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Computation of Information Rates
by Particle Methods

Justin DauwelsMember, IEEEand Hans-Andrea LoeligeFellow, IEEE,

Abstract—Prior work on the computation of information

rates of channels with memory is extended to continuous stat Xa Xz ‘X?»

spaces by means of sequential Monte-Carlo integration (“picle So S1 So Ss

filtering”). N > N >

Index Terms—information rate, continuous channels with ‘
memory, particle filtering, sequential Monte-Carlo integration h Y2 Y3
Fig. 1. Computation op(y™) by message passing through the factor graph
I. INTRODUCTION of (2).
E We consider the problem of computing the informa-

tion rate
methods allow to deal with a continuous state space. Two
numerical examples are given in Section 4: two channels with
between the input process = (X1, X»,...) and the output phase noise, where the phase noise has memory.

processY = (Y1,Ys,...) of a time-invariant discrete-time

channel with memory. Let} 2 (Tk, Tht1,- - -, 2n) and Il. REVIEW OF BASIC METHOD

2 (x1,x2,...,2,). We will assume that there is an ergodic
stochastic procesS = (5o, S1, Sa, . ..) such that

1
I(X;Y)= lim —I(Xy,...,X0;Y1,...,Y,) (D)
n—oo N

We briefly review the basic idea of [1] as presented in [7].
We first note that, as a consequence of the Shannon-McMillan-
n Breiman theorem and the assumptions of stationarity and er-
p(a™,y", s5) = p(so) [ [ P, yr, sklsk—1) (2)  godicity (cf. Section I), the sequeneel log p(X™) converges
k=1 with probability 1 to the entropy ratéf(X), the sequence
for all n > 0 and withp(xy, yk, sk|sx—1) not depending of. —% logp(Y™) converges with probability 1 to the differen-
For finite input alphabett’ (= range ofX}) andfinite state tial entropy rateh(Y'), and the sequence% logp(X™,Y™)
spaceS (= range ofS}), a practical method for computing theconverges with probability 1 té7 (X ) + A(Y|X). From these
information rate (1) was proposed in [1]-[3]. This methodswaobservations, the quantity{ X;Y) = h(Y) — h(Y|X) can be
generalized in [4]-[7] to the computation of upper and lowaromputed as follows:
bounds on the information rate of more general channels.;) sample two “very long” sequence& andy™.

An alternative approach to compute approximations of (1) 2) Computelogp(z™), logp(y™), and logp(z™,y™). If
was presented in [8]. An extension to 2-D channels (using ~ 1,(y|X) is known analytically, then it suffices to com-
generalized belief propagation [9]) was proposed in [10]. putelog p(y™).

In this paper, we extend the methods of [1] and [4] to con- 3y Conclude with the estimate
tinuous state spaces For the sake of clarity, we will assume
thatS is a bounded subset &, thev-dimensional Euclidean I(X;Y) 2 1 log p(z", y™) — 1 log p(z™) — 1 log p(y™)
space. The input alphabét may also be continuous. The n n n 3)
key to this extension is the use of sequential Monte-Carlo
integration methods (“particle filters”) [11], [12].

This paper is structured as follows. In Section II, we review f(X- Y) 2 1 log p(y™) — h(Y]X). (4)
the basic idea of [1]. In Section Ill, we show how particle ’ n '
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or, if h(Y]X) is known analytically,
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(In [1] and [7], the mtegral (5) is actually a finite sum.)metric y(s5) now equalsp(sx|y*), and therefore:
Define the state metrig (s.) = p(sk, y"*). By straightforward
application of the sum-product algorithm [13] we recurbive / / / (sk—1]y" ")p(k, sk |sk-1)

compute the messages (state metrics)
1/k|517k,5k,5k 1)d$k dSk 1d5k (14)

pr(sK) = / / pr—1(8k—1) / / / (sk—1, s> ze|y" ™)
Sk—1 Sk
xk,yk,sk|sk 1)d£Ck dSk 1 (6) (yk|xk,8k,8k,1)ddfk dSk,1 dSk (15)
- / / o gk skydak dsk () = E[p(yx[ Xy, Sk, Sk-1)|VF], (16)
where the expectation is with respect to the probabilitysitgn
for k =1,2,3,... with zo(so) 2 p(so). The desired quantity  P(sk—1, sk, 2|y ") = p(sk—1|y" ")p(@n, sklsk—1) (A7)
(5) is then obtained as = pp—1(8g—1)p(xk, sk|sk—1). (18)
p(y") = / fin (Sn) dsn, (8) [1l. A PARTICLE METHOD
the sum of (or the integral over) all final state metrics. f
For largek, the state metricg; computed according to (6)
quickly tend to zero. In practice, the recursion (6) is tfieme
changed to
x
sk—/\k// Pr—1(Sk—1
T JSp—1 Fig. 2. A probability density functiorf : R — Rt and its representation

P(Tk, Yk Sklsk—1) dog dsp—1, (9) @S alistof particles.

where A;, Az, ...are positive scale factors. We will choose f poth the input alphabet’ and the state spac®are finite

these factors such that sets (and the alphabet of and S is not too large), then
the method of the previous section is a practical algorithm.

/ wk(sg)dsp =1 (10) However, we are now interested in the case whg&réand
Sk perhaps alsoY) is continuous, as stated in the introduction.

In this case, the computation of (9) and (16) is a problem.
This problem can be addressed by Monte-Carlo methods
known as sequential Monte-Carlo integration (“particle fil

holds for allk, i.e.,

= :/ / / pr—1(Sk_1) tering”) [11], [12]. Such algorithms may be viewed as mes-
sage passing algorithms where the messages (which represen
P(Tks Yr, Sk|SK—1) dx) dsg—1 dsy, probability distributions) are represented by a list of pis
(11) (“particles”) [15], [19] (see Fig. 2); a lisL; of N particles
representing the probability densitf(xz) with z € X is
:/ / / Po—1(5k-1)P(2k, k[ 5k-1) formally defined as a list of pairs
P(Yk|Tk, Sky Sk—1) dog dsp—1 dsp,. Ly = {(@W,wM), (@®,0?), ..., @™ o™} (19)
12 . N
(12) 2 {(x(g)’w(é))}z:p (20)
It follows that with #® ¢ x and where the weights") are positive real
. numbers such thaf ), w® = 1.
1 1
L Z log A = —— log p(y™). (13) In partwl(Jl];a\r we will represent the messageby a list of NV
— n particles{s, ,wk }é 1» and we will represent the distribution

p(sk_1, sk, T|y*1) (18) by a list of N (weighted) three-
~ 0) ~(¢
The quantity —1 logp(y™) thus appears as the average dHPIes{(5;" a0 ), w1, The expectation (16) is

the logarithms of the scale factors, which converges (aimdgen approximately computed as an average over thgse

surely) toh(Y). (weighted) three-tuples:
If necessary, the quantitiésg p(z™) andlog p(z™, y™) can ,
be computed by the same method, see [7]. Zw plyl3 30, 2. (21)

For use in Section Ill, we note tha‘\;;1 (12) may be written
as an expectation; due to the normalization (10), the stathe recursive computation of (9) is accomplished as follows
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1) Begin with a particle Iist~{§§f_)1,u),(f_)1 N | that repre- of definiteness, we will assume, first, that the channel input
sentSpy_1. alphabetX is a 4-PSK constellation, and second, that the

2) Extend each particle §§f_)1 to a three-tuple channel input symbolXy, k =1,2,..., are independent and
(§](€Z217§](€Z)7£§€l)) by sampling fromp(zy, sy|s,_1), re- Uniformly distributed. The phasé;, (which takes the role of

o . a0 A0 A(f [ the channel stat§},) is unknown to the receiver. We consider
sulting in the particle “St{(sé.‘)l’ 572w Ha. two dynamical mgt)jels for the phase:
3) Compute an estimate of, using (21). '

4) Compute the weights,: Random-walk phase model
wf® = xewl, puls,, 80,60, @) O (O + W) mod2r,  (25)
(Note that those weights sum to one,) = where W, is white Gaussian noise with known variance
5) Drop,§,(€21 and:EEC) of each three-tupléééll,éé),ié)); o2,

the resulting particle |is(§,§f>,w,§f>};v:1 representgiy.

6) If the number of “effective” particlesVy e in the list

{3, w1, is “small’, ie., if ARMA phase model
Nie 2 = ceN (23) e il
k.eff = N D2 s _
D1 (wl(c )) Zk Z ar Zg—t + Z be Wi, (26)
. .. “ N /=1 £=0
Wher_ea |As(51 po(?)ltl\]lve r.1umber (e.gs,= 0.3), “resample O = Zx mod 27, 27)
the list {5,, w; ' },_;:
a) DrawN samples from the Iis{é,(f)}N with prob- with known real coefficienta, andb, and wherelV,, is

=1 . . . . .
ability proportional tOw,(f). (If w}(fﬁ is large, the white Gaussian noise with known varianeg, .

samples,(f) may be drawn several times, otherwisel his channel models a single-carrier communications sys-

it may not be drawn at all.) tem with phase jitter and perfect symbol timing knowl-
b) Associate the (uniform) weight to each obtained €dge [23]. The two phase noise models (random-walk (25)
samplesgf), resulting in the new Iis{égf), % N and ARMA (26)) correqund to a free running clock and a

which represents.. phase—lqcked loop res_pecuvely [24] (se(_e also [19, Chafjler _
Some remarks: For this channel (with both phase noise models), the appli-
' i cation of the method of Section Il is straightforward. Some
« In Step 2 of the above algorithm, one needs to draW,merical results are shown in Figures 3 and 4. For the
samples fromp(z, sk[s;—1). A closed-form expression example in Fig. 4, the parameters of the ARMA model (26) are

for p(z, sk|sk—1) is not required for that purpose. Thema — 1, my =2, a1 = 0.4 and (bo, by, b2) = (0.3,0.2,0.1).

state transitions may for example be described by g ot Fig. 3 and Fig. 4, we simulated channel input/output
stochastic difference equation. The observation mo quences of length between10® and 10°, and we used
p(yk|zK, Sk, Sk—1), however, has to be available in closedy; — 10* particles.

form (cf. Step 3.and 4). ) ) The numerical results of Fig. 3 were also checked with the
« Without resampling (Step 6), all but one particle will hav

the resampling step reduces this effect (Step 6) [11],

« Itis well known that particle-based estimates of logarittyjn “Note that quantization of the state space is not maicti
mic Lyapunov exponents (or “log partition functions”,for the ARMA noise model
cf. (13) and (21)) are urllblased. [20], [21]. The mean The convergence of the proposed method is illustrated
square error of those estimates is upper bounded by nFig. 5. which shows the estimatésX;Y) of 10 different

expression that is inversely proportional to the numbg . -
) mulation runs as a function of the sequence lengttfor
of particlesN (for n > +/N) [22, Theorem 2, Corollary tge random-walk model) q ngt(f

2]; those two properties carry over to the particle-base
estimatel (X,Y") (3), since the latter is a linear combina-
tion of particle-based estimates of logarithmic Lyapunov V. CONCLUSION

exponents. . . o
P Using particle methods, we have extended the basic idea

of [1] and [7] to channels with a continuous state space. A

closed-form expression of the state transition probagtginot

We consider the channel required. The accuracy of the proposed method depends not
B ) only on the length of the simulated sequence (as in [1], [7]),

Vi = Xy e + N, (24) but also on the number of particles.

where X is the complex channel input symbol at tinig It should be noted that the proposed method can be used also

Y}, is the corresponding channel output symbol, a¥g is to compute the auxiliary-channel bounds on the information

white Gaussian noise with known varianeg. For the sake rate of [7, Section VI].

IV. A NUMERICAL EXAMPLE
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Fig. 3. Information rates for the random-walk phase noisnokl (25). From
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1.8r 1

1.41 A

1.2F . : 4

0.81 1

I(X;Y) [bits/channel use]

0.4r 1

0.2r 1

0 T I I
-20 -15 -10 -5 0 5

SNR [dB]

10

Fig. 4. Information rates for the ARMA phase noise channd) (@ith

mqg = 1, mp = 2, a1 = 0.4, and (bo, b1,b2) = (0.3,0.2,0.1). From top
to bottom:oyw = 0, oy = 0.01, andoy, = 0.1 (all on top of each other),
ow = 0.5, al"ldO'W =1.
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