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Abstract

Stochastic event synchrony (SES) is a recently proposed family of similarity mea-
sures. First, “events” are extracted from the given signals; next, one tries to align
events across the different time series. The better the alignment, the more simi-
lar the N time series are considered to be. The similarity measures quantify the
reliability of the events (fraction of “non-aligned” events) and the timing precision.

So far, SES has been developed for pairs of one-dimensional (Part I) and multi-
dimensional (Part II) point processes. In this paper (Part III), SES is extended from
pairs of signals to IV > 2 signals.

The alignment and SES parameters are again determined through statistical in-
ference, more specifically, by alternating the following two steps: (i) one estimates
the SES parameters from a given alignment; (ii) with the resulting estimates, one
refines the alignment. The SES parameters are computed by maximum a posteriori
(MAP) estimation (Step 1), in analogy to the pairwise case. The alignment (Step
2) is solved by linear integer programming.

In order to test the robustness and reliability of the proposed N-variate SES
method, it is first applied to synthetic data. We show that N-variate SES results in
more reliable estimates than bivariate SES. Next IN-variate SES is applied to two
problems in neuroscience: it used to quantify the firing reliability of Morris-Lecar
neurons, and to detect anomalies in EEG synchrony of Mild Cognitive Impairment
(MCI) patients; those problems were also considered in Part I and II respectively.
In both cases, the N-variate SES approach yields a more detailed analysis.

Key words: timing precision, event reliability, stochastic event synchrony,
maximum a posteriori estimation, Morris-Lecar neuron, firing reliability,
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time-frequency map, bump model, EEG, Alzheimer’s disease, mild cognitive
impairment

1 Introduction

Neural synchrony may play an important role in information processing in
the brain. Although the details of this coding mechanism have not been fully
revealed, it has been postulated that neural synchrony may be involved in
cognition (Varela et al., 2001) and even in consciousness (Singer, 2001). The
correlation between different brain signals has been studied intensively in re-
cent years both by experimental neuroscientists (e.g., (Abeles et al., 1993))
and computational neuroscientists (e.g., (Amari et al., 2003)), and also by
neurologists; indeed, various medical studies have reported that neurological
diseases (such as Alzheimer’s disease and epilepsy) are related to perturbations
in neural synchrony (Matsuda et al., 2001; Jeong, 2004).

Motivated by the intensified interest in neural synchrony, numerous researchers
have in the last years developed and refined methods to quantify the synchrony
between signals (see, e.g., (Stam, 2005; Quiroga et al., 2002; Pereda et al.,
2005; Toups et al., 2011)). In recent work (Dauwels et al., 2007, 2009a,b), we
have proposed a new family of synchrony measures referred to as stochastic
event synchrony (SES); this class of synchrony measures is inspired by the
Victor-Purpura distance metrics (Victor et al., 1997). The basic idea is the
following: First, we extract “events” from the given time series; next, we try
to align events from one time series with events from the other. The better
the alignment, the more similar the time series are considered to be. We also
quantify the timing jitter between matched (“coincident”) events; the smaller
the timing jitter, the larger the synchrony. SES thus considers two different
aspects of synchrony: reliability and timing precision. Those concepts were
also recently considered in (Toups et al., 2011), and they can be understood
from the following analogy: when you wait for a train in the station, the train
may come at the station or it may not come at all; for example, it may be out
of service due to some mechanical problem. If the train comes, it may or may
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not be on time. The former uncertainty is related to reliability, whereas the
latter is related to precision.

So far, SES was restricted to pairs of signals. In this paper (Part III), we
extend SES from pairs of signals to N > 2 signals. The underlying princi-
ple is similar, but the inference algorithm to compute the SES parameters is
fundamentally different. In bivariate SES (Dauwels et al., 2007, 2009a,b) we
applied the max-product algorithm to align pairs of sequences. We have im-
plemented the max-product algorithm (and various refinements) for aligning
N > 2 sequences as well; however, that approach unfortunately leads to inac-
curate alignments, probably because N-wise alignment is substantially harder
than pairwise alignment. As an alternative, we solve the N-wise alignment by
integer linear programming, which yields optimal or near-optimal alignments
at reasonable computational cost.

The extension from pairs of signals to N > 2 signals is non-trivial. In the
following, we briefly touch upon this issue. For N = 2, the problem of time
series comparison is essentially that of finding an alignment between the time
series. The “alignment” approach of Victor & Purpura (Victor et al., 1997)
was the inspiration for bivariate SES; we have shown in (Dauwels et al., 2007,
2009a,b) that the alignment between 2 time series (say x; and z5) is the same
as finding an underlying time series v which can then be transformed to x;
and x5 by a sequence of steps involving jittering the events, and insertions and
deletions. Quantifying the distance between x; and x5 is equivalent to finding
a v that minimizes some combination of d(zy,v) and d(xs,v). By making the
combination rule for these two distances accelerating (such as a root-mean-
square), one can ensure that v is in the “middle” of x; and z3. Comparing
x1 with x5 is equivalent to finding a hidden “consensus” process v that can
generate both x; with z5. Finding the v “interprets” the similarity of z; and x5
in terms of a consensus that they both represent, but is not necessary to find
v to quantify this similarity, since it can also be expressed as an alignment,
without an explicit v.

For N = 3, one can attempt to jointly minimize some combination of d(z1, v),
d(x9,v), and d(z3,v), without attempting to find an underlying v. Or, one can
attempt to find a single v for which some combination of d(zq,v), d(zs,v),
and d(z3,v) are smallest.

Finally, for N > 3, there is at least one other possibility: the point process
might be generated by two or more hidden processes. This can first happen
at N = 4, with two hidden processes, say v and w, for which the distances
d(xq1,v), d(xg,v), d(xs,w), d(xy,w) have a lower total than the distance from
any single v to all four of the observations z1, xo, x3, and x4. In other words,
for N > 3, the problem of finding multivariate similarity is generally not the
same as finding the single underlying “consensus” process.



In summary, there are at least 3 kinds of definitions of synchrony and similar-
ity:

(1) a definition based on the N(N —1)/2 distances d(z;, x;) between pairs of
observed processes,

(2) a definition based on finding a consensus process v, which minimizes the
N distances d(x;,v),

(3) a definition based on finding multiple hidden processes.

For N = 2, these definitions are identical. For N = 3, the second and third are
identical, but differ from the first. For N > 3, all three definitions are distinct.
In this paper, we consider the second definition: the N point processes are
generated from a (hidden) consensus process v. In future work, we will extend
N-variate SES to multiple hidden processes.

Stochastic event synchrony (SES) is applicable to any kind of time series
(e.g., from finance, oceanography, and seismology). We will consider here neu-
ral spike trains and electroencephalograms (EEG). More specifically, we will
use the SES method to quantify the reliability of Morris-Lecar neurons, and
to predict mild cognitive impairment (MCI) from electroencephalograms; we
also considered those problems in Part I (Dauwels et al., 2009a) and Part
IT (Dauwels et al., 2009b) respectively.

This paper is organized as follows. In the next section, we explain how SES
can be extended from pairs of point processes to N > 2 point processes. We
describe the underlying statistical model (Section 3), and outline our inference
method ? (Section 4). We consider various extensions of our statistical model
(Section 5). We investigate the robustness and reliability of the SES inference
method by means of synthetic data (Section 6). We use SES to quantify the
reliability of Morris-Lecar neurons (Section 7), and to detect abnormalities in
the EEG synchrony of MCI disease patients (Section 8). At last, we offer some
concluding remarks (Section 9).

Readers who are less interested in the technical details may wish to read
Section 2, where the general idea is outlined, and Sections 7 and 8, where two
applications are discussed; those sections can be read independently of the
more technical Sections 3 and 4.

2 An implementation of N-variate SES for one-dimensional
and multi-dimensional point processes is available from
http://www.dauwels.com/SESToolbox/SES.html.



2  Principle

Suppose that we are given N > 2 continuous-time signals (e.g., electroen-
cephalogram (EEG) signals recorded from different channels), and we wish to
determine the similarity of those signals. In (Dauwels et al., 2009b) we con-
sidered pairs of signals (N = 2); although the extension to N > 2 may seem
straightforward, it leads to a combinatorial problem that is much harder. In
the following, we will closely follow the setting and notation of (Dauwels et

al., 2009b).

As a first step, we extract point processes from those N > 2 signals, which
may be achieved in various ways. As an example, we generate point processes
in time-frequency domain: first the time-frequency (“wavelet”) transform of
each signal is computed in a frequency band f € [fiin, fmax)- Next those maps
are approximated as a sum of half-ellipsoid basis functions, referred to as
“bumps” (see Fig. 1 and (Vialatte et al., 2007)). Each bump is described by
five parameters: time ¢, frequency f, width At, height Af, and amplitude w.
The resulting bump models represent the most prominent oscillatory activ-
ity in the signals at hand. This activity may correspond to various physical
or biological phenomena. For example, oscillatory events in EEG and other
brain signals are believed to occur when assemblies of neurons are spiking
in synchrony (Buzsdki, 2006; Nunez et al., 2006). In the following, we will
develop N-variate SES for bump models. In this setting, SES quantifies the
synchronous interplay between oscillatory patterns in N > 2 given signals,
while it ignores the other components in those signals (“background activ-
ity”). In contrast, classical synchrony measures such as amplitude or phase
synchrony are computed from the entire signal, they make no distinction be-
tween oscillatory components and the background activity. As a consequence,
SES captures alternative aspects of similarity, and hence, it provides comple-
mentary information about synchrony.

Besides bump models, SES may be applied to other sparse representations of
signals. Moreover, the point processes may be defined in other spaces than the
time-frequency plane, for example, they may occur in two-dimensional space
(e.g., images), space-frequency (e.g., wavelet image coding) or space-time (e.g.,
movies). Such extensions may straightforwardly be derived from the example
of bump models; we refer to Section 5 and (Dauwels et al., 2009b) for more
details.

It is also noteworthy that the events in the point processes may be labeled
by discrete tags. For example, in multineuronal recordings, the labels would
correspond to the neurons of origin. More generally, the labels may correspond
to the sites or processes of origin. SES may then be applied to the point pro-
cesses associated with each label, and it would quantify the coupling between



(b) Bump models.

Fig. 1. Similarity of three EEG signals (N = 3); from their time-frequency trans-
forms (top), one extracts two-dimensional point processes (“bump models”; bot-
tom), which are then aligned.

the different sites (e.g., neurons).

We now consider the central question: how can we quantify the similarity
of N > 2 point processes defined on a space S7 Let us consider the exam-
ple of bump models (see Fig. 1 and Fig. 2). Intuitively speaking, N bump
models (x;);=1,2, .~ may be considered well-synchronized if bumps appear in
(almost) all bump models simultaneously, apart from a constant offset in time
and frequency, and a “small” amount of jitter in time and frequency. If one
overlays N well-synchronized bump models, and removes the potential av-
erage offsets in time and frequency (denoted by d,; and dy; respectively, for
i=1,2,...,N), bumps naturally appear in clusters that contain precisely one



Fig. 2. Five bump models overlayed on top of each other (N = 5); the dashed boxes
indicate clusters. The average offset between the bumps is close to zero.

bump from all (or almost all) bump models, as illustrated in Fig. 2 for N = 5.
In that example, cluster 1 and 6 contain bumps from all 5 bump models z;,
cluster 2 and 7 contain bumps from 3 bump models, cluster 3 and 5 contain
bumps from 2 bump models, and cluster 4 contains bumps from 4 bump mod-
els. In general, the average offset in time and frequency between the bumps is
not necessarily zero (as illustrated in Fig. 3), and it may be harder to recognize
the different clusters. The algorithm developed in this paper is able to extract
such clusters, even in the general case of non-zero average offsets in time and
frequency (as in Fig. 3).

If the point processes are well-synchronized, almost all clusters contain (close
to) N bumps, specifically, one bump from each (or almost each) of the N bump
models. Therefore, an important similarity statistics is the average number of
events per cluster, or more generally, the statistical distribution of the num-
ber of events per cluster. Moreover, as in the pairwise case (Dauwels et al.,
2009a,b), one can quantify how well the bumps are aligned within each clus-

ter, by computing the jitter sy and sy; in time and frequency respectively, for
1=1,2,...,N.

More generally, N point processes on a space S may be considered similar if



Fig. 3. Five bump models overlayed on top of each other (N = 5); the dashed boxes
indicate clusters. The average offset between the bumps is non-zero. For example,
the red and brown bumps tend to be located at the bottom and top respectively of
the clusters, whereas the green bumps tend to lie at the right side of the clusters.
Such tendencies cannot be observed in Fig. 2.

events appear in clusters with (close to) N events and with “small” dispersion
(computed by the distance measure on S); those clusters may only appear
after certain transformations have been applied, e.g., translation (to eliminate
offsets as in Fig. 3), rotation, and scaling. In other words, N point processes
are considered similar, if they can be transformed into each other by a few
operations, including deletions and insertions, “small” random perturbations,
and transformations such as translation, rotation, and scaling.

Let us now return to bump models. We determine the SES parameters d;,
dpi, sy and sp; (i =1,2,...,N), and the event clusters by statistical inference,
along the lines of the pairwise case (Dauwels et al., 2009a,b). We start by con-
structing a statistical model that captures the relation between the N bump
models; that statistical model contains the SES parameters, besides variables
related to the alignment of the different bumps. Next we perform inference
in that statistical model, resulting in estimates for the SES parameters and
clusters. More concretely, we apply cyclic maximization, as in the pairwise
case.



In the following section, we outline our statistical model; in Section 4 we
describe how we conduct inference in that statistical model.

3 Statistical Model

3.1 Casual Description

The intuitive concept of similarity outlined in Section 2 may readily be trans-
lated into a generative stochastic model. In that model, the N point processes
x; are treated as independent noisy observations of a hidden process v. The
observed sequences (z;);—1,.. n are obtained from v by the following four-step
procedure:

(1) COPY: generate N copies of the hidden point process v,

(2) DELETION: delete some of the copied events,

(3) PERTURBATION: shift the remaining copies over (04, dy;)i=1,..n, and
randomly perturb the positions, with variance (s;)i=1,..~ = (Sti, Sfi)i=1,..N,
amounting to the N point processes (x;)i=1,. n-

(4) INSERTION: Additional events are inserted ( “background events” ), which
are unrelated to the hidden point process v, and are modeled as mutually
independent.

As a result, each sequence z; consists of “noisy” copies of hidden events (gen-
erated by Step 1 to 3), besides background events (generated by Step 4). The
noisy copies are related to each other through the hidden events v, whereas
the background events are all independent of each other. The point processes
x; may be considered well-synchronized if there are only few deletions (cf. Step
2) and insertions (cf. Step 4), and if the events of z; are “close” to the
corresponding hidden events (cf. Step 3), apart from offsets (04, df;)iz1,. n-
Fig. 4 illustrates a generative process that results in the bump models of
Fig. 3. More generally, as we pointed out in the previous section, one may in-
clude other transformations in the perturbation step besides translation over
(04, 0f;)i=1,.. N, such as rotation and scaling.

Some readers may wonder why insertions need to be modeled explicitly. In-
deed, inserting an event is equivalent to adding a hidden event with N “noisy”
copies, followed by N — 1 deletions. In this way, the SES models for pairs of
point processes (Part I and II) are able to capture insertions, even though
they are not modeled explicitly (Dauwels et al., 2009a,b). However, for large
N (e.g., N > 10), the cost of an insertion becomes prohibitively large (due to
the N —1 deletions), and as a consequence, the statistical model does no longer
capture insertions. The inserted event will be grouped with other events, lead-



Fig. 4. Generative model for the N = 5 bump models (z;);=1,.. n of Fig. 3. One first
generates a hidden bump model v, indicated in dashed lines. Next one makes N =5
identical copies of v and shifts those over (6;)i=1,...v = (0ti,9¢i)i=1,..., N, as indicated
by the colored arrows in cluster 1. The resulting events are then slightly shifted,
with variance (s;)i=1,..N = (Su,Sfi)i=1,.,N, as indicated by the black arrows in
cluster 1. Finally, some of those events are deleted (with probability pg), resulting
in the bump models (x;)i=1,. n. For example, 2 events are deleted in cluster 2.

ing to incorrect clusters. Therefore, it becomes necessary to model insertions
explicitly. As an illustration, Fig. 11(a) shows several event clusters in addition
to background events (indicated by red hexagons). More information on this
application can be found in Section 7. Note that insertions are also explicitly
modeled in the Victor-Purpura distance metrics (Victor et al., 1997), which
were the source of inspiration for SES.

3.2 Formal Description

We now describe the underlying stochastic model in more detail. We refer
to Table 1 for a summary of all relevant variables and parameters. For conve-
nience, we introduce the following notation. The length of the point process x;
is denoted by L; (with ¢ = 1,2,..., N). The individual events of point process
x; are denoted by x;; (withi=1,2,...,Nand j =1,...,L;). The occurrence

10



Symbol Explanation
(i)i=1,2,..,.N N given bump models
L; length of x;
Ltot total number of bumps in the N models (z;)i=12... N
Tij j-th bump in bump model z;
tij occurrence time of w;;
fij frequency of x;;
0y and 6 average offset in time and frequency for bump model z;
s and sg; jitter in time and frequency for bump model z;
Dd deletion probability
v hidden bump model from which the observed bump models (z;)i=12, .~
are generated
l length of v
Cij cij = 0 if z;; is a background event, otherwise index of event in v that generated wx;;
Ck set of ny copies of v, (cf. (13))
Tk index set of Cy, (cf. (13))
index set of bump clusters of size ny > 1 (cf. (12))
L number of bump clusters, i.e., number of hidden events vy
with at least one copy (ng > 0)
p fraction of missing bumps in the clusters
o] background events in (z;)i=12,..N
l length of ©
X fraction of background events in (z;)i=1,2,.. .~
do cost associated with a cluster/exemplar (cf. (25))
do cost associated with a background event (cf. (26))
d(tij, fij) cost associated with an event x;; that belongs to a non-trivial cluster (cf. (27))
d(tij, fij, tugr, firjr) | cost associated with an event x;; that belongs to exemplar zy ;s (cf. (48))
by equal to one iff cluster k is non-empty (ng >0 and k = 1,2,..., L*") otherwise zero
bijk equal to one iff the x;; belongs to cluster k, i.e., ¢;; = k, otherwise zero
bij equal to one iff z;; is an exemplar, otherwise zero
bijir i equal to one iff z;; is associated with exemplar x;;/, otherwise zero
€ij equal to one iff z;; is a background event, otherwise zero
Table 1

List of variables and parameters associated with models p(z,c,v,0,¢) (16),
p(z,c,0) (23) (31), and p(x,b,e,0) (43) (49).

time and frequency of those events are referred to as t;; and f;; respectively.
Moreover, we will use the notation &; = (94,0), Si = (S, Spi), 0: = (4, 8;)

(with i =1,2,..

.,N), and 0 = (01,02,...

70N)

11




The hidden process v = {vy,...,v}, which is the source of all events in
x1,Z,...xy (besides the background events; cf. Step 4), is modeled as fol-
lows. The number ¢ of points in v is geometrically distributed with parameter

Avol(S):
¢
p(t) = (1= Avol(S))(Avol(S5)) , (1)
where vol(S) is the multi-dimensional volume of set S. (We motivate this
choice of prior in Part I (Dauwels et al., 2009a,b).) In the particular case of
bump models in the time-frequency domain, the space S is defined as:

S = {(t, f) te [tmimtmax] and f € [fmina fmax]}a (2)

and therefore

VOI(S) = (tmax - tmin)(fmax - fmin)' (3)

Each point vy for £ =1,..., /¢ is uniformly distributed in S:
p(t, f1€) = vol(S) ™, (4)

.....

frequency respectively. The amplitudes, widths and heights of the bumps vy
are independently and identically distributed according to priors p,,, pa; and
pays respectively. In the following, we will discard those priors since they are
irrelevant. With those choices, the prior of the hidden process v equals:

p(v,0) = p(O)p(vlf) oc (1 = Avol(S))\, ()

where the priors for the amplitudes, widths and heights of the bumps v have
been discarded for convenience.

From the hidden process v, the point processes (x;);=1,. n are generated as
follows (see Fig. 4). We first generate N identical copies of v. Next the ampli-
tudes, widths and heights of the bumps are replaced by random independent
draws from priors p,,, pa: and pay respectively. Again, those priors are irrele-
vant for what follows, and we will omit them. Next, each event is removed with
probability pg (“deletion”), independently of the other events. The probability
mass associated with the (remaining) ny copies of (vg)g=1,. ¢ is given by:

p(ni) = pg " (1 = pa)™. (6)

We will need the product of p(ny) for k=1,..., ¢

[T p(ne) = 3“5 (1 — pa)™, (7)
k=1

12



where L™ is the total number of events in the N point processes (z;)i=1, n:

N
L =% L, (8)
=1

At last, the resulting /N sequences are shifted over (0;)i=1,. v = (04, 07i)i=1,..N,
and the occurrence times and frequencies are slightly perturbed, resulting in
the sequences (z;);—1,. n. As we pointed out earlier, there might be a non-
trivial timing and frequency offset between the bump models (see Fig. 3
and Fig. 4). The parameters (0, ds;) are introduced in the model to account
for such offsets. The offsets between v and (z;);—1._n may be modeled as bi-
variate Gaussian random variables with mean vectors (dy,ds;) and diagonal
non-isotropic covariance matrices V; = diag(sy, sy;). It is reasonable to as-
sume that the offsets in time are independent from the offsets in frequency,
and vice versa. Therefore, we use diagonal matrices V;. Statistical dependen-
cies between the perturbations in time and frequency may be modeled by
non-diagonal covariance matrices V;. Such extensions are straightforward, and
we do not consider them here.

We adopt the improper priors p(é;) = 1 = p(dy;) for (04)i=1,..n and (6¢;)i=1,.. N
respectively, and conjugate priors for s;; and s, i.e. scaled inverse chi-square
distributions:

Syl 2 vi/2 efutsto/Qs“'
plo) = S )
t Sti

(SfOI/f/Q)Vf/2 e_VfoO/25fi
D2 i

p(sgi) = (10)

where v, and vy are the degrees of freedom, and s and sy are the width of
the scaled inverse chi-square distributions, and I'(z) is the Gamma function.

In (Dauwels et al., 2009b) we normalized the parameters (&, s;) and (J¢, sf) by
the width and height of the bumps respectively, in order to take the size of the
bumps into account. For simplicity, we will discard such normalization factors
in the following. They can easily be incorporated in the statistical model, and
we will briefly address this issue in Section 5.

It is also noteworthy that in (Dauwels et al., 2009b) the variance of the time
and frequency perturbations in the generative process is defined as s;/2 and
sy/2 respectively (instead of s; and sy), so that the variance between the two
observed sequences 1 and w3 is given by s; and s¢. Therefore, when comparing
results from bivariate and N-variate SES, a factor of two needs to be taken
into account.

For later convenience, we will introduce some more notation. We denote by
v, the hidden event that generated z;; (the jth event in point process z;).

13



The function c is hence a clustering function, that groups the events z;; into
different clusters. Since there is at most one event from point process ¢ in
cluster k, the clustering function c fulfills the constraints:

ia[clj — k| <1,Vi k. (11)
j=1

Note that certain hidden events (v )x—1,., may not have any copies, since all
N copies may have been deleted. Therefore, the function ¢ does not necessarily
take ¢ different values. Without loss of generality, we will assume that ¢ takes
values in {1,2,..., L}, where L is the number of clusters and 0 < L < /.
Note that the number L of clusters is at most L™*, i.e., the total number of
events; this maximum number occurs when each event is a cluster, and hence
all clusters are of size 1. With this definition of L, the number of copies nq,
..., ng are non-zero, whereas ny,; = nryo = --- = ny, = 0. We introduce the
index set IC of clusters with ny, > 1:

K={ke{l1,2,...,L} :n, > 1}. (12)
We denote by Cy the set of ny copies of v, and denote its index set by Zj:
Cro ={wij:ciy =k} and T, = {(4,7) : cij = k}. (13)

The fraction p of missing events in the clusters can be computed as:

P pp &= LU A (14)

where 7 is the average number of events per cluster. Another important statis-
tics is the distribution (pj)jvzl of the number of events per cluster:

_ 25:15["19—]'] :
pj_ L 9 J 5 Ay

N (15)

In this notation, the overall probabilistic model may be written as:
p(a, ¢, 0,0,0) o p(se)p(sp)(1 = Avol(S)(Apg) g™ (1 = pa)™™"

N L; N
: H HN(tij - fcij; Oti Sm') N(fzy — Jeii Oris sz')- (16)

i=1j=1

Note that the parameters N, (L;);=1,. n and L*t are fixed for given point
processes. Likewise, for given clustering ¢, the parameters L and (ng)g=1,..1
are fixed. The total number of deletions is given by Ldhtt = N¢ — Lt The
number of hidden events v, without copies is given by L = ¢ — L.

As in Part I and II, we can marginalize the statistical model p(z,c,v,0,?)
analytically w.r.t. v and ¢ (Dauwels et al., 2009a,b), resulting in p(z, ¢, 0) (cf.

14



Appendix A):

p(x,c,0) o<y B p(s)p(sy)
: H H N(tz’j — t1; O, 32&@') N(fij - fk; Ofis Sfi)a (17)

kel (i,5)€Zx

where

by = &l ) (18)

> wyi(fij — 6pi)

7 4,7)€EL,

with wy; = s;l and wy; = 3;1-1. Interestingly, the parameters (iy, fk) may be
interpreted as the coordinates of the center of the n; copies associated with vy,
(see Fig. 5(b)); in other words, those n;, copies may be viewed as a cluster of
events, whose center is located at (fj, fi). As easily can be shown, the latter
parameters are also the maximum likelihood (ML) estimates of the time and
frequency of the hidden event v, when the copies of vy and the parameters
(07, 8;) are given (i = 1,2..., N). In practice, the latter are usually not given,
and therefore, the coordinates #; and f; depend on how the events x;; are
assigned to hidden events vy; in other words, those parameters depend on the
clustering c.

The parameters § and 7 in (17) are defined as:
ﬁ = Pd W) (20)

and

= (=) (0= Wol(8)) S

(21)

Note that we defined similar parameters v and 3 in Part I and II (Dauwels et
al., 2009a,b); the N-variate statistical model (17) is a natural extension of the
pairwise statistical models of (Dauwels et al., 2009a,b). The constant v does
not depend on ¢ or the SES parameters §; and s; (with ¢ = 1,..., N), and
therefore, it is irrelevant for estimating the latter parameters and the clusters;
we will discard v in the following.

So far, we have not yet taken background events into account. They can be
modeled as follows. Besides the hidden process v, we generate the background
events as a point process ¥ of length ¢. We define the prior p(v, ¢) similarly as
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p(v,€) (5):

p(8,0) = p(@)p(H17) o (1 — Avol(S)) N, (22)

As a result, some of the events = are generated from v (according to Step 1 to
3), and the other events (background events) are the process 0. We will denote
by x the fraction of background events in . To account for the background
events, we will now assume that c takes values in {0,1,2,..., L}, where ¢;; =0
iff z;; is a background event. From a given clustering function ¢, we can easily

infer the background events (and hence also ¢). An important statistics is the
fraction x of background events, which can also easily be computed form c.

We can include background events in statistical model (17) by multiplying it

with the prior p(7,¢) (22), resulting in:

pl, ¢, 0) o BN 3p(s)p(sy)
: H H N(%‘ — tk; O Sti) N(fij - fk; Ofis sz‘), (23)

ke (i,5)€Tx
where the parameter 3 = A (cf. (20)).

The exponent of § and B in (23) does clearly depend on ¢, and as a result,
the parameters § and § affect the inference of ¢ and the SES parameters. As
in Part I and II, we will interpret those parameters in terms of cost functions;
the expressions log # and log 3 are part of the cost associated to each cluster
and background event respectively. In all our experiments, we found that the
setting f=10"% yields satisfactory results.

3.3 Interpretation in Terms of Cost Functions

We can gain additional insight by considering the logarithm of statistical
model (23):

—logp(x,c,0) = —logp(s;) — log p(sy) — LN log 3 — {log 3
1 1 _
+ Z Z (5 10g 277'815@' + g(tw — & — 515@')2

ke (i,5)€Zy v

1 1 _
+§10g27T8fz'+—2 (fij —fk—5f¢)2) +¢, (24)
Sfi

where ( is an irrelevant constant. The expression (24) may be considered as
a cost function that associates certain costs with each event and cluster; we
provided a similar viewpoint in Part I and II (Dauwels et al., 2009a,b). The
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unit cost dy associated with each of the L clusters is given by:
dy = —N log 3. (25)

Likewise, the unit cost dy associated with each of the background events is
given by:

dy = —log 3. (26)

The unit cost of each event z;; associated with a cluster k of size n;, > 1
equals:

1 _
E(ti]’ — t, — 0u)?

1 1 =
+ =log2msy + —(fij — fo — 67:)° (27)
2 254

1
d(tij, fij; ¢, 0) =5 log 27sy; +

This cost depends on the choice ¢ of clusters and on the parameters 6. Indeed,
the parameters ¢, and f;, are dependent on ¢ and @ as follows:

_ XN i Ol — Kl wi(ti; — 0u)
i=1 Zj;1 5[%’ — k] wy

(28)

7= Sy Sy Olei; — K wyi(fij — 0p4)
SN Y Sle; — K wy;

: (29)

with w,; = s;' and wy = s}?l. The distance d(t;;, fi;) (27) is illustrated
in Fig. 5(b).

Note that the second and fourth term in the RHS of (27) are normalized
Euclidian distances. Since the point processes (z;)1 n are defined on the time-
frequency plane (see Fig. 4), the (normalized) Euclidean distance is indeed a
natural metric. In some applications, the point process may be defined on
more general spaces, in particular, curved spaces; in such situations, one may
adopt non-Euclidean distance measures. We refer to (Dauwels et al., 2008)
for an example. To simplify the notation, we will define the unit cost of each
event z;; associated with a cluster k of size ny, =1 as d(t;;, fij;¢,0) = 0.

We also define costs d(s;) = —logp(s:), d(sy) = —logp(sy), and d(f) =
d(s;) + d(ss). With those definitions of unit costs, we can rewrite (24) as:

L
—logp(x,c,0) =d(0) + Ldy + Ody + Z Z d(tij, fijic,0) + C. (30)
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t

(a) Hidden event vy (dashed line) and its 5
“noisy” copies. The arrows indicate the system-
atic offsets (0;) and random offsets.

t
(b) For the sake of clarity, the off-
sets 0; (cf. (a)) have been eliminated.
The dot corresponds to the center
of the 5 events (cf. (28) (29)), and
the dotted lines indicate the distances

d(tij, fij) (27).

L
t

(c) After eliminating the offsets d;,
event 2 (dotted) lies the closest to the
hidden event (dashed), and it serves as
exemplar. The arrows indicate the dis-

tances d(tz‘j,fij,ti’j’afi’j’) (48)-

Fig. 5. Exemplar representation. A cluster with 5 events, generated from a hidden
event (dashed lines). For the sake of clarity, we have eliminated the offsets ¢; in (b)
and (c). The exemplar is marked in dotted lines in (c).
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This expression can be written as a function of ¢ as follows:

—logp(z,c,0) = d(0) + doy max C;; + dy e

tj
maxi; Cij

N L;
+ Z ZZ CZ] Z_]?fl_]7c 9)+<, (31)
k=1 1i=1j=1

where d(t;;, fij;c,0) is given by (27). Clearly, the RHS of (31) depends on ¢
in a non-linear fashion (cf. (27), (28) and (29)).

4 Statistical Inference

A reasonable approach to infer (¢, ) is maximum a posteriori (MAP) estima-
tion:

(¢, é) = argmaxlog p(z, ¢, 0), (32)

(c,0)

subject to (11). There is no closed form expression for (32), therefore, we
need to resort to numerical methods. A simple technique to try to find (32) is
cyclic maximization: We first choose initial values #(°), and then perform the
following updates for x > 1 until convergence:

é(ﬁ) = argmax 1ng(x7 c, é(fe—l)) (33)
gr) — argmax log p(z, é(”), 0), (34)
0

where (33) is determined subject to (11). The update (34) of the parameters
is straightforward, and may be carried out by cyclic maximization; we refer
to Appendix B for more details. The update (33) is far less straightforward;
it involves an intractable optimization problem. We circumvent this issue by
solving a related tractable optimization problem. In the following, we describe
that problem.

The update (33) may be expanded as:

olr) = argmln (do max Cij + do Z dlcij]
ij
max;j cij N L;

+ Z 225% Z]’fwvceﬁl))) (35)

= i=17=1

which is also determined subject to (11).
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4.1  FEquivalent (Intractable) Optimization Problem

The optimization problem (35) is hard to solve directly, and therefore, we will
solve a related tractable optimization problem instead. In order to formulate
the latter, we introduce the following binary variables:

e by is equal to one iff cluster k is non-empty (ny > 0 and k =1,2,..., L™"),
® b;;;, is equal to one iff the x;; belongs to cluster k, i.e., ¢;; = k,
e ¢;; is equal to one iff z;; is a background event.

We will now rewrite (35) using that notation, which will allow us to simplify
the combinatorial problem in Section 4.2.

The binary variables b are related through the constraints:
N L;
i=1j=1
These non-linear inequality constraints are equivalent to the linear constraints:
N L
i=1j=1

The constraints (11) correspond to:
L;
> b <1, Vi k. (38)
j=1

Moreover, an event is either a background event, or belongs to a cluster, which
can be encoded by the constraints:

L
Zbijk +e; =1, Vi,j, (39)
k

In this representation, we can rewrite (35) as:

Ltot

N L;
([;('f)’ é(”)) = argmin (do Z bk + JO Z Z €ij
b,e k=1 1=1j=1
Ltt N L,

+ Z Zzbiﬂf d(ts;, fij b, é(ﬂl))), (40)

k=11i=1 j=1

subject to (37)—(39). As we pointed out earlier, the number of clusters is at
most L', i.e., the total number of events.
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If x;; is associated with a cluster k of size nj, > 1, and hence Zi]\il Z]L;i bijr > 1,
the expression d(t;;, fi;;b,0%) in (40) is given by (27) (see Fig. 5(b)), with
6 = 61 and:

T Zivlzj 1bwk . 1)( "_5(:_1))

B = :
N Z] 1b2]k‘wt(f )

(41)

k—1)
ro_ i\;l Z] 1b1]k‘ fZ (fZ] ( ) 42
fk - N A(n 1) ) ( )
i=1 Z] 1bmk fi

- /@ K— -1 . NP
where w; Y= (S’Ef 1)) and W, Y= ( S% 1)> s otherwise d(ty;, fi;;b,0%V) =
0.

By exponentiating the objective function in (40), and adding the priors in 6,
we obtain the statistical model:

Ltot N Li
plasb ) o (st T (5)" T I 5
k=1 i=1j=1
Ltet N L; B - ’ -
’ H H H (N(tij - tkS(stz’,Sm’) N(fz_] - fk;5fi78fi>) o (43)
k=1i=1j=1

which is equivalent to (23). Likewise, the constrained combinatorial optimiza-
tion problem (37)—(40) is equivalent to (35); it is a non-linear combinatorial
optimization problem, since the objective function (RHS of (40)) is non-linear
in b. Since the problem is intractable, we will simplify it: we linearize the
objective function by using an exemplar representation. The resulting linear
combinatorial optimization problem (a.k.a. integer linear program or ILP) can
then be solved exactly by integer linear programming. In other words, we will
approximate the original non-linear and intractable integer program (37)-(40)
(which is hard to solve directly) into a linear and tractable integer program
(which is much easier to solve).

4.2 Related (Tractable) Optimization Problem

Ideally, we wish to find the cluster centers (f;, fi) (41) (42) that minimize
the combined total cost d(t;;, fi;) (27) of all events in the cluster. That is
an intractable problem, and we simplify it as follows. Rather than searching
through all possible cluster centers, we only consider events x;; as potential
cluster centers. In other words, we consider a restricted subset of potential
centers. More specifically, we approximate the cluster center (fy, fi) (41) (42)
by the event z;; of the same cluster that lies the closest to the center, after
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eliminating the offset (6, d7;) (see Fig. 5(c)). The events x;; that serve as clus-
ter centers are referred to as “exemplars”. This approach is inspired by other
exemplar-based clustering algorithms, including affinity propagation (Frey et
al., 2007) and recent extensions (Lashkari et al., 2008; Givoni et al., 2009).

As a result, the non-linear cost d(t;;, f;;) (27) is approximated by a cost that
is independent of b; the non-linear objective function (RHS of (40)) becomes
linear in b, and hence the non-linear combinatorial optimization problem (40)
is approximated by an integer linear program. We now derive this integer linear
program. Similarly to the variables b, and b;j;, we introduce the following
binary variables:

e b;; is equal to one iff z;; is an exemplar,
e b;jijr is equal to one iff x;; is associated with exemplar x; .

In this formulation, we approximate the intractable optimization problem (37)—
(40) by the following integer linear program in b:

(b(“) (”“)) = argmln (do Z Z bij + do Z Z €ij

i=1j=1 i=1j=1

N L; Ly .
+ )Y bijuy d(tijafijati/j/afi/j’;e(ﬁil)))a (44)
ii=1 j=1 j'=1

=14j=

subject to
> bijoy +bi +ei; =1, Vi,j, (45)
Z‘/j/
L;
> bijirgr < bagr, Viyd #d, g (46)
j=1
bijij’ = 07 V’L, Js jla (47)
where

. 1 . 1 o
(z]afzya z]afzyve 1) 210g27TS( 1)+W(tij_ti’j’_5§i 1))2
ti
. 1 e
5 log2mai ™) + Ui = o~ ORI 8)

By exponentiating the objective function in (44), and adding the priors in 6,
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we obtain the statistical model:

. N L; bij ~
p(a,b,e,00) oc p(3 psy ) TTTT (8Y) 5
i=1j=1

b U

(A (15 = oy V) N (F = oy s 7))
(49

The objective function (44) is a linear approximation of the non-linear objec-
tive function (35), and similarly, the statistical model (49) is an approximation
of p(x, ¢, 0" (23). The resulting linear integer problem (44)—(47) is much
easier to solve than the non-linear integer problem (37)-(40). Note that both
problems lead to similar results, since exemplars are often close to the cluster
center (cf. Fig. 5(c)).

The sum )7, b;; in (44) is equal to the number of exemplars; therefore, the
first term in (44) assigns a cost dy to each exemplar. Likewise, the second
term in (44) assigns a cost dy to each background event. The third term in (44)
associates the cost (48) to each event z;;, based on its associated exemplar x; ;.
This cost is independent of b, and consequently, the objective function (44) is
linear in b.

The constraints (45) ensure that each event is either an exemplar, or is associ-
ated with one exemplar (and not more than one exemplar), or is a background
event (insertion). The constraints (46) encode the fact that an event w;; can
only be associated to an exemplar x;j (b;ir;y = 1) iff the latter is indeed an
exemplar (by; = 1); they also ensure that at most one event z;; from z; can be
associated with an exemplar ;. Finally, the constraints (47) ensure that an
event x;; cannot be associated with an exemplar from the same point process
x;; without those constraints, multiple events from the same point process x;
may belong to the same cluster, which is not allowed.

The combinatorial optimization problem (44)—(47) is an integer linear program
in b and e, since the objective function (44) and constraints (45)—(47) are
linear in the variables b and e. More specifically, it is a binary linear program,
since all variables are binary. Instead of solving the intractable problem (35) or
equivalently (37)-(40), we solve the tractable problem (44)—(47); in particular,
we solve it by means of off-the-shelf integer programming software.

As an alternative, we have also implemented the max-product algorithm (and
various refinements) to solve (44)—(47), similarly as for bivariate SES (Dauwels
et al., 2009a,b). Unfortunately, that approach leads to poor results for N-
variate SES. In particular, it does not always convergence, and sometimes
it yields solutions that violate the constraints (45)—(47); those issues might
be due to the fact that N-wise alignment is significantly more complex than
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pairwise alignment.

N
j=1
and é. Also, an estimate ¢ can easily be computed from b and é, as follows.
We number all exemplars from 1 to L, in arbitrary order. We then set ¢;; = &
if @;; is the kth exemplar or if it is associated with the kth exemplar. Likewise
we set ¢;; = 0 if z;; is a background event (é;; = 1). The resulting estimate ¢
is an approximation of (35). With this estimate of ¢, we can eventually refine
the estimate 6, following rule (34).

Note that it is straightforward to determine estimates p, (p;) and x from b

The resulting SES inference algorithm is summarized Table 2.

5 Extensions

So far, we have developed N-variate SES for the particular example of bump
models in time-frequency domain. The statistical model (23), and equivalently
the cost function (31), may easily be generalized, and it may be applied to
different kinds of point processes. One simply needs to define the cost func-
tions d in (31) in a suitable manner. We will briefly outline several potential
extensions and alternative applications.

e As we pointed out earlier, in (Dauwels et al., 2009b) we normalized the
parameters (0;,s;) and (d7,sy) by the width and height of the bumps re-
spectively, in order to take the size of the bumps into account. Such nor-
malization factors can easily be incorporated in cost function (31); the unit
cost d(t;j, fij; c,0) of an event z;; is then defined as:

1 1 _ —
d(tj, fijic,0) = B log 275, + g(tz‘j — 1), — 0

ti

1 1 ;o
+ s log2msyi + s—(fij — fe — 05:)°, (50)
2 QSfZ'

with & = 6 Aty, Sfi =07 Afr, S = su A7, and Sy = sy AfE, where Aty
and Afy are the average width and height respectively of the bumps z;; in
cluster k.

e As outlined in (Dauwels et al., 2009b, Section 6), one can easily incorporate
differences in amplitude, width and height between the bumps of the differ-
ent point processes. Moreover, the bumps may be oblique, i.e., they are not
necessarily parallel to the time and frequency axes.

e Until now we have considered bump models in the time-frequency domain.
However, the statistical model (23), and equivalently the cost function (31),
is readily extendable to point processes in other Euclidean spaces, e.g., three-
dimensional spatial point processes or one-dimensional point processes in
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INPUT: .
One-dimensional or multi-dimensional point processes (xz)f\; , and parameters 3, 3,

(0 (0 ~(0 ~(0
v, v, s, S50, (O3 )Ny, BN, BN, GEHN,.

ALGORITHM:
Iterate the following two steps until convergence or the available time has elapsed:

(1) Update the clustering (b, é) (and equivalently ¢) by ILP:

L; L;

N N
(6(”)’ é("“)) = argmin (do Z Z bij + do Z Z €ij
b,e i=1 j=1 =1 j=1
N L; Ly

+ Z Z Z biji jr d(tij’fz'j,ti/j/,fi/j/;é("“—l))),

ii'=1j=1j'=1

subject to (45)—(47).

(2) Update the SES parameters:

Solve the equations:

L;
2( 1 _
5;) - Z (tij - ta(ﬁ“))
1 . (¥}
7j=1
0 _ 1% ;
o =1 2 (fig = fim)
7 . (¥}
7j=1
g(n) _ VS0 + Ll gizzample
t v+ L +2
a(K)
g(n) _ Vfsyo + L Sflz,sample
fi vi+Li+2
with
Sy (b — o) > @\ (fi -84
_ (if)et® - (iez?
te = NeS Jie = NG
Z te Z 1
(i) €T (i) €T
OUTPUT:

Clustering (b, é) (and equivalently ¢) and SES parameters p, ¥, (ﬁj)é\f:l, (Sti)f\;p
(O)il1, Bu)ily, (3ri)is-

Table 2
Inference algorithm for N-variate SES.
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time domain. We will consider an example of the latter in Section 7; the
unit cost d(t;;; ¢, ) of an event x;; may then defined as:

1 1 _
d(tij; C, (9) = 5 10g 27T8ti + Q—(t” — tk — 5ti)2, (51)

tt

where we did not take the widths of the events into account. If the latter
need to be taken into account, we may normalize the parameters (dy;, Sy;) as
in (50).

e In some applications, the point processes may be defined on curved mani-
folds, and non-Euclidean distances are then more natural. For instance, the
point processes may be defined on planar closed curves. We refer to (Dauwels
et al., 2008) for an example. The unit cost d(t;;;c,6) of an event z;; may
then be defined by:

L (gt ) — 30" (52)

1
d(tij;c,0) =3 log 27s;; + .

where ¢, is the “center” of cluster k, defined as:

_ 1
t, = argmin, Z —(g(tij,t) — 5ti>27 (53)

(i) €Ty Ot

where g is an arbitrary function, potentially non-linear; for g(x,y) = =z — v,
we recover (51).

6 Analysis of Synthetic Data

We investigate the robustness and reliability of N-variate SES by means of
synthetic data. We consider one-dimensional and two-dimensional point pro-
cesses, as in Part I (Dauwels et al., 2009a) and II (Dauwels et al., 2009b)
respectively. We discuss the results for one-dimensional and two-dimensional
point processes in Section 6.1 and 6.2 respectively.

6.1 One-Dimensional Point Processes

We randomly generated 1'000 sets of N = 5 one-dimensional point processes
according to the generative process outlined in Section 3.

We tested several values of the parameters pg, d;;, and sy; (0y;), fori=1,2, ...,
5. In particular, we tested the values p; =0,0.1, ..., 0.4, and o4 = 10ms, 30ms,
and 50ms (fori =1, 2, ..., 5), tmn = Oms, and . = £o - 100ms. The length
¢ was chosen as ¢ = ¢y /(1 — pa), where we tested the values {5 = 40, 100. With
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this choice, the expected length of the point processes is ¢y, independently of
pg. In one set of experiments, we set d;; = 0, for ¢ = 1, 2, ..., 5. In a second
set, the offsets d;; are drawn uniformly within [—50ms, 50ms]. In each case, we
did not insert events (cf. Step 4).

We used the initial values 6\ = Oms, and 4\ = (20ms)?, (30ms)?, for i = 1, 2,
..., 5. The parameter  was identical for all parameter settings, i.e., § = 0.04;
it was optimized to yield the best overall results. We used an uninformative
prior for d;; and sy, i.e., p(dy) = p(sy) = 1, fori =1, 2, ..., 5. One could test
various initial values of 5“, fori =1, 2, ..., 5. However, the number of initial
conditions grows exponentially with NV, and therefore, it is not really practical
to test multiple values for each <§§? ). For example, if we test 3 values for each
5;0 ), we need to test a total of 3° = 243 initial values 5;0 ), Alternatively, one
may use a small random subset of initial values; for the sake of conciseness,

we do not consider that approach here.

We set § = 102, as in all our simulations in this paper; for the synthetic
data, no background events were inferred, i.e., x = 0 for all parameter settings.

In order to assess the SES measures S = s;, p, we compute for each above
mentioned parameter setting the expectation E[S] and normalized standard
deviation @[S] = o[S]/E[S]. Those statistics are computed by averaging over
1’000 sets of 5 point processes, randomly generated according to the generative
process outlined in Section 3.

The results are summarized in Fig. 6. From this figure we can make the fol-
lowing observations:

e The estimates of s; and p, are slightly biased, especially for small ¢y, i.e., ¢,
= 40, s; > (30ms)? and py > 0.2. However, the bias is significantly smaller
than for bivariate SES (see (Dauwels et al., 2009a)).

e The estimates of s; do only weakly depend on py, and vice versa.

e The estimates of s; and py only weakly depend on d;; (curved vs. solid lines);
they are robust to lags ;. Note that one could further reduce this depen-
dency by testing various initial values <§§? ), However, the number of initial
conditions grows exponentially with N, as we mentioned earlier; therefore,
this approach is not really practical.

e The estimates of s; and py are less biased for larger 4.

We have also observed from our experiments (not shown here):
e The estimates of §; are unbiased for all considered values of d;, s;, and py.
e The normalized standard deviation of the estimates of d;, s; and py grows

with s; and pg, but it remains below 30%. Those estimates are therefore
reliable.
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Fig. 6. Results for N-variate stochastic event synchrony for one-dimensional point
processes: the figure shows the expected value E[6;] and E[p] for the parameter
settings fo = 40,100, o; = 10,30,50ms, and pg; = 0,0.1,...,0.4. The solid lines
are for zero delays d;;, whereas the dotted lines are for offsets d;; drawn uniformly
within [—50ms, 50ms].

e The normalized standard deviation of the SES parameters decreases as the
length ¢, increases, as expected.

6.2 Two-Dimensional Point Processes

Similarly as in the one-dimensional case, we randomly generated 1’000 sets of
N = 5 two-dimensional point processes according to the generative process
outlined in Section 3.

We considered several values of the parameters pg, 0y, s (04), 7, and sy;
(04;),fori=1,2,...,5. In particular, we tested the values p; =0, 0.1, ..., 0.4,
and oy; = 10ms, 30ms, and 50ms, oy; = 1Hz, 2.5Hz, 5Hz (for i =1, 2, ..., 5),
tmin = 0ms, and tyay = fo-100ms, finin = 0Hz, and fiax = fo- 1Hz. The length
¢ was chosen as £ = /(1 — pg), where we tested the values ¢, = 40, 100. With
this choice, the expected length of the point processes is ¢y, independently of
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Fig. 7. Results for synthetic data: the figure shows the expected value E[6;] and E[]
and the normalized standard deviation &[6;] and [p] for the parameter settings
£y = 40,100, oy = 10,30, 50ms, pg = 0,0.1,...,0.4, and oy = 1Hz. The solid lines
are for zero delays dy, whereas the dotted lines are for offsets d;; and 6 drawn
uniformly within [—50ms, 50ms| and [—-5Hz, 5Hz] respectively. The curves for zero
and random delays are practically coinciding.

pa- In one set of experiments, we set 6;; = 0 = dp;, fori = 1,2, ..., 5. In a
second set, the offsets d;; and df; are drawn uniformly within [—50ms, 50ms]
and [—5Hz, 5Hz] respectively. In each case, we did not insert events (cf. Step

4).

We used the initial values St(?) = Oms, 5}3) = OHz, 39 = (20ms)?, (30ms)?,
and §§g) = (2Hz)?, for i = 1, 2, ..., 5. The parameter 3 was identical for all
parameter settings, i.e., # = 0.01; it was optimized to yield the best overall
results. We used an uninformative prior for dy, ds;, Sy, and sg, ie., p(6y) =
p(su) = p(d5i) = p(spi) = 1.

The results are summarized in Fig. 7 to 9. Overall, they are quite similar
to the ones for one-dimensional point processes (cf. Fig. 6). We observe the
following:

e The estimates of s; and p, are slightly biased. However, the bias is signif-
icantly smaller than in the one-dimensional case, as for bivariate SES (cf.
Fig.4 and Section 7 in (Dauwels et al., 2009b)).

e The bias increases with sy, which is in agreement with our expectations:
the more frequency jitter, the more likely that some events are reversed in
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Fig. 8. Results for synthetic data: the figure shows the expected value E[d;] and
E[p] and the normalized standard deviation &[6;] and &[p] for same the parameter
settings as in Fig. 7, but now with oy = 2.5Hz. Again, the curves for zero and
random delays are practically coinciding.

frequency, and hence are aligned incorrectly. The bias is about the same as
for bivariate SES (see (Dauwels et al., 2009b)).

e The estimates of s; do only weakly depend on py, and vice versa.

e The estimates of s, and pg are robust to lags J, and frequency offsets oy,
since the latter can be estimated reliably.

e The estimates of s; and py are less biased for larger /.

We have also observed from our experiments (not shown here):

e The estimates of §; and d; are unbiased for all considered values of d;, dy,
¢, ¢, and pg.

e The normalized standard deviation of the estimates of d;, s; and py grows
with s; and pg, but it remains below 30%. Those estimates are therefore
reliable.

e The normalized standard deviation of the SES parameters decreases as the
length ¢, increases, as expected.

In summary, by means of the N-variate SES inference method, one may re-
liably and robustly determine the timing dispersion s; and event reliability
p of a set of N (one-dimensional or multi-dimensional) point processes. As
we also observed in (Dauwels et al., 2009a,b) for bivariate SES, the timing
dispersion and the number of event deletions are slightly underestimated due
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Fig. 9. Results for synthetic data: the figure shows the expected value E[d;] and
E[p] and the normalized standard deviation &[6;] and &[p] for same the parameter
settings as in Fig. 7, but now with oy = 5Hz. Again, the curves for zero and random
delays are practically coinciding.

to the ambiguity inherent in event synchrony. However, this bias is smaller
for N-variate SES than for bivariate SES, especially for one-dimensional point
processes.

7 Application: Firing Reliablity of a Neuron

We consider here an application of SES that we also investigated in (Dauwels
et al., 2009a): We use SES to quantify the firing reliability of neurons. We again
consider the Morris-Lecar neuron model (Morris et al., 1981), which exhibits
properties of type I and II neurons (Gutkin et al., 1998; Tsumoto et al., 2007;
Tateno et al., 2004). The spiking behavior differs in both neuron types, as
illustrated in Fig. 10. In type II neurons, the timing jitter is small, but spikes
tend to drop out. In type I neurons, on the other hand, fewer spikes drop
out, but the dispersion of spike times is larger. In other words, type II neurons
prefer to stay coherent or to be silent, on the other hand, type I neurons follow
the middle course between those two extremes (Robinson, 2003).

In (Dauwels et al., 2009a) we applied bivariate SES to the data of Fig. 10. Here
we apply N-variate SES to the same data set. (We refer to (Dauwels et al.,
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Fig. 10. Raster plots of spike trains from type I (top) and type II (bottom) neurons;
in each case 50 spike trains are shown.
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Fig. 11. Results of N-variate SES with 3 = 1073; for the sake of clarity, we show
the range t € [950,1950]. Raster plots of spike trains from type I (top) and type II
(bottom) neurons. Each cluster is indicated by a different combination of color and
marker type (e.g., star, circle); background events are marked by red hexagons.
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2009a) for more details on that data set.) In particular, we apply N-variate
SES to the 50 trials simultaneously.

As an illustration, we show results of N-variate SES in Fig. 11. Each cluster
is indicated by a different combination of color and marker type (e.g., star,
circle); background events are marked by red hexagons.

We choose the parameters in the N-variate SES algorithm as follows. We set
59 =0, and 5\ = (3ms)?, (5ms)?, (7ms)? and (9ms)?. Each initialization
of (5150), §§0)) may lead to a different solution (¢, &, &,); we choose the most
probable solution, i.e., the one that has the largest value p(z, ¢, 0, 3;) (23).
We set 3 = 10719, Larger values of § lead to a prohibitively large number of
background events, whereas smaller values yield no background events at all.

We computed the SES parameters for different values of 3. Fig. 12 shows how
s¢ (01), p, and y (fraction of background events) depend on /3 for both neuron
types. From those figures it becomes immediately clear that the parameters
s¢ (04) and p hardly depend on 3. For values of 3 < 1074, some of the events
from the Type II neuron are considered as background events, which is ob-
viously incorrect (cf. Fig. 11(b)). Therefore, only values 3 > 10~% should be
considered.

The parameter p is significantly smaller in type I than in type II neurons, in
contrast, s; is vastly larger. This agrees with our intuition: since in type II
neurons spikes tend to drop out, p should be larger. On the other hand, since
the timing dispersion of the spikes in type I is larger, we expect s; to be larger
in those neurons. We have made the same observations in (Dauwels et al.,
2009a).

Table 3 compares the numerical results for bivariate and N-variate SES. As
we pointed out earlier, bivariate SES defines the variance of the perturbations
in the generative process as s;/2 (instead of s;), so that the variance between
the two observed sequences x; and x5 is given by s;. In Table 3 the standard
deviations (0; = \/s;) in the generative process are reported, both for bivariate
and N-variate SES; the values in (Dauwels et al., 2009a) differ by a factor v/2,
since there the standard deviation between the observed sequences is reported.

In (Dauwels et al., 2009a) we assessed the reliability of the bivariate SES
estimates by means of bootstrapping (Efron et al., 1993); we follow a similar
procedure here for the N-variate SES estimates. In particular, for both types of
neurons we generated 1,000 sets of 50 spike trains; we followed the generative
process of Fig. 4, with the N-variate SES parameters of the actual spike trains,
i.e., (p, ¢, x) = (10.6, 0.0025, 0.035) and (p, oy, x) = (2.8, 0.18, 0.0) for type
I and IT neurons respectively. Next we applied N-variate SES to the resulting
1,000 sets of 50 spike trains. The expected value and normalized standard
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Fig. 12. The parameters oy, p, and x estimated from spike trains of type I and
type II Morris-Lecar neurons (cf. Fig. 10): the top, middle, and bottom figure show
how oy, p, and x respectively depend on f.
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deviation & of those estimates is reported in Table 3. We can observe that
the expected value corresponds well with the actual value, and the normalized
standard deviations are small. Therefore, the N-variate SES estimates can be
considered reliable.

We first discuss the results for the type I neuron: the estimate of o; from
bivariate and N-variate SES is almost identical; however, the estimate of p
is much smaller for N-variate SES than for bivariate SES. Interestingly, V-
variate SES inferred that about 3.5% of the events are background events,
which accounts for the larger estimate p = 0.029 from the bivariate approach.
In other words, type I neurons almost never fail to fire (firing reliability of
99.75%), however, additional spikes may occur (3.5% of the spikes). It is note-
worthy that this insight was obtained by N-variate SES, and could not be
revealed through bivariate SES; this example thus illustrates that N-variate
SES not only yields more accurate estimates of the SES parameters (cf. Sec-
tion 6), but also can lead to a more refined and detailed analysis. Interestingly,
the normalized standard deviation &[p] is much larger for N-variate SES than
for bivariate SES, since p is much smaller for N-variate SES. However, the
standard deviation o[p] is small and about the same for both models.

We now elaborate on the results for the type II neuron. The N-variate ap-
proach leads to larger and smaller estimates of o, and p respectively than the
bivariate approach. None of the events are considered as background events
(x = 0). We have manually counted the number of deletions in Fig. 11(b),
and obtained p = 0.184. The N-variate estimate of p is exact and clearly the
most reliable, whereas the bivariate approach overestimates the number of
deletions. Since the N-variate approach considers all point processes simulta-
neously (N = 50), it infers the hidden process v more reliably than bivariate
SES, and is able to associate events x more accurately with hidden events vy.

We have observed that the N-variate SES algorithm converges after at most
three iterations, both for type I and type II neurons. In each of those iterations,
one updates the decision variables b, ¢, and e, and the SES parameters 6.
Since we allowed a maximum number of 30 iterations, we can conclude that
the algorithm always has converged in our experiments.

8 Application: Diagnosis of MCI from EEG

Several clinical studies have shown that the EEG of Alzheimer’s disease (AD)
patients is generally less coherent than of age-matched control subjects; this is
also the case for patients suffering from mild cognitive impairment (see (Jeong,
2004; Dauwels et al., 2010b) for a review). In this section, we apply SES to de-
tect subtle perturbations in EEG synchrony of MCI patients. We considered
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Bivariate SES N-variate SES

Statistics || Type I | Type Il || Type I | Type 11

o 10.7 1.91 10.6 2.81
E|o/] 10.8 1.91 10.3 2.87
&loy) 1.8% | 1.8% | 37% | 3.0%

p 0.0290 | 0.270 || 0.0025 | 0.184

E[p] 0.0283 | 0.273 0.0036 | 0.186

&) 12% | 3.1% 90% 15%
X - 0.035 0.0

E[x] - 0.037 | 0.0

&[y] - 1% | 0.0%

Table 3

Estimates of bivariate SES estimates (p, o) and N-variate SES parameters (p, oy,
X)- Also shown are the results from the bootstrapping analysis of those estimates,
in particular, the expected values and the normalized standard deviations &. The
expected values practically coincide with the actual estimates and the normalized
standard deviations are small; therefore, the estimates may be considered reliable.

this application also in (Dauwels et al., 2009b), where we applied bivariate
SES. We analyze here the same EEG data set, and use the same preprocess-
ing and bump modeling procedures as in (Dauwels et al., 2009b). The only
difference is that we here apply N-variate SES instead of bivariate SES.

We first conducted a similar statistical analysis as in (Dauwels et al., 2009b).
The main results of that analysis are summarized in Fig. 13 and 14; they
contain p-values obtained by the Mann-Whitney test for the parameters p
and s; respectively. This test indicates whether the parameters take different
values for the two subject populations. More precisely, low p-values indicate
large difference in the medians of the two populations. The p-values are shown
for 6;” = /5oy = 0.1,0.15,...,0.25, 6 = /g7 = 0.05,0.1,...,0.15, § =
0.01, 0.001, 0.0001, T" = 0.21, 0.22, 0.23, 0.24, and the number of zones Nr =
3 and 5.

The results for the parameters p and s; are quite similar to the results obtained
with bivariate SES (see (Dauwels et al., 2009b)). The lowest p-values for p are
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Fig. 13. p-values obtained by the Mann-Whitney test for the parameter p for
6" = 501 = 0.1,0.15,...,0.25, 51" = /557 = 0.05,0.01,0.15, § = 0.01, 0.001,
0.0001, T = 0.21, 0.22, 0.23, 0.24 and the number of zones Np = 3 and 5. The
p-values seem to vary little with 050), O'J(CO) and (3, but are more dependent on T and
the number of zones. The lowest p-values are obtained for T' = 0.22 and Np = 5

zones; the corresponding statistical differences are highly significant.

obtained for "= 0.22, 3 = 0.01, and Nr = 5 (see Fig. 13(e)), i.e., the smallest
value is p = 5.4 - 107%; in bivariate SES, the smallest p-value (p = 2.1 - 107%)
was obtained for for T = 0.22, § = 0.001, and Ngr = 5 (see (Dauwels et
al., 2009b)). Similarly as in bivariate SES, the results depend strongly on T
(cf. (Dauwels et al., 2009b)); we provided an explanation for this dependency

in (Dauwels et al., 2009b). Interestingly, the results depend much less on 6,50),

6}0), and ( than in bivariate SES.

From bivariate and N-variate SES analysis (see Fig. 13), we can conclude that
the statistical differences in p are highly significant, especially for T" = 0.22 and
Npg = 5: There is a significantly higher degree of non-correlated activity in MCI
patients, more specifically, a high number of non-coincident, non-synchronous
oscillatory events. As in (Dauwels et al., 2009b), we did not observe a strongly
significant effect on the timing jitter s, of the coincident events (see Fig. 14):
very few p-values for s; are smaller than 0.001, which suggests there are no
strongly significant differences in s;.

The N-variate SES model allows us to analyze the results for p in more de-

tail; we have investigated how the statistics of bump clusters differ in controls
subjects and MCI patients. More specifically, we considered the relative fre-
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Fig. 14. p-values obtained by the Mann-Whitney test for the parameter s; for
6" = 501 = 0.1,0.15,...,0.25, 51" = /557 = 0.05,0.01,0.15, § = 0.01, 0.001,
0.0001, T = 0.21, 0.22, 0.23, 0.24 and the number of zones Np = 3 and 5. Very
few p-values are smaller than 0.001, which suggests there are no strongly significant
differences in s;.

quency p; = p(ny = j) of bump clusters of size n, = j, for j =1, 2, ..., Ng.
The results are summarized in Fig. 15, for the parameter settings that yielded
the smallest p-values for p (Ng = 5 and 8 = 0.01). From those figures, we
can observe strongly significant differences in clusters of size 1, 2 and 5 for
T = 0.22; specifically, in MCI patients there are fewer clusters of size 5 and
more clusters of size 1 and 2. As a result, the fraction of missing events p is
larger in MCI patients, as we mentioned earlier. The smallest p-values for the
parameter p, is p = 2 - 107°, which is substantially smaller than the smallest
p-value for p (p = 2.1 - 107 for bivariate SES and p = 5.4 - 10~* for N-variate
SES).

In (Dauwels et al., 2010a) we have applied a variety of classical synchrony
measures to the same EEG data set. The main results of that analysis are
summarized in Table 4. The most significant results were obtained with the
the full-frequency direct transfer function (fDTF), which is a Granger mea-
sure (Pereda et al., 2005), resulting in a p-value of about 10~ (Mann-Whitney
test). In (Dauwels et al., 2009b) we have combined p with ffDTF as features
to distinguish MCI from control subjects (see Fig. 16). About 84% of the
subjects are correctly classified. Here we combine ffDTF with the parameter
p2, computed by N-variate SES; the classification rate slightly improves to
about 87%. This result is encouraging, however, it is too weak to allow us to
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Fig. 15. p-values obtained by the Mann-Whitney test for the parameters

pi = plng = i) (with i = 1, 2, ..., 5) for 6" = /soz = 0.05,0.1,0.15,

&J(CO) = /S0,y = 0.01,0.15,...,0.25, 8 = 0.01, T' = 0.22, and the number of zones
Np = 5.

Measure Correlation Coherence Phase Coherence Corr-entropy Wave-entropy
p-value 0.025* 0.029* 0.041* 0.032* 0.096
Measure || MVAR coherence | Partial Coherence PDC DTF ffIDTF dDTF
p-value 0.15 0.16 0.60 0.29 0.0012** 0.029*
Measure || Kullback-Leibler Rényi Jensen-Shannon Jensen-Rényi Tw I
p-value 0.065 0.067 0.069 0.074 0.052 0.060
Measure NF Sk H* S-estimator Omega complexity
p-value 0.029* 0.045* 0.052 0.042* 0.079
Measure Hilbert Phase Wavelet Phase Evolution Map | Instantaneous Period GFS
p-value 0.96 0.082 0.64 0.73 0.031*
Measure s¢ (bivariate) p (bivariate) s¢ (multivariate) p (multivariate) po (multivariate)
p-value 0.19 0.00021** 0.018* 0.00054** 21077

Table 4

Sensitivity for prediction of MCI: uncorrected p-values for Mann-Whitney test; *
and ** indicate p < 0.05 and p < 0.005 respectively; 1 indicates p-values that
remain significant after post-correction. The results for the standard measures and
bivariate SES (s; and p) are from (Dauwels et al., 2010a) and (Dauwels et al., 2009b)
respectively, and we refer to those references for more details.
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Fig. 16. Combining po with ffDTF as features to distinguish MCI from age-matched
control subjects. Note that ffDTF is a similarity measure whereas po is a dissimilarity
measure. The (fDTF, ps) pairs of the MCI and control subjects tend towards the
left top corner and bottom right corner respectively. The smooth curve (solid) yields
a classification rate of 87%.

predict AD reliably. We would need to combine synchrony measures with com-
plementary statistics, for example, spectral features. We refer to (Dauwels et
al., 2010b) for more information on potential extensions. Moreover, the results
would of course need to be verified on more datasets.

In summary, N-variate SES helped us to better understand the results from
the bivariate SES analysis (Dauwels et al., 2009b): the fraction of missing
events p is larger in MCI patients, since in those patients there are fewer
bump clusters of size 5 and more clusters of size 1 and 2. Moreover, N-variate
SES allowed us to further improve the classification of MCI patients vs. control
subjects from 84% to 87%.

9 Conclusion

We proposed an approach to determine the similarity of N > 2 (one- and
multi-dimensional) point processes; it is based on an exemplar-based statisti-
cal model that describes how the point processes are related through a common
hidden process. The similarity of the point processes is determined by perform-
ing inference in that model by means of integer programming techniques in
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conjunction with point estimation of the parameters. The proposed technique
may be used for various applications in neuroscience (e.g., in brain-computer
interfaces, analysis of spike data), biomedical signal processing, and beyond.

In bivariate SES, we apply the max-product algorithm for aligning pairs of
sequences. As we have observed, the max-product algorithm performs poorly
for aligning N > 2 sequences; we have also experimented with various refine-
ments of the max-product algorithm, and none of them yielded satisfactory
results. An interesting topic for future research is to develop extensions of
the max-product algorithm that lead to optimal or close-to-optimal N-wise
alignments. Such message passing algorithms are often simpler and faster than
integer linear programming techniques.
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A Appendix: Derivation of the SES Model

In this appendix, we derive the N-variate SES model (17).

We first marginalize p(z, ¢, v,0,¢) (16) over v; it is noteworthy that only the
Gaussian terms N (-) in (16) depend on v. In the following, we will focus on
those terms. For a given hidden event vy, three cases are possible:

e All copies of v were deleted (n; = 0). There are no Gaussian terms as-
sociated with vy in (16), therefore, the expression (16) may be considered
as constant w.r.t. vi. Integrating (16) over vy then leads to a term vol(S5).
There are L% such terms, since the number of hidden events v, without
copies is given by L.

e There is one copy of vy (n, = 1), and therefore, there is only one Gaussian
term in (16) that corresponds to vg. Integrating that term over vy results in
the (trivial) term 1.

e There are more than one copies of v; (ny > 1), and as a consequence, there
are several Gaussian terms in (16) that correspond to vi. As easily can be
shown, integrating the n; Gaussian terms over vy yields the terms:

11 N(tij — 1x; O, Sti) N(fij — fr; 654, Sfi>, (A1)
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where

Z Wy ( i 52&@)

T (4,9)ETy

t, = A2
g > Wy ( )
o ,)ZGI wyi(fij — 071)

f — (2% k ’ A3
g . Wy (A.3)

with wy = s;l and wy; = sfl

In summary, marginalizing over v results in L terms vol(S), and also
in terms of the form (A.1), where there is one such term for each cluster of
size ng > 1.

The result of marginalizing over v may then be written as:

p(x,¢,0,0) o< p(s)p(ss)(1 — Avol(S)) (Avol(S)py ) 1™
) F (1 - pa)
: H H N(tij - Ek;(stiasti) N(fz] - fk;(sfz',sfi), (A.4)

ke (i,5)€T
where we used the decomposition:
(= L+ L% (A.5)

Now we marginalize over the length ¢. The first term in the decomposi-
tion (A.5) is fixed for given clustering c. Therefore, marginalizing p(x, ¢, 0, () (A.4)
over / is equivalent to marginalizing over L9

p(z,c,0) prc@é prc@ﬁ (A.6)
Ldelo
o p(s)p(sp)(1 = Avol(S)) 3= (Avol(S)p) )™
[del—Q

(Apd >L d_LtOt(l . pd>LtOt
-1I 11 N( ij — i3 0w, Sm') N(fz’j — fri i, Sfi) (A.7)

kel (i,j)ETy
1
ocp(se)p(sy)(1 = Avol(S)) 1 — Avol(9)pY

(Apd )L 7Lt0t(1 . pd>LtOt
11 11 N(%‘ — tk; O, Sti) N(fij — fri 04 sz')- (A.8)

ke (i,5)€Ty

In (A.7) occurs a sum of a geometric series; since |Avol(S)pY | = Avol(S)pY <
1, we can apply the well-known formula for the sum of a geometric series,
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resulting in (A.8). By defining 5 and « as in (20) and (21) respectively, we
obtain statistical model (17).

B Appendix: Derivation of the SES Inference Algorithm

In this appendix, we derive the inference update (34) for N-variate SES.

The point estimates (%f ) and 5}? are the (sample) mean of the timing and
frequency offset respectively, computed between all events in z;; and their
associated cluster centers:

L.
) _ LN n
Oy = E; (tij — té_;)) (B.1)
s — L LZ (fis = fo0) (B.2)
fl Lz j=1 * é” ’

where L; is the number of events in x;, and fé(n) and fé(n) are the coordinates

of the (inferred) hidden event v, associated with x;;. The latter hidden event
(%) —
is inferred as the center of the cluster associated with x;;. The coordinates ¢

and fj, are computed as:

> @l (b — o)

i +(k)
ty = S 5 NO) (B.3)
Wy
(i,5)ezt™
> af (i =)
= (i,5)€Z,”
o= SRR (B.4)
w .

(i)

-1 -1 R R

with @ = (§§f)> , wjjj) = (§§f;)) , and Z” is the index set of the set C,(f)
of events in cluster k (as specified by ¢*)):

C,Ef) = {:pzj el = k:} and I,gﬁ) = {(i,j) Lol = k:} (B.5)

i i

44



The estimates 8 and §§f;”) are obtained as:

2(%)

(H) — ViSto + Ll Sti,sample B 6
b vi + Li +2 (B.6)
R Vs + Ll §(Iz)sam e
8 = LL—— Jismple (B.7)
l/f —|— Lz —f- 2
where sif lample and ng,z,)sample are computed as:
L;
A(Kz —- ( 5(I€ ) (B 8)
ti,sample L. év ti :
(2 _]_1
NG 1 L (k) 2
5‘1 sample - L ‘ (fw f (n) 5}2)) s (Bg)
vi=

and where #; and fj, are given by (B.3) and (B.4).

Interestingly, the RHS of (B.1) and (B.2) depends on 6\ and 5}':) respectively,
through (B.3) and (B.4). Therefore the equalities (B.1) and (B.2) need to be
solved numerically; the same holds for (B.6) and (B.7). Those expressions
may be evaluated numerically by alternating the updates (B.3) and (B.4)

with (B.1) (B.2) (B.6) and (B.7), with as initial estimates 5 ) 5(H Y, §f Y,

and §§Z§71). It can easily be shown that this procedure is guaranteed to converge

to a local extremum; indeed, it is equivalent to cyclic maximization, where one
conditional maximization is in € (resulting in (B.1) (B.2) (B.6) and (B.7)) and
the other is in the parameters {(#x, fi)}x=1...r (vesulting in (B.3) and (B.4)).

-----
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