
Data Compression Techniques for
Urban Traffic Data

Muhammad Tayyab Asif∗, Kanan Srinivasan∗, Justin Dauwels∗ and Patrick Jaillet†‡

∗School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798
†Laboratory for Information and Decision Systems, MIT, Cambridge, MA, 02139

‡Center for Future Urban Mobility, Singapore-MIT Alliance for Research and Technology, Singapore

Abstract—With the development of inexpensive sensors such as
GPS probes, Data Driven Intelligent Transport Systems (D2ITS)
can acquire traffic data with high spatial and temporal resolution.
The large amount of collected information can help improve
the performance of ITS applications like traffic management
and prediction. The huge volume of data, however, puts serious
strain on the resources of these systems. Traffic networks exhibit
strong spatial and temporal relationships. We propose to exploit
these relationships to find low-dimensional representations of
large urban networks for data compression. In this paper, we
study different techniques for compressing traffic data, obtained
from large urban road networks. We use Discrete Cosine
Transform (DCT) and Principal Component Analysis (PCA) for
2-way network representation and Tensor Decomposition for
3-way network representation. We apply these techniques to
find low-dimensional structures of large networks, and use these
low-dimensional structures for data compression.

I. I NTRODUCTION

Data Driven Intelligent Transport Systems (D2ITS) have
increasingly found greater role in applications such as traffic
management, sensing, route guidance, and prediction [1]–[8].
This has been made possible due to availability of large
amount of data, collected by sensors such as GPS probes and
loop detectors. D2ITS require traffic data with high spatial
and temporal resolution. Large road networks are typically
divided into thousands of road segments. Data acquisition
systems usually have temporal resolution of 5 minutes. While
the sensors provide detailed information regarding the state
of the network, the large volume of data puts strain on
resources of data management systems [9]. The huge amount
of information also tends to hinder the scalability of many data
driven applications dealing with route guidance and prediction
[10], [11]. For D2ITS dealing with large road networks, these
problems can potentially compound into serious bottlenecks
[12].

Traffic parameters such as speed, flow and travel time
usually exhibit strong spatial and temporal correlations [5].
Moreover, there exist certain temporal and spatial trends in
traffic data [9], [13]. These relationships have previouslybeen
utilized for applications such as traffic prediction [5], sensing
[4], data imputation [14] and even data compression [9],
[15]. The previous studies related to traffic data compression
have mainly focused on a few intersections [9], [13], [15].
Practical implementations require data compression algorithms
for large and diverse urban networks. In this study, we examine
whether data from a large and diverse urban network can

be compressed without losing a lot of information. To this
end, we consider a road network in Singapore from Outram
park to Changi, comprising of more than 6000 road segments.
The network consists of expressways as well as roads in the
downtown area, and around Singapore Changi Airport. We
propose to exploit the spatial and temporal relations between
traffic parameters to construct low-dimensional models for
large road networks using different subspace methods. We
then use these low-dimensional models for data compression.
Singapore Land Transportation Authority (LTA) provided data
for experimental purposes. It consists of space averaged speed
values for all the road segments for August 2011. In this study,
we do not deal with the problem of missing data imputation.
We only considered those road segments for which adequate
data was available.

We employ methods such as Discrete Cosine transform
(DCT), Principal Component Analysis (PCA) and Higher
Order Singular Value Decomposition (HO-SVD), to find
low-dimensional representations for large networks. Using
these low-dimensional representations, we perform data
compression. We compare their compression efficiency by
calculating reconstruction error for different compression
ratios.

The paper is structured as follows. In section II, we briefly
explain the data set. We propose different data compression
techniques for large networks in section III. In section IV,
we compare the performance of proposed methods. In the
end (section V), we summarize our contributions and suggest
topics for future work.

II. DATA SET

We define the road network under study, as a directed graph
G = (N,E). E = {si |i = 1, ...p} is the set of road segments
(links), where a road segment is denoted bysi . We represent
the weight of each linksi by z(si , t j), which is a time varying
function, representing the average traffic speed during the
interval (t j − t0, t j).

For data compression, we consider a large sub network from
Outram park to Changi in Singapore (see fig. 1). The network
G consists of road segments from three expressways, which are
Pan Island Expressway, East Coast Parkway and Kallang Paya
Lebar Expressway. It also includes the region around Changi
Airport and roads in the downtown area of Singapore carrying



Fig. 1: Road network in Singapore (Outram to Changi).

significant volumes of traffic. The road segments comprising
the setup have different speed limits, lanes, and capacities.

We use space averaged speed data provided by LTA from
August, 2011. For this study, we consider kilometer/hour
(km/hr) as units for traffic speed. Sampling interval for data
t0 is 5 minutes.

III. D ATA COMPRESSIONMETHODS

In this section, we propose different data compression
methods for large networks. We consider two different
formulations for methods dealing with 2-way (matrix) and
3-way (tensor) compression.

For methods dealing with matrix compression, we consider
a network profileMG ∈ Rd×p for network G. Each link
si is represented by a speed profilemi such that{mi =
[z(si , t1)z(si , t2)...z(si , td)]T}si∈E. Hence, the network profile
MG = [m1m2...mp] contains speed data forp links from time
t1 to td. We use PCA and DCT to obtain low-dimensional
representationXG, of network profileMG.

Traffic parameters tend to exhibit certain daily, repetitive
patterns [14]. To observe the effect of these correlations on
compression efficiency, we consider a 3-way structure for
network profile. For tensor compression, network profile is
defined as a 3-way tensorMG ∈ Rdt×p×w, such that speed
values{z(si , tk

j )}w
k=1, observed at same timet j , during different

days{lk}w
k=1, are stacked as entries{mi jk}w

k=1 of MG. We set
d= dt ×w, to keep the total information inMG andMG same.
We use HO-SVD to find compressed representationXG of
network profileMG.

Based on these definitions, we develop following methods
for network data compression.

A. Discrete Cosine Transform

DCT is the workhorse behind JPEG, which is the industry
standard for image compression [16], [17]. The network profile
MG, carrying information regarding networkG, can also be
considered as an image. In this case, speed valuez(sj , ti) for
link sj at time ti can be thought of as a pixel such that

{mi′ j ′ = z(sj , ti)}(d,p)(i, j)=(1,1), wherei′ = i−1 and j ′ = j−1. Using
DCT, we create transformed representationNG of MG in the
following manner:

ni′′ j ′′ =αi′′α j ′′
d−1

∑
i′=0

p−1

∑
j ′=0

mi′ j ′ cos(
(2i′+1)π i′′

2d
)cos(

(2 j ′+1)π j ′′

2p
),

(1)
where 0≤ i′′ < d , 0≤ j ′′ < p. αi′′ andα j ′′ are defined as:
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Fig. 5 shows the magnitude of frequency componentsni′′ j ′′ ,
which are stored inNG and plotted on the log scale. The
figure shows that there is a sizable portion of frequency
components, with small magnitude, which can be neglected.
As an example, we consider a small subset of frequency
componentsΨ from NG to reconstruct a low-rank network
profile XG (see Fig. 3) ofMG (see Fig. 2), using inverse
DCT. For convenience, we show plots forNT

G, MT
G and XT

G
(AT represents transpose ofA) in Fig. 5, 2 and 3 respectively.
XG provides a much smother picture of the network as
compared toMG. This implies thatXG failed to capture small
variations in speed, which are present inMG. Fig. 4 shows
HG

T , whose entrieshi j represent reconstruction error such

that {hi j =
| mi j − xi j | ×100

mi j
}i=d, j=p

i=, j=1 . hi j provides us with an

estimate of reconstruction error for each speed valuez(sj , ti).
The error distribution in Fig. 4 also reinforces the idea that
XG

T needs more frequency components to capture smaller and
relatively local variations in speed profiles.

Nonetheless,XG still preserves the main traffic trends such
as peak hours and off peak hours. The scales in Fig. 2
and 3, represent colors corresponding to the respective speed
values in the figures. The color bar in Fig. 4 represents colors
corresponding to the reconstruction percentage error.

We use the following formula to calculate Compression
Ratio (CR):

CR=
Total number o f elements(Θ)

number o f storage elements(θ )
. (4)

For DCT compression,ΘDCT = d× p and θDCT = Ψ, hence

CRDCT =
d× p

Ψ
. Another advantage offered by DCT is in

terms of computational complexity. DCT can be computed in
O(N logN) time, using Fast Fourier Transform (FFT), where
N = n×m for A ∈Rn×m [17].



Fig. 2: Speed profiles of links inMT
G. Color bar represents

colors corresponding to different speed values.

Fig. 3: Reconstructed speed profiles of links inXT
G using

DCT compression. Color bar represents colors corresponding
to different speed values.

B. Principal Component Analysis

PCA is a particular Karhunen-Loeve (KL) Transform, which
has been employed in manyD2ITS applications including
data compression [9] and missing data imputation [14]. The
previous studies involving PCA in relation to traffic data
compression have been limited to a few intersections [9].
In this study, we analyze the compression efficiency of
PCA for large and diverse networks. Similar to DCT, PCA
transformation tends to de-correlate the components of data
and concentrates energy to small number of basis vectors.
Unlike DCT, however, in case of PCA, the basis vectors
are obtained by eigenvalue decomposition of the covariance
matrix. To calculate covariance matrixΣs, we consider links
{si}p

i=1 as variables with observations taken during different
time intervals. Speed profilemi contains speed values observed
on the linksi during the time interval(t1, td). Let us consider

Fig. 4: Error profilesHT
G for the links in networkG. Color

bar represents colors corresponding to the reconstruction
percentage error.

Fig. 5: Frequency Components stored inNT
G. Color bar

represents colors corresponding tolog of magnitude of
frequency componentsni′′ j ′′ .

a variant of network profileM µG = [mµ1...mµ p] obtained by
centering all the speed profiles inMG around their mean
values, such that{mµ i = mi − µsiq}p

i=1, where q ∈ Rd and
q = [11...1]T . Speed values across different links, exhibit
strong spatial correlations [5]. This results in a non-diagonal
co-variance matrixΣs for variables{si}p

i=1, calculated as

Σs =
1
d

MT
µGM µG. (5)

Eigenvalue decomposition ofΣs = Φs∆sΦs
T will yield

orthonormal vectorsΦ = [φs1φs2...φsp], such that{φsi
T φs j =

0}i 6= j , φsi
Tφsi= 1. The diagonal matrix∆s contains eigenvalues

for Σs. Using the basis vectors{φsi}p
i=1, we can obtain

an uncorrelated subspace{χi}p
i=1. The resultant transformed

network profile will be M χG = M µGΦs. In this case, the
principal components are the transformed speed profiles



{mχ i}p
i=1. The 1st principal component will be along the

direction of maximum variance (not the historic mean) in
the data and so forth. This transformation allows relatively
small number of principal components to explain most of the
variance in the data. We obtain low-dimensional representation
XµG = M χGrΦT

sr (mean centered) of the networkG, using
these small number of principal components{M χGr =
[mχ1,mχ2, ...mχr ]}r<p , such that{Φsr = [φs1,φs2, ...φsr]}r<p.

It is also interesting to observe the traffic behavior between
different time periods. For this case, let us consider each
time instance{t j}d

j=1 as a variable, with speed observations
{z(si , t j)}si∈E taken across the network.Σt is the covariance
matrix in this case such thatΣt = Φt∆tΦt

T . ∆t and∆s provide
a measure of how much variance the corresponding principal
components can explain. It may seem from Fig. 7 and 8
that Σt will provide better compression as the 1st principal
component explains around 90% of variance in the data.
However, this might be misleading. If we consider Singular
Value Decomposition (SVD) ofMG, we get:

MG = UGΛGVT
G, (6)

where columns ofUG and VG are left-singular vectors and
right-singular vectors ofMG respectively [18], [19] and:

MGMT
G = UGΛGΛT

GUT
G, (7)

MT
GMG = VGΛT

GΛGVT
G. (8)

The representations in (7) and (8) are quite similar to (5) and
∑t , baring the scaling factor and mean subtraction. Hence,
compression achieved by either using∑s or ∑t will provide
similar results [18](see Fig. 6).

Nonetheless, It can be shown that the basis vectors
{Φω}ω∈{s,t} obtained by eigenvalue decomposition of
{Σω}ω∈{s,t} provide the optimal linear transformation to rotate
space (si ∈ E) or time(ti ∈ (t1, td)) variables to uncorrelated
space [18].

For data reconstruction using PCA, both principal
componentsM χGr and basis vectorsΦsr need to be stored.
So, θPCA= d× r + p× r, ΘPCA= d× p and CR will be

CRPCA=
d× p

d× r + p× r
. (9)

C. Data Compression using Tensor Decomposition

Tensor based methods have found applications in many
fields including Chemometrics [20], telecommunications [21]
and neuroscience [22], [23]. In this section, we propose a
tensor based compression method for traffic data. Techniques
such as PCA and DCT consider a 2-way representation of
the networkG. However, observations taken at the same time
on different days may also correlate strongly [9]. To utilize
these daily patterns for compression, we consider a 3-way
network profile MG ∈ Rdt×p×w of G. We consider Higher
Order Singular Value Decomposition (HO-SVD) [24]–[26] for
data compression, using 3-way representation of the network.
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Fig. 6: Data reconstruction for a typical link, using just the
1st principal components obtained fromΣs and Σt . Principal
components corresponding to basis vectorsφs1 andφt1 provide
similar performance.
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Fig. 7: Proportion of variance inΣs explained by principal
components.

Using HO-SVD, we can decompose the network profileMG

as [24], [25]:

MG = CG×1 Y(1)×2 Y(2)×3 Y(3), (10)

where CG ∈ R
dt×p×w is called core tensor and matrix

{Y(n)}3
n=1 contains n-mode singular vectors ofMG [25].

F = A ×nB is called the n-mode product between the tensor
A ∈ RI1×I2...In...IN and the matrixB ∈ RJn×In. Entries forF
∈ RI1×I2...In−1×Jn...IN are calculated as:

fi1i2...in−1 jn...iN = ∑
in

ai1i2...in−1 jn...iNb jnin. (11)

For data compression, we estimateMG by a low-rank tensor
XG using the low rank core tensorCGr ∈ Rr1×r2×r3 and
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Fig. 8: Proportion of variance inΣt explained by principal
components.

corresponding matricesW(1) ∈ Rdt×r1, W(2) ∈ Rp×r2 and
W(3) ∈Rw×r3 containing singular vectors for their respective
modes [25].

For reconstruction, we need to storeCGr as well asW(1)

W(2) andW(3). So ΘHOSVD= dt × p×w, θHOSV D= r1× r2×
r3+dt × r1+ p× r2+w× r3 and CR will be

CRHOSV D=
dt × p×w

r1× r2× r3+dt × r1+ p× r2+w× r3
. (12)

D. Compression Efficiency

We use percent root-mean-square distortion (PRD) [23],
[27] to compare compression efficiency of proposed methods.
PRD is also often referred as Relative error [28], [29]. It
is a commonly used performance metric for low-dimensional
estimation of matrices and tensors [23], [27]–[29]. PRD can
be considered as a measure of energy loss in the reconstructed
network profileXG (XG) as compared to the original profile
MG (MG). PRD for matrices is calculated as:

PRDM (%) =
‖ MG−XG ‖F

‖ MG ‖F
×100, (13)

and for tensors it is

PRDM (%) =
‖ MG−XG ‖F

‖ MG ‖F
, (14)

where Frobenius norms for the matrixA ∈ RI1×I2 and the
tensorA ∈RI1×I2×...IN are defined as

‖ A ‖F =

(

∑
i1

∑
i2

a2
i1i2

)1/2

, (15)

‖ A ‖F =

(

∑
i1

∑
i2

...∑
iN

a2
i1i2...iN

)1/2

. (16)
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Fig. 9: Compression efficiency of different techniques.

IV. RESULTS AND DISCUSSION

In this section, we compare the compression efficiency of
the proposed methods. Fig. 9 shows PRD for the proposed
techniques for different CR. We chose CR from 2:1 up till
10:1 for performance evaluation.

DCT consistently provides highest reconstruction accuracy
for different error ratios. Even for CR of 10 : 1, DCT has PRD
of around 7%.

HO-SVR has the highest PRD for different values of CR.
For CR of 10:1 PRD for HO-SVR is 14%, which about double
the error suffered by DCT.

PCA provides comparable performance to DCT, with
PRD of 10% for CR of 10:1. The value is still quite
high, considering that PCA is supposed to be the optimal
linear transformation. However, the reason for sub-optimal
performance of PCA is due to extra overhead in data storage.
As evident in (9), for data reconstruction using PCA, we need
to store both transformed entries, as well as basis vectors.
There is no such requirement in DCT as it uses predefined
basis vectors. This greatly improves the compression efficiency
of DCT. PCA will need extrap× r memory units, to store
same number of transformed entries as DCT. Consequently,
DCT can achieve higher CR for given error tolerance, even if
basis vectors used by DCT are not optimal forMG [17]. For
HO-SVD, storage overhead cost is even higher. In this case,
apart from core tensor, we need to store singular vectors forall
n-modes. These overheads in case of both PCA and HO-SVR,
cannot be be neglected, as without these basis vectors data
reconstruction will not be possible.

Nonetheless, we can conclude that subspace methods can
be effectively employed for data compression for large and
diverse road networks. PCA and HO-SVR can provide CR
of 10 : 1 with error tolerance of around 10% and 14%
respectively. DCT can deliver the same performance with even
tighter error tolerance of around 7%.



V. CONCLUSION

Nowadays, due to advances in the sensor technology,D2ITS
systems have large volumes of data at their disposal. While,
availability of data helps to enhance the performance of these
systems, the size of data tends to hinder their scalability,
especially for large networks. In this paper, we propose
different subspace methods such as PCA, DCT and HO-SVD
to deal with the problem of data compression for large
and diverse road networks. We considered a large network
consisting of expressways as well as urban arteries carrying
significant traffic volumes. The network consisted of more
than 6000 road segments. DCT provided best compression
ratio for a given error tolerance. PCA provided comparable
compression efficiency, where as HO-SVR suffered due to
higher storage overhead.

In the future, traffic prediction and route guidance
algorithms can use these compressed states of large networks,
and obtain greater scalability. Consequently, more data
intense algorithms related to traffic prediction, estimation and
modeling can be made to run in real time by using these
compressed network states. ManyD2ITS applications can
benefit from the use of tensor based methods. In particular, for
data compression applications, their efficiency can potentially
be improved by considering other traffic parameters such as
flow and travel time along side speed in multi modal structures.
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