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Abstract—With the development of inexpensive sensors such asbe compressed without losing a lot of information. To this

GPS probes, Data Driven Intelligent Transport Systems (BITS)
can acquire traffic data with high spatial and temporal resoltion.
The large amount of collected information can help improve
the performance of ITS applications like traffic management
and prediction. The huge volume of data, however, puts serits
strain on the resources of these systems. Traffic networks bibit
strong spatial and temporal relationships. We propose to gxoit
these relationships to find low-dimensional representatios of
large urban networks for data compression. In this paper, we
study different techniques for compressing traffic data, olained
from large urban road networks. We use Discrete Cosine
Transform (DCT) and Principal Component Analysis (PCA) for
2-way network representation and Tensor Decomposition for
3-way network representation. We apply these techniques to
find low-dimensional structures of large networks, and usehese
low-dimensional structures for data compression.

I. INTRODUCTION
Data Driven Intelligent Transport Systems}DS) have

end, we consider a road network in Singapore from Outram
park to Changi, comprising of more than 6000 road segments.
The network consists of expressways as well as roads in the
downtown area, and around Singapore Changi Airport. We
propose to exploit the spatial and temporal relations betwe
traffic parameters to construct low-dimensional models for
large road networks using different subspace methods. We
then use these low-dimensional models for data compression
Singapore Land Transportation Authority (LTA) providedala
for experimental purposes. It consists of space averagestisp
values for all the road segments for August 2011. In thisystud
we do not deal with the problem of missing data imputation.
We only considered those road segments for which adequate
data was available.

We employ methods such as Discrete Cosine transform
(DCT), Principal Component Analysis (PCA) and Higher

increasingly found greater role in applications such affitra Order Singular Value Decomposition (HO-SVD), to find
management, sensing, route guidance, and prediction8l]-low-dimensional representations for large networks. Ysin
This has been made possible due to availability of largkese low-dimensional representations, we perform data
amount of data, collected by sensors such as GPS probes emtipression. We compare their compression efficiency by
loop detectors. BITS require traffic data with high spatial calculating reconstruction error for different compressi
and temporal resolution. Large road networks are typicallgtios.

divided into thousands of road segments. Data acquisitionThe paper is structured as follows. In section II, we briefly
systems usually have temporal resolution of 5 minutes. &/hiéxplain the data set. We propose different data compression
the sensors provide detailed information regarding thée staechniques for large networks in section IIl. In section 1V,
of the network, the large volume of data puts strain ofe compare the performance of proposed methods. In the
resources of data management systems [9]. The huge ama#t (section V), we summarize our contributions and suggest

of information also tends to hinder the scalability of mamayad
driven applications dealing with route guidance and présfic

[10], [11]. For DAITS dealing with large road networks, these T

topics for future work.

. DATA SET

problems can potentially compound into serious bottleseck

[12].

We define the road network under study, as a directed graph

Traffic parameters such as speed, flow and travel tiffe= (N,E). E = {s|i = 1,...p} is the set of road segments

usually exhibit strong spatial and temporal correlatiofk [ (links), where a road segment is denotedshyWe represent
Moreover, there exist certain temporal and spatial tremds the weight of each linls by z(s,t;), which is a time varying
traffic data [9], [13]. These relationships have previoustgn function, representing the average traffic speed during the
utilized for applications such as traffic prediction [S]nsing interval (tj —to,tj).

[4], data imputation [14] and even data compression [9], For data compression, we consider a large sub network from
[15]. The previous studies related to traffic data compogssiOutram park to Changi in Singapore (see fig. 1). The network
have mainly focused on a few intersections [9], [13], [15]G consists of road segments from three expressways, which are
Practical implementations require data compression lgos Pan Island Expressway, East Coast Parkway and Kallang Paya
for large and diverse urban networks. In this study, we eramiLebar Expressway. It also includes the region around Changi
whether data from a large and diverse urban network cairport and roads in the downtown area of Singapore carrying



{myj :Z(Sj,ti)}gﬁ’j?:(l‘l , Wherei’ =i—1 andj’ = j — 1. Using
DCT, we create 'tranSf> rmed representatiw of Mg in the
following manner:
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Fig. 1: Road network in Singapore (Outram to Changi). \/iﬁ =0 (3a)
aju = 5
significant volumes of traffic. The road segments comprising p j"=1..p—1 (3b)

the setup have different speed limits, lanes, and capscitie
We use space averaged speed data provided by LTA fr%' 5 shows the magnitude of frequency components,

August, 2011. For this study, we consider kilometer/hoyfhich are stored irNg and plotted on the log scale. The
(km/hr) as units for traffic speed. Sampling interval for.adatﬁgure shows that there is a sizable portion of frequency

to Is 5 minutes. components, with small magnitude, which can be neglected.
1. DATA COMPRESSIONMETHODS As an example, we consider a small subset of frequency

. . . .components¥ from Ng to reconstruct a low-rank network
In this section, we propose different data compression

methods for large networks. We consider two differe gﬁlepﬁfc(jsfe;gﬁc? vc\)/];MsGho(\?veelong.fNZ%), Itjﬂs%ngnglggse
formulations for methods dealing with 2-way (matrix) an ' ’ P ', G G

. AT represents transpose Aj in Fig. 5, 2 and 3 respectively.
3-way (tensor) compression. ; .
) . . . . X provides a much smother picture of the network as

For methods dealing with matrix compression, we considef T .

) dx ; compared tdM . This implies thafXg failed to capture small

a network profileMg € R®*P for network G. Each link e . ; . .

. . variations in speed, which are presentNhs. Fig. 4 shows
§ is represented by a speed profil such that{m; = Hg', whose entriesh;; represent reconstruction error such
[2(s,t1)Z(S,t2)...2(S,ta)]  }sce. Hence, the network profile ' © ij TeP

i —Xij | X100, —q.j= . .
Mg = [mima...mp] contains speed data farlinks from time that {hj; = M}:;’df‘:}p. hij provides us with an
peed valsgt;).

t; to tg. Wg use PCA and DCT.to obtain Iow—dimensionaéstimate of reconn;tjruction error for each s
representatmn(e, of network profll_el_\/lg. : ) .. The error distribution in Fig. 4 also reinforces the ideattha

Traffic parameters tend to exhibit certain daily, repeemtleGT needs more frequency components to capture smaller and
patterns [14]. To observe the effect of these correlatiams Pelatively local variations in speed profiles

compression efficiency, we consider a 3-way structur.e f.orNonetheIessXG still preserves the main traffic trends such
network profile. For tensor compression, network profile is

defined as a 3-way tensor/e € R&*PW, such that speed as peak hours and off peak hours. The scales in Fig. 2

values{z(s,t}‘) «_1, observed at same timig during different and 3, represent colors correspond!ng to the respectiveispe
w = g W values in the figures. The color bar in Fig. 4 represents solor
days{lx}y_,, are stacked as entrigs;jy }}"_;, of .Zc. We set

d = d; x w, to keep the total information iMg and.#g same. co\r/:/espondwr\]g t? ;[Ihe .recofnstruTtmn per;:er;tagecerror. _
We use HO-SVD to find compressed representatit of ve UCSR? {he following formula to calculate Compression
network profile.Zg. atio (CR):

Based on these definitions, we develop following methods Total number of elements(®)

ion. CR= . 4
for network data compression number of storage elementsd) (4)

A. Discrete Cosine Transform .
DCT is the workhorse behind JPEG, which is the industt]3:/or DCT co::ngressmr@DCT =dx p andépct = ¥, hence

standard for image compression [16], [17]. The network fgofiCRoct = —5—- Another advantage offered by DCT is in

Mg, carrying information regarding netwoi®, can also be terms of computational complexity. DCT can be computed in
considered as an image. In this case, speed \a#hjet;) for O(NlogN) time, using Fast Fourier Transform (FFT), where
link s; at time t; can be thought of as a pixel such thaN =nxmfor A € R™™ [17].
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Fig. 2: Speed profiles of links im/lg. Color bar represents Fig. 4: Error profileng for the links in networkG. Color
colors corresponding to different speed values. bar represents colors corresponding to the reconstruction
percentage error.
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Fig. 3: Reconstructed speed profiles of Iinks)'(@ using
DCT compression. Color bar represents colors correspgndfig. 5: Frequency Components stored M{. Color bar
to different speed values. represents colors corresponding tog of magnitude of

frequency components .

B. Principal Component Analysis ) i i
a variant of network profileM ;g = [my1...myp| obtained by

PCA s a particular Karhunen-Loeve (KL) Transform, whicltentering all the speed profiles i around their mean
has been employed in mar1'§72I.TS applifzations'including values, such thafmi = m; — usiq}” ,, whereq € RY and
data compression [9] and missing data imputation [14]. The— [11..1]T. Speed values across different links, exhibit
previous studies involving PCA in relation to traffic datatrong spatial correlations [5]. This results in a non-diag
compression have been limited to a few intersections [Yo-variance matrixzs for variables{s }” ,, calculated as
In this study, we analyze the compression efficiency of
PCA for large and diverse networks. Similar to DCT, PCA So= 1
transformation tends to de-correlate the components & dat d
and concentrates energy to small number of basis vectdEiggenvalue decomposition oEs = ®ADs" will yield
Unlike DCT, however, in case of PCA, the basis vectomsrthonormal vectorsP = (@ @o...@p], such that{qgiquj =
are obtained by eigenvalue decomposition of the covarian@g.;j, @' @ = 1. The diagonal matriAs contains eigenvalues
matrix. To calculate covariance matrk, we consider links for . Using the basis vector§e}P ;, we can obtain
{s}P, as variables with observations taken during differeran uncorrelated subspdog}” ;. The resultant transformed
time intervals. Speed profila; contains speed values observedetwork profile will be My = M c®s. In this case, the
on the links during the time intervalty,tq). Let us consider principal components are the transformed speed profiles

McM G- (5)



{myi};. The ® principal component will be along the .
direction of maximum variance (not the historic mean) i 70 — Speed Profile
the data and so forth. This transformation allows relagive ] Reconstruction using X
small number of principal components to explain most of tt 50 —_Reconstruction using =
variance in the data. We obtain low-dimensional represienta = ] t
Xue = MXGrdJlr (mean centered) of the netwoi®, using E 50_3
these small number of principal componen{ g, = S ]
[My1,My2,...Myr]}r<p , such that{ Psr = (@1, o, ... @] r<p. o ]
It is also interesting to observe the traffic behavior betwet & 40
different time periods. For this case, let us consider ea .
time instance{t,-}‘j’:l as a variable, with speed observation 304
{z(s,tj)}sce taken across the network; is the covariance ]
matrix in this case such that = & AP T. A andAs provide 20 A N | - N .

a measure of how much variance the corresponding princiy 12:05 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM
components can explain. It may seem from Fig. 7 and Time (HH:MM AM/PM)

that 3; will provide better compression as thé principal _ _ _ _ o
component explains around 90% of variance in the dafalg. 6: Data reconstruction for a typical link, using juseth
However, this might be misleading. If we consider Singula¥”™ principal components obtained froB and ;. Principal

Value Decomposition (SVD) o g, we get: components corresponding to basis vectgrsand @ provide
similar performance.

Mg = UsAGV{, (6)
where columns olUg and Vg are left-singular vectors and 0.35
right-singular vectors oM ¢ respectively [18], [19] and: 3 0.3
I
MeM& = UgAGASUG, ”n =
MEMG = VGAEAGVE. @) 025
Q
The representations in (7) and (8) are quite similar to (%) a % 0.2
>t, baring the scaling factor and mean subtraction. Henc g
compression achieved by either usifig or 3; will provide > 015
similar results [18](see Fig. 6). g
Nonetheless, It can be shown that the basis vectc9 @1
{®Pw}weisty Obtained by eigenvalue decomposition o &
{Zw}weysyy provide the optimal linear transformation to rotatt g' 0.05
space § € E) or timeg; € (t1,tq)) variables to uncorrelated &
space [18]. 0
For data reconstruction using PCA, both principe 1 2 3 4 5 6 7 8 9 10
componentsM g and basis vector®s, need to be stored. Number of Principal Components
S0,6pca=dxr+pxr, Opca=d x p and CR will be Fig. 7: Proportion of variance ifits explained by principal
dxp components.
C == 9
Reca= gxr pxr ©)

Using HO-SVD, we can decompose the network profie;

C. Data Compression using Tensor Decomposition as [24], [25]:

Tensor based methods have found applications in many Me=Cex1YV xY P 53O, (10)
fields including Chemometrics [20], telecommunication$][2  hare %s € R%*PXW s called core tensor and matrix

and neuroscience [22], [23]. In this section, we propose{q/(n)}ﬁzl contains n-mode singular vectors of/g [25].

tensor based compression method for traffic data. Techsiqug _ ; «nB is called the n-mode product between the tensor
such as PCA and DCT consider a 2-way representation of € R1xl2-In-In gand the matrix@ € R*»*n. Entries for.#

the n_etworkG. However, observations taken at the same.t?nhe R'1%l2-Ih 133N gre calculated as:

on different days may also correlate strongly [9]. To uéliz

these daily patterns for compression, we consider a 3-way fisipin 1inin = Zailiz...in,ljn...iijnin- (11)

network profile.#Zg € R**P*W of G. We consider Higher In

Order Singular Value Decomposition (HO-SVD) [24]-[26] forFor data compression, we estimai# by a low-rank tensor
data compression, using 3-way representation of the nktwof2s using the low rank core tenscts € R'1*2*'s and
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IV. RESULTS AND DISCUSSION

corresponding matrice®v) ¢ R%*"1 W ¢ RP*2 and In this section, we compare the compression efficiency of
W@ e R"*"s containing singular vectors for their respectivéhe proposed methods. Fig. 9 shows PRD for the proposed
modes [25]. techniques for different CR. We chose CR from 2:1 up till

For reconstruction, we need to storg, as well asw@  10:1 for performance evaluation.
W@ andW®). SoOnosyp= 0 X pX W, BHosvp= 1 X I X DCT consistently provides highest reconstruction acaurac
r3+d xri+pxra+wxrzand CR will be for different error ratios. Even for CR of 10: 1, DCT has PRD

th X PXW of around 7%.
CRyosvD= . (12 HO-SVR has the highest PRD for different values of CR.
I Xrexr3g+oxri+pxra+wxrs For CR of 10:1 PRD for HO-SVR is 14%, which about double

D. Compression Efficiency the error suffered by DCT.

We use percent root-mean-square distortion (PRD) [2:?} PCA provides comparable performance to DCT, with

. o RD of 10% for CR of 10:1. The value is still quite
[27] to compare compression efficiency of proposed methoﬁgh, considering that PCA is supposed to be the optimal

PRD Is also often referred as Relatlv_e error [23]’ [29.]' Iﬁnear transformation. However, the reason for sub-ogtima
is a commonly used performance metric for low-dimensional

L . erformance of PCA is due to extra overhead in data storage.
estlmat|9n of matrices and tensors [23], [2.7]_[29]' PRD c s evident in (9), for data reconstruction using PCA, we need
be considered as a measure of energy loss in the reconsltrug

e
network profileXg (2c) as compared to the original profile
Mg (4s). PRD for matrices is calculated as:

store both transformed entries, as well as basis vectors.
There is no such requirement in DCT as it uses predefined
basis vectors. This greatly improves the compression efffogi

o [ Mc—Xg || of DCT. PCA will need extrap x r memory units, to store
PRDw (%) = Mg ||F 100 (13)  same numbe_r of trgnsformed ent.ries as DCT. Consequentlly,
. DCT can achieve higher CR for given error tolerance, even if
and for tensors it is basis vectors used by DCT are not optimal kbg [17]. For
Mes— X HO-SVD, storage overhead cost is even higher. In this case,
PRD 0/ _ || G G HF .
(%) = W’ (14) apart from core tensor, we need to store singular vectoralifor

n-modes. These overheads in case of both PCA and HO-SVR,
where Frobenius norms for the matrix € R'1*'2 and the cannot be be neglected, as without these basis vectors data

tensore/ € R'1*12x-INn are defined as reconstruction will not be possible.
1/2 Nonetheless, we can conclude that subspace methods can
A |F = (zzaﬁiz) ’ (15) be effectively employed for data compression for large and
iT 2 diverse road networks. PCA and HO-SVR can provide CR
1/2 of 10 : 1 with error tolerance of around 10% and 14%
|« ||F= (Z Z Zaﬁliz._.iN) (16) respectively. DCT can deliver the same performance witimeve

2 N tighter error tolerance of around 7%.



V. CONCLUSION [9]

Nowadays, due to advances in the sensor technoliy,S
systems have large volumes of data at their disposal. Whi
availability of data helps to enhance the performance ofeh
systems, the size of data tends to hinder their scalability,
especially for large networks. In this paper, we propo
different subspace methods such as PCA, DCT and HO-S
to deal with the problem of data compression for large
and diverse road networks. We considered a large netwdtkl
consisting of expressways as well as urban arteries cagrryin
significant traffic volumes. The network consisted of more
than 6000 road segments. DCT provided best compressibfl
ratio for a given error tolerance. PCA provided comparable
compression efficiency, where as HO-SVR suffered due to
higher storage overhead. (14]

In the future, traffic prediction and route guidance
algorithms can use these compressed states of large nstwork
and obtain greater scalability. Consequently, more ddial
intense algorithms related to traffic prediction, estimatand
modeling can be made to run in real time by using these
compressed network states. MalfITS applications can 16

' : ]
benefit from the use of tensor based methods. In particalar, ]l;
data compression applications, their efficiency can pahyt [17]
be improved by considering other traffic parameters such
flow and travel time along side speed in multi modal strucurg g
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