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Computation of Information Rates
by Particle Methods

Justin Dauwels,Member, IEEEand Hans-Andrea Loeliger,Fellow, IEEE,

Abstract—Prior work on the computation of information
rates of channels with memory is extended to continuous state
spaces by means of sequential Monte-Carlo integration (“particle
filtering”).

Index Terms—information rate, continuous channels with
memory, particle filtering, sequential Monte-Carlo integration

I. I NTRODUCTION

W E We consider the problem of computing the informa-
tion rate

I(X ; Y )
△

= lim
n→∞

1

n
I(X1, . . . , Xn; Y1, . . . , Yn) (1)

between the input processX = (X1, X2, . . .) and the output
processY = (Y1, Y2, . . .) of a time-invariant discrete-time
channel with memory. Letxn

k

△

= (xk, xk+1, . . . , xn) and
xn △

= (x1, x2, . . . , xn). We will assume that there is an ergodic
stochastic processS = (S0, S1, S2, . . .) such that

p(xn, yn, sn
0 ) = p(s0)

n
∏

k=1

p(xk, yk, sk|sk−1) (2)

for all n > 0 and withp(xk, yk, sk|sk−1) not depending onk.
For finite input alphabetX (= range ofXk) andfinite state

spaceS (= range ofSk), a practical method for computing the
information rate (1) was proposed in [1]–[3]. This method was
generalized in [4]–[7] to the computation of upper and lower
bounds on the information rate of more general channels.
An alternative approach to compute approximations of (1)
was presented in [8]. An extension to 2-D channels (using
generalized belief propagation [9]) was proposed in [10].

In this paper, we extend the methods of [1] and [4] to con-
tinuous state spacesS. For the sake of clarity, we will assume
thatS is a bounded subset ofR

ν , theν-dimensional Euclidean
space. The input alphabetX may also be continuous. The
key to this extension is the use of sequential Monte-Carlo
integration methods (“particle filters”) [11], [12].

This paper is structured as follows. In Section II, we review
the basic idea of [1]. In Section III, we show how particle
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Fig. 1. Computation ofp(yn) by message passing through the factor graph
of (2).

methods allow to deal with a continuous state space. Two
numerical examples are given in Section 4: two channels with
phase noise, where the phase noise has memory.

II. REVIEW OF BASIC METHOD

We briefly review the basic idea of [1] as presented in [7].
We first note that, as a consequence of the Shannon-McMillan-
Breiman theorem and the assumptions of stationarity and er-
godicity (cf. Section I), the sequence− 1

n
log p(Xn) converges

with probability 1 to the entropy rateH(X), the sequence
− 1

n
log p(Y n) converges with probability 1 to the differen-

tial entropy rateh(Y ), and the sequence− 1
n

log p(Xn, Y n)
converges with probability 1 toH(X)+ h(Y |X). From these
observations, the quantityI(X ; Y ) = h(Y )− h(Y |X) can be
computed as follows:

1) Sample two “very long” sequencesxn andyn.
2) Compute log p(xn), log p(yn), and log p(xn, yn). If

h(Y |X) is known analytically, then it suffices to com-
pute log p(yn).

3) Conclude with the estimate

Î(X ; Y )
△

=
1

n
log p(xn, yn)− 1

n
log p(xn)− 1

n
log p(yn)

(3)
or, if h(Y |X) is known analytically,

Î(X ; Y )
△

= − 1

n
log p(yn) − h(Y |X). (4)

The computations in Step 2 can be carried out by forward
sum-product message passing through the factor graph of (2),
as is illustrated in Fig. 1. (See [13] for an introduction to
factor graphs.) If the state spaceS is finite, this computation is
just the forward sum-product recursion of the BCJR algorithm
[14].

Consider, for example, the computation of

p(yn) =

∫

xn

∫

sn

0

p(xn, yn, sn
0 ) dxn dsn

0 . (5)
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(In [1] and [7], the integral (5) is actually a finite sum.)
Define the state metricµk(sk)

△

= p(sk, yk). By straightforward
application of the sum-product algorithm [13] we recursively
compute the messages (state metrics)

µk(sk) =

∫

xk

∫

sk−1

µk−1(sk−1)

·p(xk, yk, sk|sk−1) dxk dsk−1 (6)

=

∫

xk

∫

s
k−1

0

p(xk, yk, sk
0) dxk dsk−1

0 (7)

for k = 1, 2, 3, . . . with µ0(s0)
△

= p(s0). The desired quantity
(5) is then obtained as

p(yn) =

∫

sn

µn(sn) dsn, (8)

the sum of (or the integral over) all final state metrics.
For largek, the state metricsµk computed according to (6)

quickly tend to zero. In practice, the recursion (6) is therefore
changed to

µk(sk) = λk

∫

xk

∫

sk−1

µk−1(sk−1)

· p(xk, yk, sk|sk−1) dxk dsk−1, (9)

where λ1, λ2, . . . are positive scale factors. We will choose
these factors such that

∫

sk

µk(sk) dsk = 1 (10)

holds for allk, i.e.,

λ−1
k =

∫

xk

∫

sk−1

∫

sk

µk−1(sk−1)

· p(xk, yk, sk|sk−1) dxk dsk−1 dsk

(11)

=

∫

xk

∫

sk−1

∫

sk

µk−1(sk−1)p(xk, sk|sk−1)

· p(yk|xk, sk, sk−1) dxk dsk−1 dsk.

(12)

It follows that

1

n

n
∑

k=1

log λk = − 1

n
log p(yn). (13)

The quantity− 1
n

log p(yn) thus appears as the average of
the logarithms of the scale factors, which converges (almost
surely) toh(Y ).

If necessary, the quantitieslog p(xn) and log p(xn, yn) can
be computed by the same method, see [7].

For use in Section III, we note thatλ−1
k (12) may be written

as an expectation; due to the normalization (10), the state

metric µk(sk) now equalsp(sk|yk), and therefore:

λ−1
k =

∫

xk

∫

sk−1

∫

sk

p(sk−1|yk−1)p(xk, sk|sk−1)

· p(yk|xk, sk, sk−1) dxk dsk−1 dsk (14)

=

∫

xk

∫

sk−1

∫

sk

p(sk−1, sk, xk|yk−1)

· p(yk|xk, sk, sk−1) dxk dsk−1 dsk (15)

= E
[

p(yk|Xk, Sk, Sk−1)|Y k−1
]

, (16)

where the expectation is with respect to the probability density

p(sk−1, sk, xk|yk−1) = p(sk−1|yk−1)p(xk, sk|sk−1) (17)

= µk−1(sk−1)p(xk, sk|sk−1). (18)

III. A PARTICLE METHOD

x

f

Fig. 2. A probability density functionf : R → R
+ and its representation

as a list of particles.

If both the input alphabetX and the state spaceS are finite
sets (and the alphabet ofX and S is not too large), then
the method of the previous section is a practical algorithm.
However, we are now interested in the case whereS (and
perhaps alsoX ) is continuous, as stated in the introduction.
In this case, the computation of (9) and (16) is a problem.

This problem can be addressed by Monte-Carlo methods
known as sequential Monte-Carlo integration (“particle fil-
tering”) [11], [12]. Such algorithms may be viewed as mes-
sage passing algorithms where the messages (which represent
probability distributions) are represented by a list of samples
(“particles”) [15], [19] (see Fig. 2); a listLf of N particles
representing the probability densityf(x) with x ∈ X is
formally defined as a list of pairs

Lf
△

=
{

(x̂(1), w(1)), (x̂(2), w(2)), . . . , (x̂(N), w(N))
}

(19)
△

=
{

(x̂(ℓ), w(ℓ))
}N

ℓ=1
, (20)

with x̂(ℓ) ∈ X and where the weightsw(ℓ) are positive real
numbers such that

∑N

ℓ=1 w(ℓ) = 1.
In particular, we will represent the messageµk by a list ofN

particles{ŝ(ℓ)
k , w

(ℓ)
k }N

ℓ=1, and we will represent the distribution
p(sk−1, sk, xk|yk−1) (18) by a list of N (weighted) three-
tuples {(ŝ(ℓ)

k−1, ŝ
(ℓ)
k , x̂

(ℓ)
k ), w

(ℓ)
k−1}N

ℓ=1. The expectation (16) is
then approximately computed as an average over thoseN

(weighted) three-tuples:

λ−1
k ≈

N
∑

ℓ=1

w
(ℓ)
k−1 p(yk|ŝ(ℓ)

k−1, ŝ
(ℓ)
k , x̂

(ℓ)
k ). (21)

The recursive computation of (9) is accomplished as follows.
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1) Begin with a particle list{ŝ(ℓ)
k−1, w

(ℓ)
k−1}N

ℓ=1 that repre-
sentsµk−1.

2) Extend each particle ŝ
(ℓ)
k−1 to a three-tuple

(ŝ
(ℓ)
k−1, ŝ

(ℓ)
k , x̂

(ℓ)
k ) by sampling fromp(xk, sk|sk−1), re-

sulting in the particle list{(ŝ(ℓ)
k−1, ŝ

(ℓ)
k , x̂

(ℓ)
k ), w

(ℓ)
k−1}N

ℓ=1.
3) Compute an estimate ofλk using (21).
4) Compute the weightswk:

w
(ℓ)
k = λk w

(ℓ)
k−1 p(yk|ŝ(ℓ)

k−1, ŝ
(ℓ)
k , x̂

(ℓ)
k ). (22)

(Note that those weights sum to one.)
5) Dropŝ

(ℓ)
k−1 andx̂

(ℓ)
k of each three-tuple(ŝ(ℓ)

k−1, ŝ
(ℓ)
k , x̂

(ℓ)
k );

the resulting particle list{ŝ(ℓ)
k , w

(ℓ)
k }N

ℓ=1 representsµk.
6) If the number of “effective” particlesNk,eff in the list

{ŝ(ℓ)
k , w

(ℓ)
k }N

ℓ=1 is “small”, i.e., if

Nk,eff
△

=
1

∑N

ℓ=1

(

w
(ℓ)
k

)2 < εN, (23)

whereε is a positive number (e.g.,ε = 0.3), “resample”
the list {ŝ(ℓ)

k , w
(ℓ)
k }N

ℓ=1:

a) DrawN samples from the list{ŝ(ℓ)
k }N

ℓ=1 with prob-
ability proportional tow

(ℓ)
k . (If w

(ℓ)
k is large, the

samples(ℓ)
k may be drawn several times, otherwise,

it may not be drawn at all.)
b) Associate the (uniform) weight1

N
to each obtained

samples(ℓ)
k , resulting in the new list{ŝ(ℓ)

k , 1
N
}N

ℓ=1,
which representsµk.

Some remarks:

• In Step 2 of the above algorithm, one needs to draw
samples fromp(xk, sk|sk−1). A closed-form expression
for p(xk, sk|sk−1) is not required for that purpose. The
state transitions may for example be described by a
stochastic difference equation. The observation model
p(yk|xk, sk, sk−1), however, has to be available in closed-
form (cf. Step 3 and 4).

• Without resampling (Step 6), all but one particle will have
negligible weight after a few iterations (“degeneracy”);
the resampling step reduces this effect (Step 6) [11], [12].

• It is well known that particle-based estimates of logarith-
mic Lyapunov exponents (or “log partition functions”,
cf. (13) and (21)) are unbiased [20], [21]. The mean
square error of those estimates is upper bounded by an
expression that is inversely proportional to the number
of particlesN (for n >

√
N ) [22, Theorem 2, Corollary

2]; those two properties carry over to the particle-based
estimateÎ(X, Y ) (3), since the latter is a linear combina-
tion of particle-based estimates of logarithmic Lyapunov
exponents.

IV. A N UMERICAL EXAMPLE

We consider the channel

Yk = Xk ejΘk + Nk, (24)

where Xk is the complex channel input symbol at timek,
Yk is the corresponding channel output symbol, andNk is
white Gaussian noise with known varianceσ2

N . For the sake

of definiteness, we will assume, first, that the channel input
alphabetX is a 4-PSK constellation, and second, that the
channel input symbolsXk, k = 1, 2, . . ., are independent and
uniformly distributed. The phaseΘk (which takes the role of
the channel stateSk) is unknown to the receiver. We consider
two dynamical models for the phase:

Random-walk phase model

Θk = (Θk−1 + Wk) mod 2π, (25)

whereWk is white Gaussian noise with known variance
σ2

W .

ARMA phase model

Zk =

ma
∑

ℓ=1

aℓ Zk−ℓ +

mb
∑

ℓ=0

bℓ Wk−ℓ, (26)

Θk = Zk mod 2π, (27)

with known real coefficientsaℓ andbℓ and whereWk is
white Gaussian noise with known varianceσ2

W .

This channel models a single-carrier communications sys-
tem with phase jitter and perfect symbol timing knowl-
edge [23]. The two phase noise models (random-walk (25)
and ARMA (26)) correspond to a free running clock and a
phase-locked loop respectively [24] (see also [19, Chapter2]).

For this channel (with both phase noise models), the appli-
cation of the method of Section III is straightforward. Some
numerical results are shown in Figures 3 and 4. For the
example in Fig. 4, the parameters of the ARMA model (26) are
ma = 1, mb = 2, a1 = 0.4 and (b0, b1, b2) = (0.3, 0.2, 0.1).
In both Fig. 3 and Fig. 4, we simulated channel input/output
sequences of lengthn between105 and 106, and we used
N = 104 particles.

The numerical results of Fig. 3 were also checked with the
auxiliary-channel method of [7], and the results agree up to
the accuracy of the plot. The auxiliary channel is in this case
a quantized version of (25) whereΘk is quantized into 5000
bins. Note that quantization of the state space is not practical
for the ARMA noise model.

The convergence of the proposed method is illustrated
by Fig. 5, which shows the estimatesÎ(X ; Y ) of 10 different
simulation runs as a function of the sequence lengthn (for
the random-walk model).

V. CONCLUSION

Using particle methods, we have extended the basic idea
of [1] and [7] to channels with a continuous state space. A
closed-form expression of the state transition probability is not
required. The accuracy of the proposed method depends not
only on the length of the simulated sequence (as in [1], [7]),
but also on the number of particles.

It should be noted that the proposed method can be used also
to compute the auxiliary-channel bounds on the information
rate of [7, Section VI].
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Fig. 3. Information rates for the random-walk phase noise channel (25). From
top to bottom:σW = 0 andσW = 0.01 (on top of each other),σW = 0.1,
σW = 0.5, andσW = 1.
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Fig. 4. Information rates for the ARMA phase noise channel (26) with
ma = 1, mb = 2, a1 = 0.4, and (b0, b1, b2) = (0.3, 0.2, 0.1). From top
to bottom:σW = 0, σW = 0.01, andσW = 0.1 (all on top of each other),
σW = 0.5, andσW = 1.
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linear filtering,” Séminaire de Probabilités XXXIV; Lecture Notes in
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