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Abstract— Angiogenesis is the growth process of blood vessels
from existing vessels. During angiogenesis, endothelial cells
(ECs), which line the vessel, specialize into tip and stalk cells.
Tip cells respond to angiogenic signals, burrow into the extra-
cellular matrix (ECM) and form conduits. Stalk cells follow
the tip cells along the conduits, and form solid sprouts or
lumen vessels. Interactions between stalk cells and tip cells are
important for creating functional vessels. The goal of this work
is to predict stalk cells migration trajectories from known tip
cell trajectories. Four factors influence the position and velocity
of cell migration in ECM: cell-cell interaction, drag force,
chemotactic signal and cell-ECM interaction. As chemotactic
signal and cell-ECM interactions have little effect on stalk
cell movement, the proposed model includes the influence
of cell-cell interactions and drag force only. The unknown
parameters in the model are inferred by Maximum Likelihood
Estimation (MLE) from experimental time-lapse cell migration
data. Numerical results suggest that the proposed model can
accurately predict stalk cell trajectories. The proposed model
may be useful for the study of angiogenesis, a critical process
for cancer tumor growth.

I. INTRODUCTION

Cancer is a group of diseases that have a common feature
of uncontrolled cellular growth, and causes 13% of all human
deaths worldwide [1]. Angiogenesis, which is the growth
process of blood vessels from existing vessels, is critical
for cancer invasion [2]. Tumor-induced angiogenesis starts
with the activation of Endothelial Cells (ECs) by Tumor
Angiogenic Growth Factors (TAFs), followed by migration
and proliferation and finally vessel maturation [3]. ECs
specialize into tip, stalk and phalanx cells in angiogenesis [4].
Tip cells sense and respond to the guidance cues, burrow
into the extracellular matrix (ECM) and form conduits. Stalk
cells trail behind tip cells along the conduits and form solid
sprouts or lumen vessels.

In related work, the angiogenesis process is modeled
using continuous and discrete mathematical approaches [1].
Continuous models use Partial Differential Equations (PDEs)
to reflect the distribution of ECs and angiogenic factors.
While discrete approaches model these factors individually.
Anderson and Chaplain assumed that the growth of a single
vessel is governed by its tip cell movement and this tip cell
moves across a rectangular network according to pre-defined
rules [5]. At each step of the simulation, the probability
that a tip cell moves in one of four specified directions

was calculated using the continuous approach. This model
does not fully represent cell trajectory because cells can only
move in the specified directions in the network. Wood et
al. developed an extended agent-field model to predict EC
behavior in angiogenesis [6]. In this model, the stochastic
behavior of ECs was modeled as a population of stochastic
agents, each having a Markov chain state transition graph.
The state transition probabilities vary depending on matrix
cues such as growth factors and matrix gel properties.

Our work is novel in two ways: First, our prediction model
uses only Ordinary Differential Equations (ODEs), reducing
the modeling complexity. Second, the unknown parameters
are tuned using cell trajectories obtained from automated
image analysis of experimental observations. Our data-driven
model is able to predict stalk cell trajectories accurately with
low computational requirements and is easily scalable for
large cell populations.

This paper is structured as follows. In Section II, we
provide background on the influencing factors of position
and velocity of the ECs. In Section III, we explain our
mathematical model, and in Section IV we provide numerical
results. In Section V, we offer concluding remarks.

II. BACKGROUND

There are four factors that may influence the position and
velocity of the ECs. They are cell-cell interaction, drag force,
chemotactic signal and cell-ECM Interaction [7].

A. Cell-Cell Interaction

ECs can interact with their neighbours through adhesive
and repulsive forces. These two forces are modeled based on
work in [7].

1) Cell-Cell Adhesion: Cell adhesion, which is regulated
by cell-adhesion molecules (CAMs) expressed at the cell
surface, is essential for many cell physiological functions
(e.g. proliferation, differentiation and migration) and patho-
logical conditions (e.g. inflammation and interaction of cell
with biomaterial) [8]. From [7], the adhesion force on cell i
impacted by cell j is:

Fi j
cca =−ccca5ϕ(r;RA;n)

=

{
−ccca(1− |r|RA

)n+1 r
|r| 0 < |r| ≤ RA

0 |r|> RA
, (1)



where ccca is the adhesion constant, r = x j − xi, |r| is the
Euclidean norm of r, RA is the maximum adhesive interaction
distance, and n is the exponent of the potential.

2) Cell-Cell Repulsion: As cells can mechanically resist
compression, a repulsive force is introduced when two cells
come into contact with each other. This repulsive force in-
creases rapidly when these two cells move closer, especially
when their nuclei are in close proximity. The repulsive force
is computed as [7]:

Fi j
ccr =−cccr5ψ(r;RN ;R;M;m)

=


cccr(c

|r|
RN

+M) r
|r| 0 < |r|< RN

cccr(1− |r|R )m+1 r
|r| RN ≤ |r| ≤ R

0 |r|> R

, (2)

where cccr is the repulsive constant, r = x j − xi, |r| is the
Euclidean norm of r, RN is cell nucleus radius, R is cell
radius, M ≥ 1 is the cells’ maximum repulsive force, m is a
fixed nonnegative integer, and c = (1− RN

R )m+1−M.

B. Drag Force
Cells experience drag forces during their motion in ECM.

For a very low Reynolds number (e.g. Re< 1), the drag force
is approximately proportional to velocity, in the opposing
direction [9]. As the cell velocity is very small and the
Reynolds number is proportional to its velocity, the drag
force on cell i can be calculated as:

Fi
drag =−ν ẋi, (3)

where ν is the viscosity of ECM and ẋi is velocity of cell i.

C. Chemotactic Signal
When the concentration of VEGF and other angiogenesis

factors around the cell i exceeds a threshold value, the
filopodia of the tip cells will sense the signals, leading to
cell migration due to chemotactic forces [1] [4].

D. Cell-ECM Interaction
During angiogenesis, tip cells secrete Matrix Metallopro-

teinases (MMPs) to degrade the ECM and create conduits for
stalk cell migration [1]. Tip cells also interact with the ECM
during the movement, hence we regard ECM as a spring with
an elastic constant kECM [7].

As shown in earlier studies [10], tip cells sense the
chemotactic signals in the microenvironment, respond ac-
cordingly through their filopodia, and create conduits. On
the other hand, stalk cells follow behind the tip cells in the
conduits created. Cell-ECM interactions are more prominent
in tip cells [1] [7]. Therefore, we do not account for the
influence of chemotactic signals and cell-ECM interactions
when predicting stalk cell trajectories in our model.

III. MATHEMATICAL MODELING

A. Governing Function
We define the position and velocity of the ith cell at time

k as:

xi
k =

[
xi

k
yi

k

]
∈ R2, vi

k =

[
vi

xk
vi

xk

]
∈ R2. (4)

Newton’s Second Law states that the acceleration a of a
body is proportional to the net force F acting on its body and
inversely proportional to its body mass m. As acceleration
a is the first order derivative of velocity and second order
derivative of position, the net force on the ith cell can be
represented as:

Fi = mai = m
dvi

dt
= m

d2xi

dt2 . (5)

The net force exerted on ith cell consists of cell-cell
interactions and drag force, as explained in section II. The
governing function of these forces on cell i is described as:

Fi = Fi
cell−cell +Fi

drag

=
N

∑
j=1, j 6=i

(Fi j
cca +Fi j

ccr)+Fi
drag, (6)

where j = 1,2, . . . , N, and j 6= i represents all cells in the
experiment except cell i.

B. Prediction Equation

The second order ODE for x in equation (4) can be split
into two first order ODEs:

dxi

dt
= vi,

dvi

dt
=

Fi

m
. (7)

The first order ODEs can be solved numerically by Euler’s
forward iteration, resulting in (8) and (9). The variables x̂ and
v̂ represent the predictions of cell position x and cell velocity
v respectively.

C. Parameter Estimation

1) Assumption: To numerically solve equation (7), we
assume:
• All cells have the same mass,
• All cells are round,
• The cell diameter is 2.5 times large of its nucleus

diameter as the nucleus diameter can be obtained from
experiments.

2) Initial Condition: In our model, we use the experimen-
tal data at k = 1 as the initial condition.

3) Known Parameters: Several parameters in equation (9)
are obtained from the literature [11]:
• The exponent of the potential for adhesion: n = 1,
• Maximum adhesive interaction distance: RA = 1.214R,
• The exponent of the potential for repulsion: m = 1,
• Cell maximum repulsive force: M = 1.
4) Unknown Parameters: Three unknown parameters

need to be estimated in equation (9):

a =
ν

m
, b =

cccr

m
, and d =

ccca

m
. (10)

The prediction error εk, defined as the discrepancy from the
actual experimental measurements vi

k, depends on those three
parameters:

εk(a,b,d) = vi
k− v̂i

k. (11)
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k + v̂i
k∆t. (8)
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For the sake of convenience, we make the common assump-
tion that the prediction error ε is Gaussian with zero mean:

εk(a,b,d)∼ N(0,S), (12)

where S is the noise covariance. If the covariance S is
isotropic, we have:

S =

[
σ2 0
0 σ2

]
, (13)

and the unknown parameter vector becomes:

θ = [a b d σ ]T . (14)

The Maximum Likelihood Estimate (MLE) of the param-
eter vector based on the experimental data from k = 1 to Tf
is given by:

θ̂
MLE = argmax

θ

Tf

∏
k=1

(
1

2π|S| 12
exp
(
−1

2
εk(θ)

T
S−1

εk(θ)
))

= argmin
θ

Tf

∑
k=1

(
εk(θ)

T S−1
εk(θ))+ ln |S|

)
. (15)

Our experimental data contains trajectories of cells migrat-
ing alone, in addition to trajectories of stalk cells following
tip cells. To limit the computational complexity, we estimate
the parameters in two steps. First, the parameters a and σ

are inferred from experimental trajectories of cells migrating
alone, where only the drag force and random noise is
included in the model. Next, the remaining parameters b and
d in (9) are estimated from experimental trajectories of stalk
cells following tip cells.

IV. RESULTS AND DISCUSSION

Our angiogenic experiments are performed using “high
throughput” microfluidic devices designed by Farahat et
al. [12] (see in Fig. 1). Collagen gel is injected in channel
C. Vascular Endothelial Growth Factors (VEGFs) play an
important role in angiogenesis, since cells tend to migrate
towards a higher gradient of VEGF. To create a VEGF
concentration gradient across the gel, we provide a higher
VEGF concentration to channel A than to channel B. The
sprouting process is observed by means of a confocal mi-
croscope at 30-minute intervals. We extract cell trajectories
from the acquired images using automated image processing
algorithms.

From the resulting trajectories, we infer the ML estimates
of the parameters in (8) and (9). Next we predict the
stalk cell trajectories from the tip cell trajectories. As an

Fig. 1. “High throughput” microfluidic device [12].
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Fig. 2. Comparison of the Experimental and Predicted Stalk Cell Trajectory.

illustration, Fig. 2 shows our results for one stalk and tip
cell trajectory. We consider four different ways (I to IV)
to predict the stalk cell trajectory. In the first approach,



we apply our model (8) and (9), which includes both cell-
cell interactions and drag force. In the second approach,
we neglect the cell-cell interaction and only consider the
influence of drag force; in the third approach, only cell-cell
interactions are considered. At last, in the fourth approach,
the stalk cell moves randomly in ECM by neglecting all
the force exerted on it. The background of Fig. 2 is the
final image acquired by the confocal microscope during that
particular experiment. As can be seen from Fig. 2, our model
yields the most accurate stalk trajectories (predicted results
I). This observation implies that both cell-cell interactions
and drag force are critical to predict talk cell trajectories.
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Fig. 3. Error from Predicted Result I and Experimental Result of Stalk
Cell Trajectory over Time.

Fig. 3 shows the average prediction error and standard
deviation for model (8)(9), averaged over ten stalk cell
trajectories. From that figure, it can be seen that our model
is able to consistently predict the stalk cell trajectory with
given tip cell information, as the deviation is less than 5%
and does not increase with time.

There are several possible sources for this deviation. First,
we assume that the cell is round and the cell radius is 2.5
times its nucleus radius, which may not be the case in real
experiments. Second, the cell migrates in 3D but the relative
distances between the tip and stalk cells were computed in
2D. Our model does not account for any distances in the
third direction, which may contribute to the error.

V. CONCLUSION

In this paper, we have proposed a data-driven mathemati-
cal model to predict stalk cells migration from known tip cell
trajectories. As chemotactic signal and cell-ECM interactions
have little effect on stalk cell movement, the proposed model
includes the influence of cell-cell interactions and drag force
only. The computational complexity of the model is low,
since it only contains ordinary differential equations and is
free of partial differential equations. The model predicts stalk
cell trajectories accurately, yet it is substantially simpler than
existing models.

In future work, we will extend our model to include
angiogenic factors such as growth factor concentration and

cell shape. In addition, we will analyze more experimental
data.
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