resting states 
with eyes closed and open. All recording sessions and 
experiments proceeded after obtaining the informed consent 
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of the subjects or the caregivers and were approved by local 
institutional ethics committees. EEG dataset is composed of 
24 healthy Ctrl subjects (age: 69.4±11.5 years old; 10 males) 
and 17 patients with mild AD (age: 77.6±10.0 years old; 9 
males). The patient group underwent full battery of cognitive 
tests (Mini Mental State Examination, Rey Auditory Verbal 
Learning Test, Benton Visual Retention Test, and memory 
recall tests). The EEG time series were recorded using 21 
electrodes positioned according to Maudsley system, similar 
to the 10-20 international system, at a sampling frequency of 
128 Hz. EEGs were band-pass filtered with digital third-order 
Butterworth filter (forward and reverse filtering) between 0.5 
and 30 Hz. The recordings were conducted with the subjects 
in an awake but resting state with eyes closed, and the length 
of the EEG recording was about 5 minutes, for each subject. 
The EEG technicians prevented the subjects from falling 
asleep (vigilance control). After recording, the EEG data has 
been carefully inspected. Indeed, EEG recordings are prone 
to a variety of artifacts, for example due to electronic smog, 
head movements, and muscular activity. For each patient, an 
EEG expert extracted one segment of 20 seconds that is most 
informative. The EEG expert was blinded from the results of 
the present study. These extracted 20-second segments are 
used in the analysis, as described below.  

III. SYNCHRONY MEASURES 

We briefly review the various families of synchrony 
measures investigated in this paper: cross-correlation 
coefficient, phase synchrony , and Granger causality; we 
describe those measures in more detail in [7]. We optimize 
the parameters of the synchrony measures and the window 
length, following the same procedures as in [7]. 

A. Cross-Correlation Coefficient 

The cross-correlation coefficient r measures the similarity 
of two signals x and y. If x and y are not similar, not linearly 
correlated, r is close to zero. Conversely, if both signals are 
identical, then r = 1[12] . A window length of 20 seconds was 
used. 

 

B. Phase Synchrony 

Phase synchrony refers to the interdependence between 

the instantaneous phases x  and y  of two signals x and y; 

the instantaneous phases may be strongly synchronized even 
when the amplitudes of  x and y are statistically independent. 

The instantaneous phase x  of a signal x  may be extracted 

as [7]: 

)](~)(arg[)( kxikxkx                     (1) 

where x~ is the Hilbert transform of x. The phase synchrony 

index  for two instantaneous phases x  and y  is defined 

as [7]: 
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where n  and m are integers (usually mn 1 ). A window 

length of 20 seconds was used. 

 

C. Granger Causality 

Granger causality
1
 refers to a family of synchrony 

measures that are derived from linear stochastic models of 
time series; they quantify to which extent different signals are 
linearly interdependent. Non-linear extensions of Granger 
causality exist, but we do not consider them here since they 
are less common. Whereas the above linear interdependence 
measures are bivariate, i.e., they can only be applied to pairs 
of signals, Granger causality measures are multivariate, they 
can be applied to multiple signals simultaneously. 

Assume that we are given n 
signals      kXkXkX n,..., 21

, each one is stemming from 

a different EEG channel. Those signals are modeled as a 
multivariate autoregressive (MVAR) model, which is a linear 
model that captures the statistical dependencies among the n 
signals. The Granger causality measures are defined in terms 
of coefficients of the MVAR model, both in time and 
frequency domain. Two symmetric Granger measures are: 

 Granger coherence   ]1,0[fKij
 describes the amount 

of in-phase components signals i and j at the frequency 
f. A second order model with a window length of 1 
second was used. 

 Partial coherence (PC)   ]1,0[fCij  
describes the 

amount of in-phase components in signals i and j at the 
frequency f when the influence (i.e., linear dependence) 
of the other signals is statistically removed. A fourth 
order model with a 20-second window length. 

The following asymmetric (“directed”) Granger causality 
measures capture causal relations: 

 DTF  fij

2 quantifies the fraction of inflow to channel i 

stemming from channel j. A seventh order model with a 
window length of 1 second was used. 

 Full frequency directed transfer function (ffDTF) 
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 is a variation of  with a global normalization in 

frequency. A second order model with a window length of 1 

second was used. 

 Partial directed coherence (PDC) 

  ]1,0[fPij
represents the fraction of outflow from 

channel j to channel i. A second order model with a 
window length of 1 second was used. 

  Direct directed transfer function (dDTF) 

)()()( 222 fCfFf ijijij 
 

is non-zero if the connection 

between channel i and j is causal (non-zero )(2 fFij
) and 

direct (non-zero )(2 fCij
). A second order model with a 

window length of 20 second was used. 
 
 

 
1  Granger causality measures are implemented in the BioSig library: 

http://biosig.sourceforge.net 



  

IV. METHODOLOGY 

Our aim is to use EEG synchrony measures for diagnosis 
of AD. Our approach consists of three steps: feature 
extraction, separability tests, and classification. 

A. Feature Extraction 

The synchrony measures are computed in frequency 
bands [F:(F+W)] Hz as follows: 

1) Bandpass filter: is applied to each EEG channel to 
extract the EEG data in specific frequency band 
[F:(F+W)]Hz. Butterworth filters were used (of third 
order)  as they offer good transition band 
characteristics at low coefficient orders; thus, they 
can be implemented efficiently [13]. 

2) Synchrony measures: computes the EEG synchrony 
by aggregating the EEG signals into 5 zones, as 
discussed in [7]. Calculating the synchrony between 
those 5 different regions, using each synchrony 
measure, has been discussed in Section III. 

B. Separability Test 

After calculating the averages of EEG synchrony [7] for 
each subject, in all frequency band [F:(F+W)]Hz, the average 
of each population (MiAD and Control) is calculated and  

denoted by 
AD

 for AD patients, and 
Ctr

  for control 

subjects. Likewise, standard deviation is computed for both 

populations, denoted by 
AD

  and 
Ctr

  respectively.  

The linear separability criterion J is then computed:  
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We calculate the index J(F,F+W) over a range of 

frequency bands, i.e., F =1, 2, …, 30Hz and W = 1, 2, …, 30 

Hz, corresponding to 900 different frequency bands within 

[1,30Hz]; we depict the value J as a function of F and W. 

 
Fig. 1. 2D representation of the linear separability value J  for the DTF 

measure between MiAD patients and healthy subjects, calculated over 

frequency bands [F,F+W]. The x-axis represents frequency F, the y-axis 

represents the witdh W, while the color represents the linear separability J. 

Figure 1 shows the linear separation J for DTF between 
Mild Alzheimer patients and Healthy subjects, calculated 
over frequency bands [F,F+W]. Interestingly, a few peaks in 
J can be seen, representing the largest linear separation J 
between MiAD patients and Control subjects. The J index 
was computed similarly for the other synchrony measures. 

C. Mann-Whitney U Test 

The Mann-Whitney statistical test allows us to investigate 
whether the EEG statistics at hand (synchrony measures of 
various frequency bands) take different values between the 
two subject populations. Low p-values indicate large 
difference in the medians of the two populations. The Mann-
Whitney U Test was computed for all synchrony measures in 
all the frequency bands between [1,30Hz].  

D. LDA 

It is a linear classifier to distinguish MiAD patients from 
healthy subjects. LDA has been used earlier for diagnosis of 
AD from EEG [11, 14-18]. The classification performance 
was evaluated through leave-one-out (LOO) cross-validation. 

The weight vector w of the linear classifier is determined 
from a subset of the data (training set) and LDA is then 
assessed on the remaining data (test set). Each learning set is 
created by taking all the samples except one, and the 
corresponding test set is the sample left out. Thus, for n 
samples, we have n different training sets (each yielding a 
coefficients vector w) and n different test sets.  This 
procedure was conducted for all synchrony measures, in the 
frequency ranges that correspond to the largest values of J. 

V. RESULTS 

The largest J –values, corresponding p-values and lower 
classification error are presented in Table I. The J value 
obtained for DTF measure is presented in Figure 1, as 
mentioned earlier. As can be seen, small p-value (p<0.005) 
are obtained for all synchrony measures except for cross-
correlation. The highest J index and the lowest p-value have 
been achieved by the PDC synchrony measure. 

TABLE I. LARGEST INDEX J FOR EACH MEASURE. P VALUES FROM MANN-
WHITNEY TEST 

Synchrony 

measure 
J value 

Optimized 

frequency range 

(Hz) 

p-value 

Cross-Correlation 0.3276 22-23 0.0378 

Phase Synchrony 0.5832 9-10 0.00005 

Coherence 0.8850 1-2 0.00003 

PC 0.5069 3-4 0.0027 

DTF 0.9875 6-7 3×10-6 

ffDTF 0.9741 1-2 3×10-6 

PDC 1.0282 1-4 2×10-6 

dDTF 0.8263 3-4 9.5×10-5 

 
 



  

TABLE II. ERROR RATE  CALCULATED BY LOO CROSSVALIDATION  

Synchrony 

measure 

Optimal frequency 

ranges (Hz) 
Error Rate % 

Cross-Correlation 23-24 31.71 

Phase Synchrony 9-10 19.51 

Coherence 1-2 17.07 

PC 3-4 31.71 

DTF 5-6 4.88 

ffDTF 1-2 19.51 

PDC 1-4 19.51 

dDTF 2-4 21.95 

 

 
Fig. 2. Boxplot shows the DTF measure for healthy subjects and Mild 

Alzheimer patients in the optimised frequency range 5-6Hz. 

 

Table II represents the classification error obtained by 
LDA, calculated by leave-one-out crossvalidation, for all 
synchrony measures introduced in section IV. It is clear that 
DTF for the band range 5-6Hz achieved the smallest error 
classification rate among all measures, with a value of 4.88%. 
This result is in agreement with the results of Table I, as DTF 
has the second smallest p-value (after PDC). Figure 2 shows 
a boxplot of the DTF values in the optimized frequency range 
5-6Hz, for MiAD patients and control subjects. 

 In Figure 3, we show a EEG signals from an MiAD 
patient and control subject in the 5-6Hz. Clearly, the narrow-
band EEG signals in MiAD patients have higher amplitude 
and are more coherent compared the healthy subject. The 
increased amplitudes are due to the slowing effect MiAD. 
That observation is in agreement with earlier studies. 
However, the finding of increased correlation among the 5-
6Hz waves in MiAD patients is fascinating, since it is in 
disagreement with the often documented observation of loss 
in EEG synchrony in AD patients. It is noteworthy though 
that a few studies have reported increased EEG synchrony in 
AD patients (see [7] for a review). 

In Table III, we list statistics of the synchrony measures, 
including the average computed across the entire subject 
groups and the standard deviation.  

 

 

 

 

Fig. 3. Examples of EEG signals in frequency range 5-6Hz. (a) Healthy 

subject, (b) Alzheimer patient. 

 

TABLE III. MEAN AND STANDARD DEVIATION VALUES OF CROSS-
CORRELATION, PHASE SYNCHRONY AND SYNCHRONY MEASURES. P VALUES 

FROM MANN-WHITNEY TEST  

 Traditional Frequency Band 
4-30Hz  

Optimized Frequency Band 
5-6 Hz 

Measure AD Control 
p-

value 
AD Control p-value 

Cross-
Correlation 

0.28±0.13 0.26±0.08 0.78 0.27±0.10 0.26±0.09 0.84 

Phase 
Synchrony 

0.18±0.08 0.20±0.06 0.14 0.23±0.07 0.19±0.04 4.6×10
-2

 

Coherence 0.50±0.10 0.46±0.05 0.20 0.59±0.06 0.53±0.05 2.1×10-3 

PC 0.42±0.09 0.43±0.10 0.86 0.56±0.12 0.48±0.12 5.5×10
-2

 

DTF 0.36±0.02 0.36±0.01 0.66 0.37±0.01 0.35±0.02 2.6×10
-6

 

ffDTF 0.05±0.01 0.05±0.00 0.01 0.26±0.01 0.24±0.02 4.3×10-5 

PDC 0.28±0.04 0.29±0.03 0.22 0.37±0.02 0.32±0.03 6.4×10-6 

dDTF 0.02±0.01 0.02±0.01 0.61 0.14±0.04 0.09±0.04 5.0×10-4 

 

We report the Mann-Whitney p-values. The Mann-
Whitney test allows us to investigate whether the statistics at 
hand (EEG measures) take different values between two 
subject populations, as discussed in section IV. 

As shown in Table III, the results for the narrow 
frequency band  (5-6Hz) are more consistent compared to the 
standard frequency band of 4-30Hz, which has often been 
considered in previous studies. For example, in the latter 
frequency band, cross-correlation, DTF, and Granger 
coherence have high values for MiAD. On the other hand, 
PDC, dDTF, ffDTF, and partial coherence measures are 
lower in MiAD patients compared to control subjects. This 
inconsistency has to some extent been documented in 
literature. Interestingly, in the 5-6Hz frequency range, all 
synchrony measures have high values for MiAD patients 

(a) 

(b) 



  

compared to control subjects.  In other words, EEG 
synchrony is enhanced in MiAD patients in 5-6Hz, which is 
part of the standard theta band (4-8Hz), as indicated 
consistently by a large variety off synchrony measures. This 
new finding may provide new insights about the 
neurophysiology of Alzheimer’s disease. 

VI. DISCUSSION AND CONCLUSION 

This study demonstrates the discriminative power of EEG 

synchrony for diagnosing Alzheimer’s disease. Narrow 

frequency bands between 4 and 30Hz are systematically 

tested, besides the standard wide frequency band (4–30Hz), 

for evaluating multiple synchrony measures. Assessment has 

been done through statistical tests (Mann–Whitney U test) 

and LDA (leave-one-out crossvalidation).  

The best classification results were obtained by directed 

transfer function (DTF) Granger causality measure (4.88% 

classification error). Interestingly, the corresponding 

optimized frequency range is 5-6Hz that lies within the 

classical theta band (4-8Hz).  

Surprisingly perhaps, our results for the data set at hand 

show that EEG of AD patients is more synchronous than in 

healthy subjects within the optimized range 5-6Hz. It would 

be interesting to speculate on the origin of the enhanced 

synchrony. 

Of course, it is important to point out that the data set at 

hand is fairly small. A larger sample size and a more diverse 

data set are needed in order to generalize the findings of this 

study. Multiple types of dementia and other neurological 

disorders can also be analysed through our technique, which 

may further validate our results. The ultimate objective of 

this line of research is to determine the most appropriate 

EEG frequency bands for diagnosing AD (and potentially 

other neurodegenerative diseases) with synchrony measures. 

In addition, it seems to be promising to combine 

synchrony measures with each other or with other EEG 

features, such as relative power. 
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