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Multichannel EEG compression: Wavelet-based
image and volumetric coding approach
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Abstract—In this paper, lossless and near-lossless compres-
sion algorithms for multichannel electroencephalogram signals
(EEG) are presented based on image and volumetric coding.
Multichannel EEG signals have significant correlation among
spatially adjacent channels; moreover, EEG signals are also
correlated across time. Suitable representations are proposed to
utilize those correlations effectively. In particular, multichannel
EEG is represented either in the form of image (matrix) or
volumetric data (tensor), next a wavelet transform is applied
to those EEG representations. The compression algorithms are
designed following the principle of “lossy plus residual coding”,
consisting of a wavelet-based lossy coding layer followed by
arithmetic coding on the residual. Such approach guarantees a
specifiable maximum error between original and reconstructed
signals. The compression algorithms are applied to three dif-
ferent EEG datasets, each with different sampling rate and
resolution. The proposed multichannel compression algorithms
achieve attractive compression ratios compared to algorithms
that compress individual channels separately.

Index Terms—arithmetic coding, electroencephalogram (EEG),
compression, multichannel EEG, set partitioning coding

I. I NTRODUCTION

Electroencephalogram (EEG) is a recording of the electrical
activity of the human brain, usually acquired by a number
of electrodes placed on the scalp. EEG represents brain
activity, and much research has been devoted to extracting
useful information from EEG. In the past decade, there has
been tremendous growth in EEG based research activities,
e.g., automated EEG analysis for diagnosis of neurological
diseases, and brain computer interfacing (BCI) [1]. In most
applications, EEG is recorded from multiple channels (e.g.,
64, 128, or 256) and at relatively high sampling frequencies
(e.g., few hundred to few thousand Hz). Some applications
require storage and/or transmission of EEG recordings overan
extended period of time. As a result, EEG recordings may lead
to a large amount of data. To efficiently manage storage and/or
transmission of EEG signals, we need flexible and efficient
compression algorithms.

EEG compression can be classified into two major cate-
gories: lossy and lossless compression. The former discards
some components of the EEG, and therefore, compresses the
EEG substantially, whereas the latter allows perfect recon-
struction of the EEG, and as a consequence, only modestly
compresses the EEG. In clinical practice, exact reconstruction
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of EEG is more critical than compression performance. In
other applications, lossy compression may be more suit-
able. An attractive compromise between lossless and lossy
compression is “near-lossless” compression: relatively high
compression rates can be achieved with tolerable distortion,
to ensure sufficient accuracy for specific purposes.

In “near-lossless” compression, no sample in the recon-
structed signal is changed in magnitude more thanδ compared
with the original sample, whereδ is a nonnegative integer.
Let us consider a signal of lengthN represented byx =
(x(1), x(2), . . . , x(N)), and the reconstructed signal (after
compression) bỹx = (x̃(1), x̃(2), . . . , x̃(N)). Near-lossless
compression algorithms guarantee the following relationship,

||x− x̃||∞ = max
0≤i<N

|x(i)− x̃(i)| ≤ δ, (1)

where δ is the error tolerance in terms of the number of
quantization levels. The distortion measure in eq. (1) is also
known asL∞-norm. The near-lossless compression algorithms
proposed in this paper guarantee eq. (1) for a givenδ.

EEG signals are typically analyzed in two ways: 1) visual
inspection by human experts, 2) automatic analysis using sig-
nal processing algorithms. Consequently, any type of compres-
sion technique would be suitable as long as the reconstructed
EEG signals do not introduce any errors in such analysis.
Particularly, near-lossless compression techniques are of great
use, as they can limit the distortion to a user defined maximum
amount.

Many excellent compression techniques for single-channel
EEG compression have been reported so far, which can be
categorized under lossless [2]–[5], near-lossless [6, 7] and
lossy methods [8]–[13]. Prediction-based coders are very
competitive in lossless [4] and near-lossless scenarios [6, 7],
when theδ is small (typically 1 or 2). However, none of the
aforementioned predictive coding techniques supports progres-
sive transmission. Hence, in many practical scenarios where
progressive reconstruction is necessary, they are of limited
utility. It is very desirable to combine the advantages of
progressive transmission along with the guaranteed maximum
distortion in L∞ sense. However, none of those methods
provide guarantees for the maximum distortion. Moreover, all
those methods compress each EEG signal separately, whereas
one could exploit the correlation among EEG signals from
nearby channels. Indeed, EEG signals from adjacent chan-
nels are often strongly correlated (inter-channel correlation),
and each individual channel has temporal correlations (intra-
channel correlation) also.

There are few compression schemes in the literature ad-
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dressing multichannel EEG compression; they can be catego-
rized into lossless [5, 14] and lossy [15, 16] methods. All
those schemes consider inter- and intra-channel correlation
separately, and exploit them by different means. Moreover,
as the single-channel methods, they do not allow progressive
transmission nor do they provide bounds on the maximum
distortion.

In this paper, we propose compression schemes for mul-
tichannel EEG that alleviate some of those shortcomings. In
particular, our algorithms have the following properties:

• they exploit the inter- and intra-channel correlation simul-
taneously, by arranging the multichannel EEG as matrix
(image) or tensor (volume).

• they support progressive transmission.
• they guarantees a maximum amount of distortion inL∞

sense, by means of a two-stage coding procedure.

Our algorithms consist of two stages: first the multichannelis
arranged as matrix or tensor, which is then subjected to lossy
compression using wavelet-based coder; next the residual of
the lossy reconstructed data is quantized and compressed in
a lossless fashion; this second step allows us to bound the
distortion on the residual, and hence also the reconstructed
EEG data. We will illustrate this scheme for three distinct
EEG datasets, and will provide promising numerical results.

The paper is organized as follows. Section II explains
formation of matrix (image) and tensor (volume) from multi-
channel EEG. Section III describes the two-stage compression
algorithm. EEG datasets are elaborated in Section IV, and
the performance measures used to analyze the compression
algorithms are given in Section V. Results and discussion is
presented in Section VI and concluding remarks is given in
Section VII.

Fig. 1. 2D Image formation from multichannel EEG. The EEG signals from
different channels are arranged as rows of the matrixX. The EEG signal
from channeli is denoted asxi.

II. A RRANGEMENT OFMULTICHANNEL EEG IN THE

FORM OF 2D IMAGES AND 3D VOLUMES

Spatially adjacent channels of multichannel EEG are
strongly correlated, and each individual channel is strongly
correlated across time. The multichannel compression schemes
proposed so far considered the spatial and the temporal
correlation independently and applied different methods to
exploit those correlations [5, 14]–[16]. Here, we exploit both
spatial and temporal correlations simultaneously in a single
procedure. In particular, we arrange multichannel EEG in the
form of a 2D image or 3D volume, and next we apply a 2D or

Fig. 2. Formation of t/dt/s volume from multichannel EEG. The matrices
(X1, . . . ,XM ) formed from single channel EEG are stacked to form volu-
metric data. Matrix formation from single-channel EEG is shown (in thick
line) for the first slice (signalx1(·)). The signal is divided in segments of
lengthN . The first segment,x1(1) to x1(N), is arranged from left to right
as the first row, the second segment,x1(N+1) to x1(2N), is arranged from
right to left as the second row, etc.

3D wavelet transform. In the following sections, we explain
how to arrange a multichannel EEG in the form of a 2D image
and 3D volumetric data.

A. 2D Image formation from multichannel EEG

Figure 1 shows the formation of 2D image (matrix) from
multichannel EEG. The EEG signals from different channels
are arranged as rows to form a matrixX. EEG electrode
channels are scanned in a spiral fashion [14] for locating
adjacent channels. Particularly, adjacent EEG channels are
arranged as adjacent rows:

X = {xi(t)|i = 1, . . . ,M ; t = 1, . . . , L} (2)

=











x1(1) x1(2) · · · x1(L)
x2(1) x2(2) · · · x2(L)

...
...

. . .
...

xM (1) xM (2) · · · xM (L)











(M×L)

.

Adjacent EEG channels are typically substantially correlated.
Therefore, the 2D image represented by matrixX is typically
locally smooth: each entry ofX is similar compared to its im-
mediate row and column neighbors. However, the correlation
decreases as one moves farther along the rows or columns.

B. 3D volume formation from multichannel EEG

We consider two ways to extract a 3D tensor from mul-
tichannel EEG signals. The first approach is illustrated in
Fig. 2. In [17], we arranged single-channel EEG in matrix form
before compression, and this resulted in improved lossless
compression compared to conventional vector form compres-
sion. Here, we arrange single-channel EEG in matrix form, and
the matrices associated with the single-channel EEG signals
are stacked to form 3D volume (tensor), as depicted in Fig. 2.
Adjacent slices in the tensor correspond to adjacent EEG
channels; we accomplish this by scanning the electrodes in a
spiral fashion [14]. We refer to this volume as “t/dt/s”, where
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Fig. 3. Formation of matrix from multichannel EEG signals. 64-channel EEG
montage is shown on the left. At a particular time instancet, the samples from
all the channels are arranged in the form of matrix, as shown on the right. The
adjacent entries in the matrix stem mostly from spatially adjacent channels.
For example, the spatially adjacent channels (A and B) correspond to adjacent
entries in the matrix.

thex, y, andz directions reflect temporal (t), delayed temporal
(dt), and spatial (s) variations respectively. Thek-th slice of
the volumeXt/dt/s, denoted byXk, can be written as:

X
(k)
t/dt/s = {Xk|k = 1, . . . ,M} (3)

=











xk(1) xk(2) · · · xk(N)
xk(2N) xk(2N − 1) · · · xk(N + 1)

...
...

. . .
...

· · · · · xk(N
2)











(N×N)

.

We also consider an alternative and simple method to form
a tensor from multichannel EEG. A matrix is formed from
the multichannel EEG at each time instance (see Fig. 3); the
matrices formed at subsequent time instances are stacked to
form a volume, as depicted in Fig. 4. Since EEG signals from
spatially adjacent channels have significant correlation,we
form matrices with similar adjacency as the EEG montage. We
call this volumetric data as “s/s/t”, becausex−y plane reflects
the spatial correlations, and the temporal correlations can be
found along thez direction. Thek-th slice of the volume may
be written as:

X
(k)
s/s/t = {x(i,j)(k)|i = 1, . . . , N1, j = 1, . . . , N2} (4)

=











x(1,1)(k) x(1,2)(k) · · · x(1,N2)(k)
x(2,1)(k) x(2,2)(k) · · · x(2,N2)(k)

...
...

. . .
...

x(N1,1)(k) x(N1,2)(k) · · · x(N1,N2)(k)











(N1×N2)

,

wherei and j refer to the position in thex-y plane, whereas
the slice numberk refers to the time index. The dimension
of thex− y plane is limited by the number of channels. The
slices in thex− y plane may be square or rectangular.

III. T WO-STAGE NEAR-LOSSLESS CODER

Figure 5 shows a diagram of the proposed two-stage near-
lossless coder for multichannel EEG. We denote the EEG in
matrix or tensor form byI. At encoder side, in the first stage,
we compressI by means of a scalable wavelet encoder based
on successive bit-plane encoding, resulting in the compressed
dataIen; we use bi-orthogonal wavelet transform (5/3 filters)
as in our previous work [2]. The compressed dataIen is then
decoded to give lossy approximationIl of the original dataI.

Fig. 4. Formation of s/s/t volume. At any time instance, we form matrix
from the multichannel EEG, as shown in Fig. 3.N such matrices formed at
subsequent time instances are then stacked along thez-direction to form a
volume.

Next we quantize the residueε = I−Il, resulting inεq, which
in turn is compressed by residual coding, leading toεq−en. At
the decoder end, bothIen and εq−en are used to obtain the
near-lossless reconstructionInl of I. As illustrated in Fig. 5(b),
Inl is obtained by combining the lossy reconstructionIl and
the dequantized residual̂ε, i.e., Inl = Il + ε̂. Finally, Inl
is rearranged to yield the near-losslessly reconstructed EEG
signal(s). We now discuss the scheme in more detail. We can
readily confirm the following relations:

I = Il + ε, (5)

Inl = Il + ε̂. (6)

Therefore, it follows that||I − Inl||∞ = ||ε− ε̂||∞, and hence
||ε− ε̂||∞ ≤ δ is equivalent to||I − Inl||∞ ≤ δ. The residual
ε is uniformly quantized to generate quantization indicesεq:

εq =

{

⌊ ε+δ
2δ+1⌋, ε > 0

⌊ ε−δ
2δ+1⌋, ε < 0

, (7)

where ⌊·⌋ denotes the integer part of the argument. The
quantized residualεq is then losslessly encoded by residual
coding procedure. Hence,Ien is transmitted as output of
the lossy coding layer, and the losslessly coded quantization
index εq−en is sent as output of the residual coding layer.

At the decoder end, the residual bitstreamεq−en is decoded
to yield εq followed by a dequantizer, defined as follows, to
guarantee||ε− ε̂|| ≤ δ:

ε̂ = (2δ + 1)εq. (8)

By adding the lossy reconstructionIl and the dequantized
residualε̂, we obtain the final near-lossless reconstructionInl
with guarantee||I − Inl|| ≤ δ.

The formation of image/volume from multichannel EEG,
is the principal difference from the coders used for im-
age/volumetric compression [18]; the other steps are very
similar.

We used two different wavelet-based lossy encoders in the
first stage of the compression algorithm. Wavelet transforma-
tion of natural signals yield transform coefficients with close
values occurring in clusters. The algorithms used here are
based on set partitioning principle [19], where the wavelet
coefficients are grouped first into sets, which are then split
recursively to locate the significant coefficients at a particular
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Fig. 5. Block diagram of the two-stage coder for multichannel EEG.

TABLE I
EEGDATASETS USED FOR TESTING THE ALGORITHMS

Dataset No. of fs Resolution Total No. of
Name Channels (Hz) (bits) Duration Subjects

EEG-MMI 64 80 12 24min 12
BCI3-MI 118 100 16 50 s 5
BCI4-MI 64 1000 16 50 s 5

threshold. We use the following wavelet coders: (i) set parti-
tioning in embedded block (SPECK) [20, 21], and (ii) binary
set splitting ink-d trees (BISK) [22, 23]. The above algo-
rithms have the following attributes: (i) progressive quality,
(ii) progressive resolution and (iii) bitstream can be truncated
at any point below the encoded rate to give the best quality
reconstruction at that particular rate.

In the residual arithmetic coding stage, we directly code
the residual if the symbol sizeN is small (N ≤ 128).
In some cases, the probability distribution of the source is
simultaneously peaked and long tailed leading to large symbol
size (N > 128); direct arithmetic coding of such sequences
will be complex due to large symbol size [24]. To reduce
complexity, we group symbols together, and each symbol
in the residual stream is split into three: 1) sign index: the
sign of the symbol, 2) group index: the group which the
symbol belongs, and 3) symbol index: the rank of the symbol
inside the particular group. The symbol size of these separate
index streams will be smaller compared to the original symbol
stream, and hence arithmetic coding of the separate symbol
stream will be less complex and faster compared to direct
arithmetic coding [25].

IV. DATASETS

The compression algorithms are tested using three different
EEG datasets. Table I lists important details of the EEG
datasets. More details are given in the following paragraphs.

Motor Movement/Imagery Database (EEG-MMI): EEG
signals were acquired with 64-channel international 10/10
configuration. The recordings were made in healthy subjects
performing motor imagery tasks by the BCI2000 system

[26, 27]. The EEG signals were sampled at80Hz and
digitized at 12 bit resolution. For testing algorithms, 12
recordings are randomly selected from total 109 recordings.
In each recording, two one-minute EEGs are considered;
these EEGs correspond to subject in idle state with eyes open
and closed conditions.

Motor Imagery dataset-II (BCI3-MI): EEG signals were
recorded by 128-channel system, where 118 channels were
measured exactly at positions of extended international 10/20
configuration [28]. The signals were analog band-pass filtered
between 0.05 and200Hz, sampled at1000Hz with 16 bit
resolution, and then downsampled to100Hz. The recordings
were done for healthy volunteers while performing a motor
imagery task. A subset of 64 channels is selected for testing
compression algorithms.

Motor imagery dataset-I (BCI4-MI): This database consists
of 64-channel EEG signals recorded with densely distributed
electrodes in sensorimotor areas [29]. The signals were band-
pass filtered between 0.05 to200Hz and then sampled at
1000Hz and digitized at16 bit resolution. EEG signals were
recorded when the subject is performing a cued motor imagery
task.

V. PERFORMANCEMEASURES

We assess our EEG compression algorithms by three mea-
sures: compression ratio, percent root-mean-square distor-
tion (PRD), and peak signal-to-noise ratio (PSNR).

A. Compression Ratio

The compression ratio is the reduction in file size, defined
as:

CR =
Lorig

Lcomp
, (9)

whereLorig andLcomp refer to bitstream length of the original
and compressed sources respectively.
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B. Distortion Measures

The difference between the original and the reconstructed
signal is given bye = x − x̃, where x and x̃ refer to
original and reconstructed signal respectively. Distortion mea-
sures are computed from the error signale. We consider two
distortion measures: percent root-mean-square distortion and
peak signal-to-noise ratio. The former quantifies the average
distortion, whereas the latter measures the local or worst-case
distortion.

1) Percent Root-Mean-square distortion (PRD):The per-
cent root-mean-square distortion (PRD) is given by the fol-
lowing equation,

PRD(%) =

√

√

√

√

∑N
i=1[x(i)− x̃(i)]2
∑N

i=1 x(i)
2

× 100,

=

√

∑

i e(i)
2

∑

i x(i)
2
× 100. (10)

The PRD is based on the ratio of energy of the error signal to
energy of the original signal. This is a widely used distortion
measure and gives the amount of average distortion present in
the reconstructed signal.

2) Peak signal-to-noise ratio (PSNR):The maximum ab-
solute error (MAE) between the original signalx and the
reconstructed signal̃x is given by:

MAE(x, x̃) = max
0≤i<N

|x(i)− x̃(i)|. (11)

Clearly, the MAE depends on the EEG sample having largest
error. Consequently, this measure does not provide information
regarding the amount of error in the other samples, and hence
it is local in nature.

It is not meaningful to directly compare the MAE of EEG
signals of different sampling resolution, since the range of the
EEG signals differs for different datasets. Therefore, we need
to normalize MAE by the signal range leading to distortion
measure called as peak-signal-to-noise ratio, which is defined
in logarithmic scale (in dB) as follows:

PSNR(x, x̃) = 10 log10

(

2Q − 1

MAE(x, x̃)

)

∈ [0,∞]. (12)

Interestingly, two different error signalse may have the same
value of PSNR but different value of PRD, and vice versa.
The PRD quantifies the average distortion, whereas PSNR
describes the worst case distortion. To assess the average and
worst-case performance of compression algorithms, we need
to use PRD alongside with PSNR.

VI. RESULTS AND DISCUSSIONS

We apply our proposed multichannel near-lossless EEG
compression algorithm (cf. Fig. 5) to the three datasets
mentioned in Section IV. We used a block size of1024
samples from each EEG channel. For comparison, we also
compress single-channel EEGs separately. EEG from each
channel is arranged in the form of matrix of size32 × 32
before compression, as large matrix sizes led to very littleor
no improvement in compression [2]. For multichannel case, the
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Original signal

-100

0

100
Image, rate = 0.1bits/sample, PRD= 14.85%

-100

0
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Image, rate = 0.6bits/sample, PRD= 4.36%

-100

0

100
Volume−s/s/t, rate = 0.1bits/sample, PRD= 13.55%

Samples

-100

0

100

0 200 400 600 800 1000

Volume−s/s/t, rate = 0.6bits/sample, PRD= 4.98%

Fig. 6. Progressive reconstruction of EEG signals. Reconstruction for
bit-rates of0.1 bits/sample and0.6 bits/sample for Image and Volume-s/s/t
algorithm are given. Both the algorithms operate with SPECKin the lossy-
coding layer.

EEG is arranged either in the form of image or volumetric data
as discussed in Section II, before usual compression procedure
We use the open-source library QccPack [30] for implementing
the compression algorithms.

A. Lossy coding layer and selection of optimal rate

In the two-stage coding procedure, the lossy layer coding
is halted at an optimal rate, and the residual is compressed
further by residual arithmetic coding after quantization.The
optimal rate is the point where the encoding residual of the
source becomes i.i.d., and hence lacks the structure that a lossy
encoder can take advantage of; hence it is efficient in switching
to entropy coder after the optimal rate [2, 18].

The optimal rate is determined empirically. Progressive
reconstructions of one channel EEG signal is given in Fig. 6.
Most of the prominent signal variations are captured with a
bit rate of0.1 b/s, and a further increase in bit rate to0.6 b/s
captures only minute variations. We use an optimal rate of
1.5 b/s for the lossy coder (for all our algorithms) due to
its good performance in our experiments, and also for a fair
comparison between the different compression algorithms.

B. Near-lossless multichannel EEG compression

In near-lossless compression, we study the performance
by varying step sizeδ of the quantizer; for each step size,
we calculate the compression ratio and the two distortion
measures (PRD and PSNR).

In Fig. 7(a), we show how the compression ratio increases
with the quantizer step sizeδ for the EEG-MMI dataset. We
also provide the average (PRD) and worst case (PSNR) error
with compression ratio in Fig. 7(b) & (c) respectively.

Detailed numerical results for all three EEG datasets are
presented in Table II, for single and multichannel compression
algorithms, with two different lossy layer coders at three
quantization step size values.

The compression ratio for a given step sizeδ is largest for
the EEG dataset (EEG-MMI) with lowest sample frequency
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Fig. 8. Original and reconstructed signals for single-channel, Image and
Volumetric-based compression schemes; all the algorithmsoperate with a
quantizer step-sizeδ = 10. The reconstructed signals are superimposed with
the original signal in blue. Error between the original and reconstructed signal
is superimposed and shown in red for easier comparison. Onlya single channel
signal is shown here. Y-axis refers to quantization values.

fs and lowest amplitude resolution, compared to the datasets
with higher fs and resolution (BCI3-MI & BCI4-MI). The
PSNR values are higher (and hence the MAE values are lower)
for the datasets with higher amplitude resolution, particularly,
the PSNR values are higher for BCI3-MI and BCI4-MI (both
16 bit resolution) than for EEG-MMI (12 bit). Likewise, the
PRD is lower for BCI3-MI and BCI4-MI than for EEG-MMI.
For datasets with higher amplitude resolution, a given step
sizeδ corresponds to smaller error.

As an illustration, we show the original signal and re-
constructed signal in Fig. 8, for one channel EEG for
single-channel, image and volumetric based compression al-
gorithms (Table II,δ = 10, EEG-MMI). The reconstructed
signal closely resembles the original signal, and it is difficult
to adjudge the performance of the algorithms by visual inspec-
tion of reconstructed and error signals. The error measures,
however, are reported in Table II. The best performance in
terms of CR, PRD, and PSNR for each data set andδ-value
is indicated in bold face. Note that the PRD and PSNR is
comparable for each method, for a given dataset andδ value.

Clearly, multichannel EEG compression algorithms achieve

larger compression ratios (CR), for a particular value of
errorδ, compared to single-channel methods. This observation
confirms that inter-channel correlations may be exploited to
achieve better compression.

Let us now compare volumetric-based with image-based
compression algorithms. The s/s/t and t/dt/s volume approach
achieve the highest CR for the EEG-MMI and BCI3-MI
dataset respectively, both for lossless compression (δ = 0) and
near-lossless compression with different tolerance values. In-
terestingly, for the BCI4-MI dataset, the image-based scheme
performs slightly better in terms of CR compared to volumetric
schemes. That dataset has much higher sample frequency than
the other two datasets. Note that we consider a block size of
1024 samples in each channel. When the sampling rate is low
(EEG-MMI and BCI3-MI dataset), each block covers a large
time span, and the volumetric based compression schemes are
better capable of exploiting long-term correlations than image
based methods. However, if the sampling rate is high, the
samples within each block cover a short time span, and they
are strongly correlated. The image-based methods are capable
of exploiting those short-term correlations effectively,and as
a result, they perform as well as the volumetric methods (and
even slightly better for the BCI4-MI dataset). In summary,
the volumetric-based multichannel compression algorithms
achieve higher compression than image-based compression
algorithms for most EEG data sets, since they utilize the inter-
channel correlation effectively.

VII. C ONCLUSION

In this paper, we proposed novel compression algorithms
for multichannel EEG. We represent the EEG in the form of
an image (matrix) or volume (tensor). Such representations
help to exploit both the spatial and temporal correlations.We
followed a “two-stage” coding philosophy: the EEG data is
first coded at an optimal rate using a wavelet-based scheme,
and next the residuals are further encoded by an entropy
coding scheme (particularly, modified arithmetic coding).We
achieve attractive compression ratios for low error values.
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