
Particle Methods as Message Passing
Justin Dauwels

RIKEN Brain Science Institute
Hirosawa, 2-1, Wako-shi, Saitama, Japan

Email: justin@dauwels.com

Sascha Korl
Phonak AG

CH-8712 Staefa, Switzerland
Email: sascha.korl@phonak.ch

Hans-Andrea Loeliger
Dept. of Information Technology and Electr. Eng.,

ETH Zurich, CH-8092 Zurich, Switzerland
Email: loeliger@isi.ee.ethz.ch

Abstract— It is shown how particle methods can be viewed
as message passing on factor graphs. In this setting, particle
methods can readily be combined with other message-passing
techniques such as the sum-product and max-product algorithm,
expectation maximization, iterative conditional modes, steepest
descent, Kalman filters, etc. Generic message computation rules
for particle-based representations of sum-product messages are
formulated. Various existing particle methods are described as
instances of those generic rules, i.e., Gibbs sampling, importance
sampling, Markov-chain Monte Carlo methods (MCMC), partic le
filtering, and simulated annealing.

I. I NTRODUCTION

Particle methods (or “Monte-Carlo methods”) have in the
last fifty years intensively been used to solve a wide variety
of problems in physics and computer science (e.g., statistical
inference and optimization). The main idea behind particle
methods is to represent a probability density function (pdf)
or probability mass function (pmf) as a list of mass points
(“particles”), as illustrated in Fig. 1. A (positive) weight is as-
sociated to each particle in the list; the weights of all particles
are supposed to add to 1. If the mass points are samples from
the pdf or pmf at hand, all weights are identical (“uniform”)
(see Fig. 1 (left)); if the particles are generated by other means
(e.g., they may be sampled from a different function than
f ), non-uniform weights are associated to the particles (see
Fig. 1 (right)). A list Lf of N particles representing the pdf
or pmf f(x) with x ∈ X is thus formally defined as a list of
pairs

Lf
△

=
{

(x̂(1), w(1)), (x̂(2), w(2)), . . . , (x̂(N), w(N))
}

,

where x̂(i) ∈ X , the weightsw(i) are positive real numbers
and

∑

i w(i) = 1.

x

f

x

f

Fig. 1. A probability density functionf : R → R
+ and its representation as

a list of particles. The radius of the particles is proportional to their weights.
(left) uniform weights; (right) non-uniform weights.

Particle methods can be used to evaluate the expectation of
some functiong w.r.t. a pdff , i.e.,

Ef [g]
△

=

∫

x

g(x)f(x)dx, (1)

where
∫

x
h(x)dx stands either for integration or summation

of h over the whole range ofX . The expression (1) is
ubiquitous in statistical inference; for example, the minimum
mean square error estimate (MMSE) of a real random variable
(or vector)X from an observationY = y is

x̂MMSE
△

= EX|Y [X ]
△

=

∫

x

xf(x|y)dx, (2)

where f(x|y) is the posterior pdf. If the expression (1) is
intractable, one needs to resort to approximations; in particle
methods, the expectation (1) is approximated as an average
over a particle listLf :

Ef [g] ≈
N

∑

i=1

w(i)g(x̂(i)). (3)

In many practical problems, the pdff and the functiong have
a “nice” structure, i.e., they factorize; particle lists off can
then be generated by means of simple local computations; also
the evaluation of (3) then only involves local computations. We
will show in this paper that particle methods can be viewed as
message-passing algorithms operating on factor graphs where
messages are represented as lists of samples [1] [2]. In other
words, particle methods are a full member of the family of
message-passing methods; this enables us for example:

• to apply particle methodslocally, i.e., at a particular node
in the factor graph of the system at hand;

• to combine particle methods with other message-passing
techniques such as the sum-product and max-product
algorithm [1], expectation maximization [3], iterative
conditional modes [4], steepest descent [5], Kalman fil-
ters [6], etc.;

• to apply particle methods on factor graphs with cycles;
• to choose the order in which particle lists (“messages”)

are updated (“message-update schedule”).

The use of particle lists in message passing algorithms was
proposed in [7], [1], [2]. In this paper, we go into more detail.
In particular:

• We investigate how particle methods can be used to
(approximately) computemarginalswhen straightforward
sum-product message passing is intractable. We formulate
generic message computation rules for particle-based
representations of sum-product messages; we thereby
systematically investigate various types of incoming mes-
sages.



• We describe various existing methods for drawingsam-
plesfrom a multivariate pdf as message passing on factor
graphs.

This paper is structured as follows. In the following section,
we explain how the sum-product message computation rule
may be approximated by particle methods; particle-based
representations of sum-product messages are thereby required.
We investigate in Section III how such representations can be
obtained. In Section IV, we present various existing particle
methods as message passing on factor graphs.

II. A PPROXIMATING THE SUM-PRODUCT RULE BY

PARTICLE METHODS

Suppose that we wish to compute marginals from a
given multivariate functionf(x1, x2, . . . , xn), where the vari-
ablesXk may be discrete or continuous. As is well known,
marginals of a functionf can in principle be computed by
applying the sum-product algorithm on a cycle-free factor
graph off [1]. However, this naive approach fails if the sum-
product rule is intractable at some node(s) in the factor graph
of f , which is often the case if (some of) the variablesXk

are continuous. In the following, we take a closer look at this
issue. A generic nodeh in the factor graph off is depicted
in Fig. 2.

X1

Xm

h
Y...

Fig. 2. Message along a generic edge.

The sum-product message towards edgeY is given by [1]:

µY (y)
△

∝

∫

x1,...,xm

h(y, x1, . . . , xm)µX1
(x1) · · ·µXm

(xm)dx, (4)

where µXk
is the message that arrives at nodeh along the

edgeXk (see Fig. 2). The expression (4) may be intractable
for the following reasons.

• If the variablesXk in Fig. 2 are discrete, the expres-
sion (4) can in principle be evaluated straightforwardly.
However, the summation occurring in (4) can only be
carried out in practice if the alphabets of the variablesXk

are sufficiently small.
• If (some of) the variablesXk are continuous, the expres-

sion (4) may lead to intractable integrals.

If the expression (4) is infeasible for one of the above reasons
(or both), one needs to resort to approximative methods such
as particle methods. Suppose, without loss of generality, that
the summation/integration overX1 in (4) is infeasible. This
summation/integration may be approximated by means of
particle methods as follows: the messageµX1

is represented
as aparticle list and the rule (4) is evaluated as (cf. (3)):

µY (y)
△

∝
∑

i

∫

x2,...,xm

h(y, x̂
(i)
1 , x2, . . . , xm) · w

(i)
1

·µX2
(x2) · · ·µXm

(xm)dµ, (5)

where x̂
(i)
1 is the i-th particle in the particle list that repre-

sents the sum-product messageµX1
and w

(i)
1 is the weight

associated tôx(i)
1 .

Particle methods are not the only option to handle in-
tractable sum-product message computation rule (see e.g.,
[1] [2]). If X1 is continuous, one may alternatively represent
the messageµX1

as:

• a quantized-variable message
• a Gaussian distribution (as in Kalman filtering [6])
• a single valuêx1, e.g., the mode or mean ofµX1

(as in
decision-directed algorithms).

Obviously, if in (4) also the summation/integration over
some other variable(s)Xk is intractable, one may also choose
one of the above representations for the corresponding mes-
sage(s)µXk

; each of those messages may be represented
differently. In other words, at every node in the factor graph of
the system at hand, one has the freedom to combine various
types of messages, and hence, various types of algorithms,
e.g., decision-based algorithms (such as iterative conditional
modes and expectation maximization), Kalman filters, and
particle methods. Following this approach, we have derived
various message-passing algorithms for code-aided phase es-
timation [4] and estimation in AR models [8].

III. G ENERATING A PARTICLE LIST FROM A SUM-PRODUCT

MESSAGE

We pointed out in the previous section that if the sum-
product message computation rule is intractable, it may be
evaluated (approximately) by particle methods. Incoming sum-
product messages are then represented as particle lists (e.g.,
µX1

in (5)). In this section, we describe methods to generate
particle lists from sum-product messages. We again consider
the generic nodeh depicted in Fig. 2; we wish to represent
the sum-product messageµY towards edgeY as a particle list.
First we consider the case where all variablesXk are discrete,
then we will assume that all variablesXk are continuous.
It is straightforward to extend our considerations to the case
where some of the variablesXk are discrete and others are
continuous.

A. Discrete variablesXk

Suppose that all variablesXk are discrete; in addition,
suppose that the alphabets of the variablesXk are sufficiently
small so that the messagesµXk

can be represented by a list
of their values. (If a messageµXk

can not be represented
in this fashion since the alphabet ofXk is too large, one
may representµXk

as a particle list; we consider this type
of representation for the messagesµXk

in section III-B.) One
may generate samples fromµY by the following procedure:

1) For eachk = 1, . . . , m, select a valuêxk of Xk with
probability proportional toµXk

(x̂k).
2) Draw a samplêy from h(y, x̂1, . . . , x̂m).
3) Iterate 1–2 until a sufficient number of samples fromµY

are obtained.



The resulting particles have uniform weights; the above sam-
pling method (Step 1–3) is therefore referred to as unweighted
sampling.

Alternatively, one may draw samplesŷ from
h(y, x̂1, . . . , x̂m) for each possiblem-tuple (x̂1, . . . , x̂m).
The weightw associated to samplêy is proportional to

w ∝

m
∏

k=1

µXk
(x̂k). (6)

This sampling method is called weighted sampling since it
leads to a particle list with non-uniform weights.

If one successively draws particleŝx from that list with
probability proportional to their weightsw (6), one obtains
a list of particles with uniform weights; note that a particle
with a large weightw (6) may be drawn several times,
whereas a particle with a small weight may not be drawn
at all. This technique to generate particles lists with uniform
weights from particle lists with non-uniform weights is called
resampling [9].

B. Continuous variablesXk

If the variablesXk are continuous, we distinguish the
following cases:

• If a suitable closed-form expression for the messageµY

is available, one may sample from that expressionµY .
• If the messagesµXk

are quantized-variable messages [2],
one proceeds as in the case of discrete variablesXk.

• If the messagesµXk
are lists of samples, the procedure

is again similar to the one for discrete variablesXk.
The first step in the unweighted sampling procedure is
slightly modified: for eachk, one draws a particlêxk with
probability proportional to its weightwk. In weighted
sampling, one draws a samplêy from h(y, x̂1, . . . , x̂N )
for eachm-tuple of particles(x̂1, . . . , x̂m). The weightw
associated to the samplêy is proportional to

w ∝

m
∏

k=1

wk, (7)

wherewk is the weight of particlêxk.
• If the incoming messagesµXk

are represented as
Gaussian distributions (and no suitable closed-form ex-
pression forµY is available), one may first represent
the messagesµXk

as particle lists and proceed as in the
previous case.

• If the incoming messages are single valuesx̂k, one draws
samples fromh(y, x̂1, . . . , x̂m).

• The extension to the situation where the incoming mes-
sages are not all of the same type is straightforward,
except if the nodeh is an equality constraint node (see
Section III-C).

C. Specific node functions

So far, we have considered generic node functionsh. We
now investigate two important types of node functions in more
detail: (i) nodes corresponding to deterministic mappings; (ii)
equality constraint nodes.

• Deterministic mapping.
Suppose that the nodeh corresponds to a deterministic
mappingy = v(x1, . . . , xm):

h(y, x1, . . . , xm)
△

= δ(y − v(x1, . . . , xm)). (8)

Samplesŷ from h(y, x̂1, . . . , x̂m) are then trivially ob-
tained aŝy = v(x̂1, . . . , x̂m).

• Equality constraint node.
Suppose that the nodeh is an equality constraint node,
i.e.,

h(y, x1, . . . , xm)
△

= δ(y − x1)
m−1
∏

k=1

δ(xk+1 − xk). (9)

The messageµY is then given by:

µY (y) ∝
m
∏

k=1

µXk
(y). (10)

We distinguish the following cases:

– If Y is discrete, one obtains a particle list forµY

by selecting valueŝy with probability proportional
to

∏m

k=1 µXk
(ŷ). This approach is only applicable

if the alphabet ofY is sufficiently small. Otherwise
one may represent the messagesµXk

as particle lists.
– If the messagesµXk

are represented as particle lists,
it is not straightforward to draw samples from (10).
One may first generate a continuous representation
such as mixtures of Gaussian distributions for each
of the incoming messagesµXk

. Efficient methods
have been devised to draw samples from products of
Gaussian mixtures [7] [10].

– If Y is continuous, and a closed-form expression
for the messageµY is available, one may obviously
sample from that expressionµY .

– If Y is continuous, and closed-form expressions for
the incoming messagesµXk

are available, but not for
µY , one may sample from the product (10). This may
be done by importance sampling (see Section IV-B).

– If the messagesµXk
are quantized-variable mes-

sages, one proceeds as in the discrete case.
– Also certain mixtures of the previous situations can

be handled, as we will illustrate in Section IV-B by
the example of importance sampling. However, an in-
depth treatment of this issue goes beyond the scope
of this paper.

IV. EXISTING PARTICLE METHODS VIEWED AS MESSAGE

PASSING

We now describe several standard Monte-Carlo techniques
as instances of the above generic rules, i.e.,

• Gibbs sampling,
• importance sampling,
• particle filtering (“sequential Monte-Carlo filtering”),
• Markov-Chain Monte-Carlo methods (MCMC),
• simulated annealing.



A. Gibbs Sampling

Suppose that we wish to draw samples from a multi-
variate probability functionf(x1, x2, . . . , xn). This can be
done by the following iterative algorithm known as Gibbs
sampling [11, p. 371–407]:

1) Choose an initial value(x̂1, x̂2, . . . , x̂n).
2) Choose an indexk.
3) Draw a samplêxk from

f(xk)
△

=
f(x̂1, . . . , x̂k−1, xk, x̂k+1, . . . , x̂n)

∑

xk
f(x̂1, . . . , x̂k−1, xk, x̂k+1, . . . , x̂n)

.

(11)
4) Iterate 2–3 a “large” number of times.

µ1 µm

Y

f1 fm

=
ŷŷ

. . .

. . . . . .

. . .

Fig. 3. Gibbs sampling at a generic edgeY .

Gibbs sampling can be interpreted as a message-passing
algorithm that iterates the following steps:

1) Select a variable (equality constraint node)Y in the
factor graph off (see Fig. 3).

2) The equality constraint nodeY generates the messageŷ

by sampling from:

f(y)
△

=
µ1(y) · µ2(y) . . . · µm(y)

∑

y µ1(y) · µ2(y) . . . · µm(y)
, (12)

3) The equality constraint node broadcasts the messageŷ

to its neighboring nodesfk (k = 1, . . . , m).

In summary: Gibbs sampling can be regarded as message
passing on a factor graph, where messages are represented by
a single sample.

B. Importance Sampling

Suppose that we wish to approximate the expectation (1)
by some particle method. If it is “easy” to sample fromf ,
one may draw sampleŝx(1), . . . , x̂(N) from f and evaluate
the expectation (1) as

Ef [g]
△

=
1

N

N
∑

i=1

g
(

x̂(i)
)

. (13)

Suppose now that sampling fromf is “hard”, and hence the
approach (13) is not feasible. One may then draw samples
x̂(1), . . . , x̂(N) from a (different) functionf̃ with supp(f) ⊆
supp(f̃), and approximate (1) as

Ef [g] ≈
1

N

N
∑

i=1

w(i)g
(

x̂(i)
)

, (14)

where the weightsw(i) are given by

w(i) △

=
f
(

x̂(i)
)

f̃
(

x̂(i)
) . (15)

The approach (14)–(15) is called importance sampling [11,
p. 90–107]. Importance sampling is particularly natural
whenf factorizes. Suppose for example that

f(x)
△

= f1(x)f2(x). (16)

One may draw sampleŝx(i) from f1 and weight those samples
by the functionf2:

w(i) ∝ f2

(

x̂(i)
)

. (17)

A message-passing view of this procedure is suggested

X

µ1

µ2

µ3
f1

f2

=
X

particle list
closed-form

particle list
f1

f2

=

Fig. 4. Importance sampling as message passing.

in Fig. 4. The messageµ1 is a list of sampleŝx(1), . . . , x̂(N)

drawn from f1. The messageµ2 is given in closed-form,
i.e., µ2

△

= f2. The messageµ3 is the particle listµ3
△

=
{

(x̂(i), w(i))
}N

i=1
, wherew(i) is defined in (17). Importance

sampling may be viewed as a particular instance of weighted
sampling, where (1) the local node functiong is an equality
constraint node; (2) one of the messages is a list of samples;
(3) the other message is available in closed-form.

If it is hard to draw samples from bothf1 and f2, one
may use importance sampling (14) (15) in order to obtain
a particle list from eitherf1 or f2. Suppose that we gen-
erate a particle list

{

(x̂(i), w̃(i))
}N

i=1
from f1, i.e., µ1

△

=
{

(x̂(i), w̃(i))
}N

i=1
. The messageµ3 is then represented as a

list of samples
{

x̂(i), w(i)
}N

i=1
, where

w(i) ∝ w̃(i)f2

(

x̂(i)
)

. (18)

This method is the key to (standard) particle filtering, the
subject of next subsection.

C. Particle Filtering

Particle filtering [9] (or “sequential Monte-Carlo integra-
tion”) is a particle method for filtering in state-space models.
It can be viewed as for forward-only message passing in a
state-space model of the form:

f(s0, s2, . . . , sn, y1, y2, . . . , yn)

△

= fA(s0)
n

∏

k=1

fA(sk−1, sk)fB(sk, yk), (19)

where (some of the) messages are represented by lists of
samples (see Fig. 5; the figure shows only one section of the
factor graph). More precisely, the messagesµk and µ̃k (for



Sk

. . . . . .
µk−1

µY
k

µkµ̃k

fA(sk−1, sk)

fB(sk, yk)

=

Fig. 5. Particle filtering as message passing.

all k) are represented as lists of samples. In the basic particle
filter, the list µ̃k is obtained fromµk−1 by weighted sampling.
The sampling-importance-resampling particle filter (SIR)uses
unweighted sampling instead. In both particle filters, the list µk

is generated from̃µk by importance sampling (cf. Fig. 4):
the messagẽµk, µY

k and µk in Fig. 5 correspond to the
messageµ1, µ2 andµ3 respectively in Fig. 4.

D. Markov-Chain Monte-Carlo Methods (MCMC)

Markov-Chain Monte-Carlo methods [11] (MCMC) are
an alternative family of methods to draw samples from a
probability function (“message”)f from which it is hard to
sample directly. The main idea is to sample repeatedly from
an ergodic Markov chain with stationary distributionf . In the
following, we briefly present the most well-known MCMC
method, i.e., the Metropolis-Hastings algorithm [11]. This
algorithm is based on a conditional densityq(y|x) from which
it is assumed to be easy to sample. In addition,q is supposed
to be symmetric, i.e.,q(y|x) = q(x|y). Usually, the functionq
fully factorizes, i.e.,

q(y1, . . . , yN |x1, . . . , xN )
△

=
N
∏

k=1

q(yk|xk). (20)

For instance,q may be a Gaussian distribution with meanx

and diagonal covariance matrix. The Metropolis-Hastings al-
gorithm generates samplesx̂ from the “target” functionf by
the following iterative procedure:

1) Choose an initial valuêx.
2) Sampleŷ from q(y|x̂).
3) Setx̂

△

= ŷ with probabilityp where

p
△

= min

{

f(ŷ)

f(x̂)
, 1

}

(21)

4) Iterate 2–3 a sufficient number of times.
Note that the functionf must be available up to some constant.

Similarly as Gibbs sampling, the Metropolis-Hastings al-
gorithm may be interpreted as a message-passing algorithm
that operates on a factor graph off . We refer to [4] for more
details.

E. Simulated Annealing

The original simulated annealing algorithm is an exten-
sion of the Metropolis-Hastings algorithm [11, pp. 163–
169]. It can be used (i) to sample from a multivariate func-
tion f(x1, . . . , xN ); (ii) to find the mode off . The key idea
is to draw samples fromfα, where the (positive) exponentα

slowly increasesin the course of the algorithm. The initial
value of α is close to zero (e.g.,α = 0.1). If one wishes

to obtain samples fromf , one halts the algorithm as soon
as α = 1. If one tries to find the mode ofα, the end value
of α is much larger (e.g.,α = 10 or 100). Note that for small
values ofα (i.e.,0 ≤ α < 1), the functionfα is flatter than the
target functionf , whereas for large values ofα (i.e., α ≫ 1),
the functionfα mainly consists a narrow peak centered at the
global maximum off .

Simulated annealing works as follows:
1) Choose an initial value(x̂1, x̂2, . . . , x̂N ).
2) Choose an initial valueα (e.g.,α = 0.1).
3) Sample a new valuêy from q(y|x̂).
4) Setx̂

△

= ŷ with probability p, where

p
△

= min

{(

f(ŷ)

f(x̂)

)α

, 1

}

(22)

5) Iterate 3–4 a “large” number of times.
6) Increaseα according to some schedule.
7) Iterate 5–6 until convergence or until the available time

is over.
The principle of simulating annealing is generic. It can be

applied toany message-passing algorithm (e.g., sum-product
algorithm, expectation maximization etc.), not only to the
Metropolis-Hastings algorithm. The idea is to replace a local
functionf by a powerfα, whereα increases in the course of
the message-passing algorithm.

V. CONCLUSION

We presented particle methods as message passing on factor
graphs. This viewpoint enables us to (i) combine various
other families of signal-processing algorithms with particle
methods in a disciplined manner; (ii) develop novel particle-
based algorithms in a systematic fashion.

ACKNOWLEDGMENT

This project was supported in part by the Swiss National
Science Foundation grant 200021-101955. The third author
wishes to thank Ralf Koetter for helpful discussions on the
message-passing interpretation of Gibbs sampling.

REFERENCES

[1] H.-A. Loeliger, “An introduction to factor graphs,”IEEE Signal Processing Maga-
zine, Jan. 2004, pp. 28–41.

[2] H.-A. Loeliger, “Some remarks on factor graphs”,Proc. 3rd International Sympo-
sium on Turbo Codes and Related Topics, 1–5 Sept., 2003, pp. 111–115.

[3] J. Dauwels, S. Korl, and H.-A. Loeliger, “Expectation maximization as message
passing”,Proc. 2005 IEEE Int. Symp. Information Theory,pp. 583–586.

[4] J. Dauwels,On Graphical Models for Communications and Machine Learning:
Algorithms, Bounds, and Analog Implementation,PhD. Thesis at ETH Zurich, Diss.
ETH No 16365, December 2005. Available fromwww.dauwels.com/PhD.htm.

[5] J. Dauwels, S. Korl, and H.-A. Loeliger, “Steepest descent on factor graphs,” Proc.
IEEE Information Theory Workshop, Rotorua, New Zealand, Aug. 28 – Sept. 1,
2005, pp. 42–46.

[6] H.-A. Loeliger, J. Hu, S. Korl, Qinghua Guo, and Li Ping, “Gaussian message
passing on linear models: an update,”Proc. International Symposium on Turbo
Codes and Related Topics, Munich, Germany, April 3–7, 2006.

[7] E. Sudderth, A. Ihler, W. Freeman, and A. Willsky “Non-parametric Belief Propa-
gation,” CVPR,June 2003.

[8] S. Korl, A Factor Graph Approach to Signal Modelling, System Identification, and
Filtering, PhD. Thesis at ETH Zurich, Diss. ETH No 16170, July 2005.

[9] A. Doucet, J. F. G. de Freitas, and N. J. Gordon, eds.,Sequential Monte Carlo
Methods in Practice.New York: Springer-Verlag, 2001.

[10] A. Ihler, E. Sudderth, W. Freeman, and A. Willsky, “Efficient Multiscale Sampling
from Products of Gaussian Mixtures,”NIPS,Dec. 2003.

[11] C. Robert and G. Casella,Monte Carlo Statistical Methods,Springer Texts in
Statistics, 2nd ed., 2004.


