Particle Methods as Message Passing
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Abstract— It is shown how particle methods can be viewed where [ h(z)dz stands either for integration or summation
as message passing on factor graphs. In this setting, pa& of 4 over the whole range ofX. The expression (1) is
methods can readily be combined with other message-passmgubiquitouS in statistical inference; for example, the miam

techniques such as the sum-product and max-product algottitm, timate (MMSE) of | d iabl
expectation maximization, iterative conditional modes, t®epest mean square error estimate ( ) of a real random variable

descent, Kalman filters, etc. Generic message computatioules (Or vector) X from an observatioy” = y is

for particle-based representations of sum-product messas are

formulated. Various existing particle methods are descriled as immse = Exjy[X] = /xf(:v|y)dx, (2)
instances of those generic rules, i.e., Gibbs sampling, iroggance x

sampling, Markov-chain Monte Carlo methods (MCMC), particle

filtering, and simulated annealing, where f(z|y) is the posterior pdf. If the expression (1) is

intractable, one needs to resort to approximations; inighart

|. INTRODUCTION methods, the expectation (1) is approximated as an average
Particle methods (or “Monte-Carlo methods”) have in thever a particle listC;:
last fifty years intensively been used to solve a wide variety N
of problems in physics and computer science (e.g., stilsti E/lg] ~ Zw(i)g(i,(i))_ ©)

inference and optimization). The main idea behind particle

methods 'S 1o represent a probability densﬂy function Xpdfn many practical problems, the pdfand the functiory have
or probability mass function (pmf) as a list of mass points',, .” : o . !
N . . . N iy . a “nice” structure, i.e., they factorize; particle lists pfcan
(‘particles”), as illustrated in Fig. 1. A (positive) weigls as- then be generated by means of simple local computatiores; als
sociated to each particle in the list; the weights of all isles 9 y P P '

are supposed to add to 1. If the mass points are samples frtg% evaluation of (3) then only involves local computatioVs

the pdf or pmf at hand, all weights are identical (“uniform”)rv;/1' I show in this paper that particle methods can be viewed as
(see Fig. 1 (left)); if the particles are generated by otheans essage-passing algorithms operating on factor grapheewhe

(e.g., they may be sampled from a different function thap . >oades are represented as lists of samples [1] [2]. I_m othe
f), non-uniform weights are associated to the particles (S\évgrds, particle methods are a full member of the family of

Fig. 1 (right)). A list £L; of N particles representing the pdfmessage-passmg methods; this enf;\bles us for -example:
or pmf f(z) with = € X' is thus formally defined as a list of to apply particle methodscally, i.e., at a particular node

=1

pairs in the factor graph of the system at hand;
A [ia@) (Y (a2) (@) () (N) « to combine particle methods with other message-passing
Ly= {(ff sw), (@ w), L (@ w )}, techniques such as the sum-product and max-product
where () € X, the weightsw(®) are positive real numbers ~ algorithm [1], expectation maximization [3], iterative
andy, w® = 1. conditional modes [4], steepest descent [5], Kalman fil-

ters [6], etc.;
« to apply particle methods on factor graphs with cycles;
« to choose the order in which particle lists (“messages”)
are updated (“message-update schedule”).

. The use of particle lists in message passing algorithms was
x proposed in [7], [1], [2]. In this paper, we go into more detai

Fig. 1. A probability density functiorf : R — R and its representation as In pamcular:

a list of particles. The radius of the particles is proparébto their weights. « We investigate how particle methods can be used to

(left) uniform weights; (right) non-uniform weights. (approximately) computaarginalswhen straightforward

sum-product message passing is intractable. We formulate

Particle methods can be used to evaluate the expectation of generic message computation rules for particle-based

some functiory w.r.t. a pdff, i.e., representations of sum-product messages; we thereby

systematically investigate various types of incoming mes-

Ef[g] = /g(ff)f(x)dma 1) sages.

x




« We describe various existing methods for drawsam- Wherejzgz) is the i-th particle in the particle list that repre-
plesfrom a multivariate pdf as message passing on factegnts the sum-product message, and wl” is the weight
graphs. associated ta:{".

This paper is structured as follows. In the following setio  Particle methods are not the only option to handle in-
we explain how the sum-product message computation ragtectable sum-product message computation rule (see e.g.,
may be approximated by particle methods; particle-basgy] [2]). If X, is continuous, one may alternatively represent
representations of sum-product messages are therebyedquithe message x, as:

We investigate in Section Il how such representations @an b
obtained. In Section IV, we present various existing pketic
methods as message passing on factor graphs.

a quantized-variable message
« a Gaussian distribution (as in Kalman filtering [6])
« a single valuet,, e.g., the mode or mean gfy, (as in

Il. APPROXIMATING THE SUM-PRODUCT RULE BY decision-directed algorithms).
PARTICLE METHODS Obviously, if in (4) also the summation/integration over
Suppose that we wish to compute marginals from $PMe other variable(sYy, is intr_actable, one may also c_hoose
given multivariate functiory (z1, zs, .. ., z,,), where the vari- ON€ of the above representations for the corresponding mes-

ables X;, may be discrete or continuous. As is well knownS29€(S)1x,; €ach of those messages may be represented
marginals of a functionf can in principle be computed bydlfferently. In other words, at every node in the factor drayp .
applying the sum-product algorithm on a cycle-free factdhe system at hand, one has the fregdom to combine various
graph of f [1]. However, this naive approach fails if the sumtyPes of messages, and hence, various types of algorithms,
product rule is intractable at some node(s) in the factoplgra®-9- decision-based algorithms (such as iterative ciomait

of f, which is often the case if (some of) the variablEs moo!es and expectation _maX|r_n|zat|0n), Kalman filters, _and
are continuous. In the following, we take a closer look as thParticle methods. Following this approach, we have derived
issue. A generic node in the factor graph off is depicted Various message-passing algorithms for code-aided plegase e

in Fig. 2. timation [4] and estimation in AR models [8].
X1 IIl. GENERATING A PARTICLE LIST FROM A SUMPRODUCT
N Y MESSAGE
Do h =
X We pointed out in the previous section that if the sum-
m

product message computation rule is intractable, it may be
evaluated (approximately) by particle methods. Incoming-s
product messages are then represented as particle ligts (e.
ux, in (5)). In this section, we describe methods to generate
particle lists from sum-product messages. We again conside
the generic nodé depicted in Fig. 2; we wish to represent
the sum-product message towards edgé@” as a patrticle list.

. . . irst we consider the case where all variablgsare discrete,
edge.X;, (see Fig. 2). The expression (4) may be mtractabrﬁen we will assume that all variableX, are continuous.

for the fOIIOng reasons.. ) ) It is straightforward to extend our considerations to theeca
« If the variablesX} in Fig. 2 are discrete, the express

] ) ¢ ] where some of the variableX, are discrete and others are
sion (4) can in principle be evaluated straightforwardly.ntinuous.

However, the summation occurring in (4) can only be

carried out in practice if the alphabets of the variabtes A piscrete variablesy .

are sufficiently small.

sion (4) may lead to intractable integrals. suppose that the alphabets of the variabigsare sufficiently

If the expression (4) is infeasible for one of the above rBasosma" S0 that the messagps;, can be represented by a list
f their values. (If a messagex, can not be represented

(or both), one needs to resort to approximative methods sUth . \ :
as particle methods. Suppose, without loss of generality, " this fashion since the alfr}ablt_ett.dfk IS toqdlargtﬁ,_ otne
the summation/integration ovex; in (4) is infeasible. This may represenfiy, as a particie list; we consider this type

summation/integration may be approximated by means %ffrepresent?tmn forlthefmesssg?sk |fn Ilsecyon III-B.)dOn('a
particle methods as follows: the message, is represented may generate samples Irom- by the following procedure:

Fig. 2. Message along a generic edge.
The sum-product message towards edfges given by [1]:
) & [ By, s, (@) ax,, (on)da, (@)
x1

where nx, is the message that arrives at nadealong the

as aparticle list and the rule (4) is evaluated as (cf. (3)): 1) For eachk = 1,...,m, select a valuer; of X} with
. ‘ probability proportional tqux, (Zx).
iy (y) & Z/ Wy, &\ 2g, . ) - w0l 2) Draw a samplgj from a(y, i1, ..., &m).
i UT2Tm 3) lterate 1-2 until a sufficient number of samples frogm

cpx,(2) - px,, (T )dp,  (5) are obtained.



The resulting particles have uniform weights; the above-sam « Deterministic mapping.

pling method (Step 1-3) is therefore referred to as unweijht

sampling.
Alternatively, one may draw samplesg from
h(y,Z1,...,2,m) for each possiblem-tuple (21,...,%m).

The weightw associated to samplgis proportional to

m
w o H xy, (T)-

k=1
This sampling method is called weighted sampling since it
leads to a patrticle list with non-uniform weights.

If one successively draws particlds from that list with

probability proportional to their weights) (6), one obtains
a list of particles with uniform weights; note that a pasticl
with a large weightw (6) may be drawn several times,
whereas a particle with a small weight may not be drawn
at all. This technique to generate particles lists with ommf
weights from particle lists with non-uniform weights is lea
resampling [9].

(6)

B. Continuous variables(;,

If the variables X, are continuous, we distinguish the
following cases:

« If a suitable closed-form expression for the message
is available, one may sample from that expresgign

« If the messagesx, are quantized-variable messages [2],
one proceeds as in the case of discrete variakilgs

« If the messageg x, are lists of samples, the procedure
is again similar to the one for discrete variabl&s.
The first step in the unweighted sampling procedure is
slightly modified: for eaclt, one draws a particlé; with
probability proportional to its weightv,. In weighted
sampling, one draws a sampjefrom h(y, Z1,...,ZN)
for eachm-tuple of particleg i1, . . ., &,,). The weightw
associated to the sampleis proportional to

m
w o< Hwk,
k=1

wherewy, is the weight of particlezy,.

« If the incoming messages:.x, are represented as
Gaussian distributions (and no suitable closed-form ex-
pression foruy is available), one may first represent
the messagesx, as particle lists and proceed as in the
previous case.

« If the incoming messages are single valggsone draws
samples fromh(y, &1, ..., Tm).

(@)

Suppose that the node corresponds to a deterministic
mappingy = v(x1,...,Tm):

Sy Tm))- (8)

i) are then trivially ob-

h(yvxlv'- ';Im) é 6(y_'U(I1,. .

Samplesy from h(y, &1, ...,
tained asy = v(&1, ..., &m).
Equality constraint node.
Suppose that the node is an equality constraint node,
ie.,

m—1

3y —a1) [T (ensr —zx). (9)

h(y,z1,...,Tm)

k=1
The messagey is then given by:

py (y) o< [ mxe )- (10)
k=1

We distinguish the following cases:

— If Y is discrete, one obtains a patrticle list fog

by selecting valueg with probability proportional

to [T, x,(9). This approach is only applicable

if the alphabet ofY” is sufficiently small. Otherwise
one may represent the messages as particle lists.

If the messagep x, are represented as particle lists,
it is not straightforward to draw samples from (10).
One may first generate a continuous representation
such as mixtures of Gaussian distributions for each
of the incoming messagesx,. Efficient methods
have been devised to draw samples from products of
Gaussian mixtures [7] [10].

If Y is continuous, and a closed-form expression
for the messagey is available, one may obviously
sample from that expressiqn, .

If Y is continuous, and closed-form expressions for
the incoming messagesy, are available, but not for
1y, one may sample from the product (10). This may
be done by importance sampling (see Section IV-B).
If the messages:x, are quantized-variable mes-
sages, one proceeds as in the discrete case.

Also certain mixtures of the previous situations can
be handled, as we will illustrate in Section IV-B by
the example of importance sampling. However, an in-
depth treatment of this issue goes beyond the scope
of this paper.

« The extension to the situation where the incoming mestV. EXISTING PARTICLE METHODS VIEWED AS MESSAGE

sages are not all of the same type is straightforward,

PASSING

except if the node: is an equality constraint node (se€ \ye now describe several standard Monte-Carlo techniques

Section 1I-C).

C. Specific node functions

So far, we have considered generic node functibn¥Ve
now investigate two important types of node functions in enor
detail: (i) nodes corresponding to deterministic mappirijs
equality constraint nodes.

as instances of the above generic rules, i.e.,

Gibbs sampling,

importance sampling,

particle filtering (“sequential Monte-Carlo filtering”),
Markov-Chain Monte-Carlo methods (MCMC),
simulated annealing.



A. Gibbs Sampling where the weightsy(") are given by

Suppose that we wish to draw samples from a multi- N f(;g(i))
. - ) . @2\ J (15)
variate probability functionf(z1,zs,...,z,). This can be w f(:c@)
done by the following iterative algorithm known as Gibbs
sampling [11, p. 371-407]: The approach (14)—(15) is called importance sampling [11,
1) Choose an initial valu€i,, &, . . ., én). p. 90-107]. .Importance sampling is particularly natural
2) Choose an indek. e when f factorizes. Suppose for example that
3) Draw a samplei;, from f(@) 2 fi(2) fa(a). (16)
Flon) 2 f@1,- o Bty Ty Tht1s o Bn) One may draw samples? from f; and weight those samples
Doe F@1 o Tt Thy T 1, -+, Bn) by the functionf,:

) w® o fo(29). (17)

A message-passing view of this procedure is suggested

4) lterate 2-3 a “large” number of times.

particle list

T closed-form

Fig. 4. Importance sampling as message passing.
Fig. 3. Gibbs sampling at a generic edge 9 P ping 9ep 9

in Fig. 4. The messagg; is a list of samples:"), ... #(N)

Gibbs sampling can be interpreted as a message-passing, - from 1. The messages, is given in closed-form
algorithm that iterates the following steps: e ia 2 Jo The messager is the particle listus 2 :

1) Select a variable (equality constraint nodé€)in the {(i.(i)7w(i))}]l\ily wherew(® is defined in (17). Importance

factor graph off (see Fig. 3). _ sampling may be viewed as a particular instance of weighted
2) The equality constraint node generates the message gampjling, where (1) the local node functigris an equality
by sampling from: constraint node; (2) one of the messages is a list of samples;
o my) pe®) .. um(y) 12 3) the.other message is available in closed-form.
fly) = (12) ¥ it is hard to draw samples from botff; and f,, one

2oy 1Y) - 12(t) - - pim(y) may use importance sampling (14) (15) in order to obtain

3) The equality constraint node broadcasts the mesgage particle list from eitherf; or f,. Suppose that we gen-
to its neighboring nodeg;, (k =1,...,m). erate a particle Iist{(i(i),w(i))}il from fi, ie., u =

In summary: Gibbs sampling can be regarded as messeﬂ[g@(i)vw(i))}{\il_ The message:s is then represented as a

passing on a factor graph, where messages are representelclisp%lc sampleg{j(i) w(“}N where

a single sample. ’ i=1’

w® oc d® fo(29). (18)

is method is the key to (standard) particle filtering, the
bject of next subsection.

B. Importance Sampling

Suppose that we wish to approximate the expectation (-SES
by some particle method. If it is “easy” to sample frofn
one may draw sampleg), ... #(N) from f and evaluate C. Particle Filtering

the expectation (1) as Particle filtering [9] (or “sequential Monte-Carlo integra
XN tion”) is a particle method for filtering in state-space migde
Eflg] = ~ > g(@™). (13) It can be viewed as for forward-only message passing in a
i=1 state-space model of the form:

Suppose now that sampling froghis “hard”, and hence the F(50,82, -y Sy Y1, Y2y - - - Yn)
approach (13) is not feasible. One may then draw samples n
¢, ... 20 from a (different) functionf with supg(f) € = fa(so) H fa(se—1,5%)f5(sk,yx), (19)
supg f), and approximate (1) as k=1
N where (some of the) messages are represented by lists of
Eflg] ~ 1 Zw(i)g(j(i))’ (14) samples (see Fig. 5; the _figure shows only one section of the
N Py factor graph). More precisely, the messagesand ji;, (for



Hk—1 Fie ke to obtain samples frony, one halts the algorithm as soon
o - o asa = 1. If one tries to find the mode of, the end value
Ja(sk—1,sk) e of o is much larger (e.gq = 10 or 100). Note that for small
values ofa (i.e.,0 < a < 1), the functionf® is flatter than the
fB(sk, yr) target functionf, whereas for large values of (i.e., o > 1),
the functionf“ mainly consists a narrow peak centered at the
Fig. 5. Particle filtering as message passing. global maximum off.

Simulated annealing works as follows:
all k) are represented as lists of samples. In the basic particley choose an initial valuéis, #s, . . ., &x).
filter, the list/u, is obtained fromy,_; by weighted sampling.  2) choose an initial value (e.g.,a = 0.1).
The sampling-importance-resampling particle filter (SiBgs  3) sample a new valug from ¢(y|%).
unweighted sampling instead. In both particle filters, thig 4) Set# 2 ¢ with probability p, where
is generated fromji;, by importance sampling (cf. Fig. 4): o
the messageix, p) and py in Fig. 5 correspond to the pémin{(f(y)) 71} (22)
messageu, u» and us respectively in Fig. 4. f(2)
D. Markov-Chain Monte-Carlo Methods (MCMC) 5) lterate 3-4 a Iarge number of times.
6) Increasex according to some schedule.

Markov-Chain Monte-Carlo methods [11] (MCMC) are 7) |terate 5-6 until convergence or until the available time
an alternative family of methods to draw samples from a s gver.
probability function (‘message’y from which it is hard ©0  1he principle of simulating annealing is generic. It can be
sample o!lrectly. The main .|dea is to sam_ple. repeatedly frogfbplied toany message-passing algorithm (e.g., sum-product
an ergod|c Markpv chain with stationary distributignin the algorithm, expectation maximization etc.), not only to the
following, we briefly present the most well-known MCMCyetronolis-Hastings algorithm. The idea is to replace aloc

method, i.e., the Metropolis-Hastings algorithm [11]. §hig,ction f by a powerf®, wherea increases in the course of
algorithm is based on a conditional densjty|x) from which .o message-passing algorithm.

it is assumed to be easy to sample. In additipis supposed

to be symmetric, i.eg(y|z) = q(x|y). Usually, the functiony V. CONCLUSION
fully factorizes, i.e., We presented particle methods as message passing on factor
N graphs. This viewpoint enables us to (i) combine various
a(y, .. yn|TL,. . aN) = H a(yelzr). (20) other families of signal-processing algorithms with pafi
Pl methods in a disciplined manner; (ii) develop novel pagticl
For instanceg may be a Gaussian distribution with mean based algorithms in a systematic fashion.
and diagonal covariance matrix. The Metropolis-Hastinlgs a ACKNOWLEDGMENT
gorithm generates samplesfrom the “target” functionf by This project was supported in part by the Swiss National
the following iterative procedure: Science Foundation grant 200021-101955. The third author
1) Choose an initial value. wishes to thank Ralf Koetter for helpful discussions on the
2) Sampley from ¢(y|z). message-passing interpretation of Gibbs sampling.
PR AN . -
3) Seti =g with probabilityp where REFERENCES
A f(g) [1] H.-A. Loeliger, “An introduction to factor graphsfEEE Signal Processing Maga-
p = min { f(if?) ’ 1} (21) zing Jan. I2004, pp.I 28—4ul.I I I

[2] H.-A. Loeliger, “Some remarks on factor graph&roc. 3rd International Sympo-
4) lterate 2—3 a sufficient number of times. sium on Turbo Codes and Related Topits5 Sept., 2003, pp. 111-115.
) ] [3] J. Dauwels, S. Korl, and H.-A. Loeliger, “Expectation ximaization as message
Note that the functiorf must be available up to some constant. passing”,Proc. 2005 IEEE Int. Symp. Information Theorgp. 583-586.

[ ; : : : [4] J. Dauwels,On Graphical Models for Communications and Machine Leagnin
Slmllarly as GllbbS Samplmg’ the MetropO“S'HaStmgs fal' Algorithms, Bounds, and Analog ImplementatiBhD. Thesis at ETH Zurich, Diss.
gorithm may be interpreted as a message-passing algorithmeTH No 16365, December 2005. Available framw. dauwel s. conf PhD. ht m

[5] J. Dauwels, S. Korl, and H.-A. Loeliger, “Steepest dedaa factor graphs,” Proc.
that operates on a factor graphﬁfWe refer to [4] for more IEEE Information Theory Workshop, Rotorua, New ZealandgAB8 — Sept. 1,

details. 2005, pp. 42-46.
[6] H.-A. Loeliger, J. Hu, S. Korl, Qinghua Guo, and Li PingG&4ussian message
E. Simulated Annea“ng passing on linear models: an updat@foc. International Symposium on Turbo

Codes and Related Topicslunich, Germany, April 3-7, 2006.
The Origina| simulated annea"ng a|gorithm is an exteriZ] E. Sudderth, A. Inler, W. Freeman, and A. Willsky “Nonrpeetric Belief Propa-
. . . . gation,” CVPR,June 2003.
sion of the Metropolls-Hastlngs algorlthm [11, pp. 163‘[8] S. Korl, A Factor Graph Approach to Signal Modelling, System Idegztfon, and

169] It can be used (|) to Samp|e from a multivariate func- Filtering, PhD. Thesis at ETH Zurich, Diss. ETH No 16170, July 2005.
9] A. Doucet, J. F. G. de Freitas, and N. J. Gordon, e8gquential Monte Carlo

X " X . i
tion f(z1,...,2n); (i) to find the mode off. The key idea Methods in PracticeNew York: Springer-Verlag, 2001.

is to draw samples fronj,‘a where the (positive) exponent [10] A. Ihler, E. Sudderth, W. Freeman, and A. Willsky, “Eféat Multiscale Sampling
. . ! . L from Products of Gaussian Mixtures\lIPS, Dec. 2003.
slowly increasesin the course of the algorithm. The initial [11] C. Robert and G. Caselld/lonte Carlo Statistical MethodsSpringer Texts in

value of « is close to zero (e.gq = 0.1). If one wishes Statistics, 2nd ed., 2004.



