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Abstract—In this paper, lossless and near-lossless compres-of EEG is more critical than compression performance. In
sion algorithms for multichannel electroencephalogram gjnals other applications, lossy compression may be more suit-
(EEG) are presented based on image and volumetric coding. gpje  An attractive compromise between lossless and lossy

Multichannel EEG signals have significant correlation amorgy . o | | i ion: relativeth h
spatially adjacent channels; moreover, EEG signals are ats compression is “near-lossless” compression: relativegh

correlated across time. Suitable representations are pragsed to Compression rates can be achieved with tolerable distortio
utilize those correlations effectively. In particular, multichannel  to ensure sufficient accuracy for specific purposes.

EEG is represented either in the form of image (matrix) or In “near-lossless” compression, no sample in the recon-

volumetric data (tensor), next a wavelet transform is appled structed sianal is changed in maanitude more thanmpared
to those EEG representations. The compression algorithmsra 9 9 9 P

designed following the principle of “lossy plus residual cding”, With the original Sample, whereé is a nonnegative integer.
consisting of a wavelet-based lossy coding layer followedyb Let us consider a signal of lengtV represented byr =

arithmetic coding on the residual. Such approach guaranteea (z(1),x(2),...,2(N)), and the reconstructed signal (after
specifiable maximum error between original and reconstruced compression) byi = (i#(1),%(2),...,#(N)). Near-lossless

signals. The compression algorithms are applied to three & . lqorith he followi |atii
ferent EEG datasets, each with different sampling rate and compression algorithms guarantee the following relatigns

resolution. The proposed multichannel compression algotims
achieve attractive compression ratios compared to algoffitms
that compress individual channels separately.

_— — D) — ()] <
le = Zlloo = max |2(i) —2(i)] < 6, 6y

_ _ _ where § is the error tolerance in terms of the number of
Index Terms—arithmetic coding, electroencephalogram (EEG), quantization levels. The distortion measure in eq. (1) & al
compression, multichannel EEG, set partitioning coding known asL>°-norm. The near-lossless compression algorithms

proposed in this paper guarantee eq. (1) for a given

EEG signals are typically analyzed in two ways: 1) visual
Electroencephalogram (EEG) is a recording of the eledtridaspection by human experts, 2) automatic analysis usipg si
activity of the human brain, usually acquired by a numberal processing algorithms. Consequently, any type of cespr
of electrodes placed on the scalp. EEG represents brgion technique would be suitable as long as the reconstructe
activity, and much research has been devoted to extractlPBG signals do not introduce any errors in such analysis.
useful information from EEG. In the past decade, there h@sirticularly, near-lossless compression techniquesfagecat
been tremendous growth in EEG based research activitigse, as they can limit the distortion to a user defined maximum
e.g., automated EEG analysis for diagnosis of neurologicamount.
diseases, and brain computer interfacing (BCI) [1]. In most pany excellent compression techniques for single-channel
applications, EEG is recorded from multiple channels (e.¢cEG compression have been reported so far, which can be
64, 128, or 256) and at relatively high sampling frequenciegtegorized under lossless [2]-[5], near-lossless [6, i@ a
(e.g., few hundred to few thousand Hz). Some applicatiofisssy methods [8]-[13]. Prediction-based coders are very
require storage and/or transmission of EEG recordings@vercompetitive in lossless [4] and near-lossless scenarip3][6
extended period of time. As a result, EEG recordings may legghen thes is small (typically 1 or 2). However, none of the
to a large amount of data. To efficiently manage storage and{@orementioned predictive coding techniques supportgnese
transmission of EEG signals, we need flexible and efficiegi/e transmission. Hence, in many practical scenarios evher
compression algorithms. progressive reconstruction is necessary, they are of diit
EEG compression can be classified into two major catgyjjity. It is very desirable to combine the advantages of
gories: lossy and lossless compression. The former discagglogressive transmission along with the guaranteed magimu
some components of the EEG, and therefore, compressesdfaortion in > sense. However, none of those methods
EEG substantially, whereas the latter allows perfect recopyoyide guarantees for the maximum distortion. Moreowiér, a
struction of the EEG, and as a consequence, only modegise methods compress each EEG signal separately, whereas
compresses the EEG. In clinical practice, exact reconsmnc gne could exploit the correlation among EEG signals from
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I. INTRODUCTION



dressing multichannel EEG compression; they can be catego- yﬁ
rized into lossless [5, 14] and lossy [15, 16] methods. All X
those schemes consider inter- and intra-channel cowalati
separately, and exploit them by different means. Moreover,
as the single-channel methods, they do not allow progressiv s e
transmission nor do they provide bounds on the maximum
distortion.

In this paper, we propose compression schemes for mul-
tichannel EEG that alleviate some of those shortcomings. In
particular, our algorithms have the following properties:

« they exploit the inter- and intra-channel correlation dimu
taneously, by arranging the multichannel EEG as matrix
(image) or tensor (volume). Fig. 2. Formation of t/dt/s volume from multichannel EEG .eTimatrices

. they Support progressive transmission. Xi,...,X ) formed from single channel EEG are stacked to form volu-
the arantees a maximum amount of distortiod.if metric data. Matrix formation from single-channel EEG iowh (in thick

* y gu Ximu u i ! I line) for the first slice (signali(-)). The signal is divided in segments of

sense, by means of a two-stage coding procedure.  length N. The first segmentz1 (1) to z1 (N), is arranged from left to right

Our algorithms consist of two stages: first the multicharigiel 23 (e first row, the second segmeni(N' +1) to #1 (2N), is aranged from

. ; N . right to left as the second row, etc.
arranged as matrix or tensor, which is then subjected ty loss

compression using wavelet-based coder; next the residual o

the lossy reconstructed data is quantized and compressedyavelet transform. In the following sections, we explain

a lossless fashion; this second step allows us to bound {i§y to arrange a multichannel EEG in the form of a 2D image
distortion on the residual, and hence also the reconsttuctg,q 3p volumetric data.

EEG data. We will illustrate this scheme for three distinct
EEG datasets, and will provide promising numerical results i i

The paper is organized as follows. Section Il explainfd 2D Image formation from multichannel EEG
formation of matrix (image) and tensor (volume) from multi- Figure 1 shows the formation of 2D image (matrix) from
channel EEG. Section Il describes the two-stage compmessmultichannel EEG. The EEG signals from different channels
algorithm. EEG datasets are elaborated in Section IV, aatk arranged as rows to form a matdk EEG electrode
the performance measures used to analyze the compressioannels are scanned in a spiral fashion [14] for locating
algorithms are given in Section V. Results and discussionasljacent channels. Particularly, adjacent EEG channe&s ar
presented in Section VI and concluding remarks is given arranged as adjacent rows:

A® ® e 000

Section VII.
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e e 0o 06 06 0 0 0 o Adjacent EEG channels are typically substantially cotesla
eae(1) > 23 (L) Therefore, the 2D image represented by makixs typically

_ . _ locally smooth: each entry & is similar compared to its im-
Fig. 1. 2D Image formation from multichannel EEG. The EEGnalg from - maiate row and column neighbors. However, the correlation
different channels are arranged as rows of the maXixThe EEG signal
from channeli is denoted as:,. decreases as one moves farther along the rows or columns.

B. 3D volume formation from multichannel EEG

Il. ARRANGEMENT OFMULTICHANNEL EEGIN THE We consider two ways to extract a 3D tensor from mul-
FORM OF 2D IMAGES AND 3D VOLUMES tichannel EEG signals. The first approach is illustrated in
Spatially adjacent channels of multichannel EEG afféig. 2. In [17], we arranged single-channel EEG in matrixfor
strongly correlated, and each individual channel is stipngbefore compression, and this resulted in improved lossless
correlated across time. The multichannel compressiomsele compression compared to conventional vector form compres-
proposed so far considered the spatial and the temposain. Here, we arrange single-channel EEG in matrix forrd, an
correlation independently and applied different methoals the matrices associated with the single-channel EEG signal
exploit those correlations [5, 14]-[16]. Here, we explaithh are stacked to form 3D volume (tensor), as depicted in Fig. 2.
spatial and temporal correlations simultaneously in alsingAdjacent slices in the tensor correspond to adjacent EEG
procedure. In particular, we arrange multichannel EEG & tlthannels; we accomplish this by scanning the electrodes in a
form of a 2D image or 3D volume, and next we apply a 2D apiral fashion [14]. We refer to this volume as “t/dt/s”, whe
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Fig. 3. Formation of matrix from multichannel EEG signalé-¢hannel EEG
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montage is shown on the left. At a particular time instahdbe samples from Ty (D Ty (D)
all the channels are arranged in the form of matrix, as shawth@ right. The  Fig. 4. Formation of s/s/t volume. At any time instance, warfamatrix
adjacent entries in the matrix stem mostly from spatialljaeeht channels. from the multichannel EEG, as shown in Fig. 8. such matrices formed at
For example, the spatially adjacent channels (A and B) spmed to adjacent subsequent time instances are then stacked along-thieection to form a
entries in the matrix. volume.

thez, y, andz directions reflect temporal (t), delayed tempora{jext we quantize the residue= I — I;, resulting ine,,, which
(dt), and spatial (s) variations respectively. Th¢h slice of in turn is compressed by residual coding, leading,to,,,. At

the volumeXyqys, denoted byXy, can be written as: the decoder end, both,, ande, ., are used to obtain the
Xt(kd)t —(Xulk=1,..., M)} 3) near—lossle_ss reconstrucFim of I. As illustrated in Fig. 5(b),
/dt/s I,,; is obtained by combining the lossy reconstructiprand
(1) x5 (2) o xgp(N) the dequantized residual i.e., I, = I, + £. Finally, I,
|z @N) @p(2N = 1) - (N £ 1) is rearranged to yield the near-losslessly reconstructe@ E
o : : ' : " signal(s). We now discuss the scheme in more detail. We can
2 readily confirm the following relations:
2k (N7) (NxN) y g

We also consider an alternative and simple method to form I = IL+e, ()
a tensor from multichannel EEG. A matrix is formed from Iy, = Li+& (6)
the r_nultichannel EEG at each time in_stance (see Fig. 3); t ﬁerefore, it follows that|T — || = ||z — £||oc, and hence
matrices formed at su_bseqL_Jent_ time |r_lstances are stacke Eto_ £l < & is equivalent o7 — Iu||e < 4. The residual
form. a volume, as depicted in Fig. 4'. S'.n.ce EEG S|gnqls frog is uniformly quantized to generate quantization indiegs
spatially adjacent channels have significant correlativa,
form matrices with similar adjacency as the EEG montage. We B L%J, e>0
call this volumetric data as “s/s/t”, because y plane reflects fa = { L;(S;flj, e<0’
the spatial correlations, and the temporal correlatioms lma
found along the: direction. Thek-th slice of the volume may
be written as:

()

where |-| denotes the integer part of the argument. The
quantized residuad, is then losslessly encoded by residual
coding procedure. Hencel, is transmitted as output of

Xs(fs)/t ={zqnk)i=1,...,N1,j=1,...,Na} (4) the lossy coding layer, and the losslessly coded quardizati
rank)  zayk) oz k) indexeq—.r, iS sent as output of the residual coding layer.
17(2’1)(]{) x(2’2)(k) . 17(2’]\/2)(/4) At the decoder end, the residual bitstream.,, is decoded
= " " ) o , to yield ¢, followed by a dequantizer, defined as follows, to
: 5 : 3 guaranted|e — &|| < 4:
I(N1,1)(k) x(Nl,Z)(k) e ;zj(Nth)(/{) (N1x Na)

€=1(20+1)g,. (8)
wherei andj refer to the position in the-y plane, whereas . . _
the slice numbet refers to the time index. The dimensioﬁ?’y_add'f‘g the lossy reconstructioh and the dequantized
of the = — y plane is limited by the number of channels. Thée3|duale, we obtain the final near-lossless reconstrucfign

slices in ther — y plane may be square or rectangular. ~ With guarantegﬂ] - Ifﬂ” <. .
The formation of image/volume from multichannel EEG,

is the principal difference from the coders used for im-
age/volumetric compression [18]; the other steps are very
Figure 5 shows a diagram of the proposed two-stage nesimilar.

lossless coder for multichannel EEG. We denote the EEG inWe used two different wavelet-based lossy encoders in the
matrix or tensor form by. At encoder side, in the first stagefirst stage of the compression algorithm. Wavelet transéerm
we compresd by means of a scalable wavelet encoder baséidn of natural signals yield transform coefficients wittosd

on successive bit-plane encoding, resulting in the conspresvalues occurring in clusters. The algorithms used here are
datal.,; we use bi-orthogonal wavelet transform (5/3 filtershased on set partitioning principle [19], where the wavelet
as in our previous work [2]. The compressed datais then coefficients are grouped first into sets, which are then split
decoded to give lossy approximatidnof the original datal. recursively to locate the significant coefficients at a patér

IIl. TWO-STAGE NEAR-LOSSLESS CODER
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Fig. 5. Block diagram of the two-stage coder for multichdrBEG.

TABLE | .
EEGDATASETS USED FOR TESTING THE ALGORITHMS [2_63.27]- The EEG 3|gn_a|5 were sar_npled &]QHZ and
digitized at 12bit resolution. For testing algorithms, 12
Dataset ':0- Ofl fs Resb(_"“t'on Total N%-, of recordings are randomly selected from total 109 recordings
EEI\ETATW c Zznes (:g) (1”25) E;irat'_on Suljzems In each recording, two one-minute EEGs are considered,;
- ) min . L .

BCIB-MI 118 100 16 s T these EEGs corr§§pond to subject in idle state with eyes open
BCIA-MI 61 1000 16 =0s 5 and closed conditions.

Motor Imagery dataset-1l (BCI3-MI): EEG signals were
threshold. We use the following wavelet coders: (i) setipartecorded by 128-channel system, where 118 channels were
tioning in embedded block (SPECK) [20, 21], and (ii) binaryneasured exactly at positions of extended internationeQLO
set splitting ink-d trees (BISK) [22, 23]. The above algo-configuration [28]. The signals were analog band-passéiiter
rithms have the following attributes: (i) progressive diyal between 0.05 an@00Hz, sampled atl000Hz with 16 bit
(i) progressive resolution and (iii) bitstream can be trated resolution, and then downsampled 100 Hz. The recordings
at any point below the encoded rate to give the best qualitgre done for healthy volunteers while performing a motor
reconstruction at that particular rate. imagery task. A subset of 64 channels is selected for testing

In the residual arithmetic coding stage, we directly codeompression algorithms.
the residual if the symbol sizeV is small (v < 128).
In some cases, the probability distribution of the source Motor imagery dataset-1 (BCI4-MI): This database consists
simultaneously peaked and long tailed leading to large symlof 64-channel EEG signals recorded with densely distrihute
size (V > 128); direct arithmetic coding of such sequenceslectrodes in sensorimotor areas [29]. The signals werd-ban
will be complex due to large symbol size [24]. To reducpass filtered between 0.05 @00Hz and then sampled at
complexity, we group symbols together, and each symbB)00Hz and digitized atl6 bit resolution. EEG signals were
in the residual stream is split into three: 1) sign index: thecorded when the subject is performing a cued motor imagery
sign of the symbol, 2) group index: the group which théask.
symbol belongs, and 3) symbol index: the rank of the symbol
inside the particular group. The symbol size of these sépara
index streams will be smaller compared to the original syimbo V. PERFORMANCEMEASURES

stream, and hence arithmetic coding of the separate symbol ) _
stream will be less complex and faster compared to direct'Ve @ssess our EEG compression algorithms by three mea-
arithmetic coding [25]. sures: compression ratio, percent root-mean-squarerdisto

tion (PRD), and peak signal-to-noise ratio (PSNR).

IV. DATASETS

The compression algorithms are tested using three differgp
EEG datasets. Table | lists important details of the EEG
datasets. More details are given in the following paragsaph The compression ratio is the reduction in file size, defined

as:
Motor Movement/Imagery Database (EEG-MMI): EEG CR = ﬂ, 9)
signals were acquired with 64-channel international 10/10 Leomp
configuration. The recordings were made in healthy subjesthereL,,;; andL ., refer to bitstream length of the original
performing motor imagery tasks by the BCI2000 systernd compressed sources respectively.

Compression Ratio



Original signal

B. Distortion Measures 100

The difference between the original and the reconstructe_qog
signal is given bye = x — %, wherez and Z refer to Image, rate = 0.1 bits/sample, PRD= 14.85%
original and reconstructed signal respectively. Distortnea- " MMMWWWWM
sures are computed from the error signalWWe consider two  -100
distortion measures: percent root-mean-square distogtial Image, rate = 0.6 bits/sample, PRD= 4.36%

. . . . 100
peak signal-to-noise ratio. The former quantifies the ayera

distortion, whereas the latter measures the local or wearsg-  -100

i i Volume—s/s/t, rate = 0.1 bits/sample, PRD= 13.55%
distortion. _ _ 100
1) Percent Root-Mean-square distortion (PRDJhe per- 0
cent root-mean-square distortion (PRD) is given by the fol-1%0
. . Volume—s/s/t, rate = 0.6 bits/sample, PRD= 4.98%
lowing equation, 100
0
N . =12 -100
alx(e) —2(2
PRD(%) = lel[N( ) ( )] x 100, 0 200 400 600 800 1000
Zi:l x(z)Q Samples
Fig. 6. Progressive reconstruction of EEG signals. Recoctson for
> e(i)? bit-rates of0.1 bits/sample and).6 bits/sample for Image and Volume-s/s/t
= m x 100. (10) algorithm are given. Both the algorithms operate with SPEGKhe lossy-
i coding layer.

The PRD is based on the ratio of energy of the error signal to
energy of the original signal. This is a widely used distorti
measure and gives the amount of average distortion prase
the reconstructed signal.

2) Peak signal-to-noise ratio (PSNRYhe maximum ab-
solute error (MAE) between the original signal and the
reconstructed signai is given by:

nlt:'FG is arranged either in the form of image or volumetric data
as discussed in Section Il, before usual compression puoeed
We use the open-source library QccPack [30] for implementin
the compression algorithms.

A. Lossy coding layer and selection of optimal rate

MAE(z,2) = max |z(i) - Z(i)]. (11)  In the two-stage coding procedure, the lossy layer coding
B is halted at an optimal rate, and the residual is compressed

Clearly, the MAE depends on the EEG sample having largggiher by residual arithmetic coding after quantizatidine
error. Consequently, this measure does not provide infooma nima| rate is the point where the encoding residual of the

regarding the amount of error in the other samples, and heRgg rce becomes i.i.d., and hence lacks the structure tbasy |

itis local in nature. _ encoder can take advantage of; hence it is efficient in simigch

It is not meaningful to directly compare the MAE of EEG, entropy coder after the optimal rate [2, 18].
signals of different sampling resolution, since the ran#1®  The optimal rate is determined empirically. Progressive
EEG signals differs for different datasets. Therefore, wed reconstructions of one channel EEG signal is given in Fig. 6.

to normalize MAE by the signal range leading to distortiofyos; of the prominent signal variations are captured with a
measure called as peak-signal-to-noise ratio, which isi€efi it rate of0.1b/s, and a further increase in bit rates b/s

in logarithmic scale (in dB) as follows: captures only minute variations. We use an optimal rate of
R 2Q _ 1 1.5b/s for the lossy coder (for all our algorithms) due to
PSNR(z, %) = 10log;g <m> €[0,00. (12) s good performance in our experiments, and also for a fair

: : ) comparison between the different compression algorithms.
Interestingly, two different error signatsmay have the same

value of PSNR but different value of PRD, and vice Versg near-lossless multichannel EEG compression
The PRD quantifies the average distortion, whereas PSNR .
describes the worst case distortion. To assess the avemage a!" near-lossless compression, we study the performance

worst-case performance of compression algorithms, we nddfVarying step size of the quantizer; for each step size,
to use PRD alongside with PSNR. we calculate the compression ratio and the two distortion

measures (PRD and PSNR).
In Fig. 7(a), we show how the compression ratio increases
with the quantizer step sizé for the EEG-MMI dataset. We
We apply our proposed multichannel near-lossless EEfBso provide the average (PRD) and worst case (PSNR) error
compression algorithm (cf. Fig. 5) to the three datasedith compression ratio in Fig. 7(b) & (c) respectively.
mentioned in Section IV. We used a block size 1f24 Detailed numerical results for all three EEG datasets are
samples from each EEG channel. For comparison, we afs@sented in Table Il, for single and multichannel compogss
compress single-channel EEGs separately. EEG from eadforithms, with two different lossy layer coders at three
channel is arranged in the form of matrix of sid2 x 32 quantization step size values.
before compression, as large matrix sizes led to very litle The compression ratio for a given step sizés largest for
no improvementin compression [2]. For multichannel cdse, tthe EEG dataset (EEG-MMI) with lowest sample frequency

V1. RESULTS AND DISCUSSIONS
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Fig. 7. Performance of single-channel, image and volumemmpression of multichannel EEG. All the algorithms openaith SPECK in lossy coding
layer.

Original signal

100 larger compression ratios (CR), for a particular value of
0 errord, compared to single-channel methods. This observation
-100 confirms that inter-channel correlations may be exploited t
Single-channel H H
CR=4.21, PRD=13.77%, PSNR=28.93dB achieve better compression.

Let us now compare volumetric-based with image-based
compression algorithms. The s/s/t and t/dt/s volume ambroa
achieve the highest CR for the EEG-MMI and BCI3-Mi
Image N
CR=5.65, PRD=10.99%, PSNR=28.92dB dataset respectively, both for lossless compressiea () and
near-lossless compression with different tolerance &lire
terestingly, for the BCI4-MI dataset, the image-based sehe
Volume — s/s/t performs slightly better in terms of CR compared to volureetr
CR=6.63, PRD=9.21%, PSNR=28.92dB schemes. That dataset has much higher sample frequency than
the other two datasets. Note that we consider a block size of
1024 samples in each channel. When the sampling rate is low
(EEG-MMI and BCI3-MI dataset), each block covers a large
0 200 400 600 800 1000 L . .
Samples time span, and the volumetric based compression schemes are

! . . _ better capable of exploiting long-term correlations thaiage
Fig. 8. Original and reconstructed signals for single-ctehnlmage and

Volumetric-based compression schemes; all the algoritoperate with a based met_ho_ds- However, if the samplm_g rate is high, the
quantizer step-sizé = 10. The reconstructed signals are superimposed witsiamples within each block cover a short time span, and they
the original signal in blue. Error between the original aedanstructed signal gre strongly correlated. The image-based methods are Ieapab
is superimposed and shown in red for easier comparison. &silygle channel f loiti h h lati fectivednd

signal is shown here. Y-axis refers to quantization values. of exploiting those short-term correlations e ?Ct'v ya as

a result, they perform as well as the volumetric methods (and
even slightly better for the BCI4-MI dataset). In summary,
dl ¢ litud luti d to the dat the volumetric-based multichannel compression algosthm
fs and lowest amplitude resolution, compared to the atasgifieve higher compression than image-based compression

\ggk[]\lg'ghler fs anﬂ_ rﬁSOIUt'%nh(BCBt'hMlM&AECME'MD' Thle algorithms for most EEG data sets, since they utilize therint
values are higher (and hence the values are lowgth 1ol correlation effectively.

for the datasets with higher amplitude resolution, palaidy,
the PSNR values are higher for BCI3-MI and BCI4-MI (both
16 bit resolution) than for EEG-MMI 12 bit). Likewise, the In thi q | . lqorith
PRD is lower for BCI3-MI and BCI4-MI than for EEG-MMI. " "' PaPET, WE Proposed Novel compression aigoritims

. . : . : for multichannel EEG. We represent the EEG in the form of
For datasets with higher amplitude resolution, a given st

ep . . .
. an image (matrix) or volume (tensor). Such representations
size o corresponds to smaller error.
As an illustration, we show the original signal and refowed a *

help to exploit both the spatial and temporal correlatiiie.
: , . two-stage” coding philosophy: the EEG data is
constructed signal in Fig. 8, for one channel EEG fGf coded at an optimal rate using a wavelet-based scheme,
smgle—channel, image and volumetric based compression &l next the residuals are further encoded by an entropy
gorithms (Table 11,6 = 10, EEG-MMI). The reconstructed coding scheme (particularly, modified arithmetic codinge

signal closely resembles the original signal, and itisditti , pieve attractive compression ratios for low error values

to adjudge the performance of the algorithms by visual inspe
tion of reconstructed and error signals. The error measures REFERENCES
however, are reported in Table Il. The best performance iﬂ . . o

! ] E. Nidermeyer and F. L. D. Silvélectroencephalography:Basic Prin-
terms of CR, PRD, and PSNR for each data set &nwdlue ciples, Clinical applications and related fieldSth ed.  Lippincott
is indicated in bold face. Note that the PRD and PSNR is Wiliams and Wilkins, 2005.

; [2] K. Srinivasan, J. Dauwels, and M. R. Reddy, “A two-dimiensl
comparable for each method, for a given datasetdamalue. approach to lossless EEG compressidigmed. Signal Proc. Contrpl

Clearly, multichannel EEG compression algorithms achieve vol. 6, pp. 387-394, 2011.

VIl. CONCLUSION



TABLE I
LOSSLES$NEAR-LOSSLESS COMPRESSION PERFORMANCE OF
SINGLE-CHANNEL (SC)AND MULTICHANNEL (MC) COMPRESSION
ALGORITHMS. MULTICHANNEL COMPRESSION INCLUDE

IMAGE-BASED (MC-IMAGE) AND VOLUMETRIC-BASED (MC-T/DT/S &
MC-s/S/T) COMPRESSION ALGORITHMS BEST PERFORMING ALGORITHM

FOR THE PARTICULAR CASE IS INDICATED IN BOLD FACE

Lossy Layer coder SPECK BISK
Method [ & CR PRD PSNR| CR PRD PSNR
EEG-MMI
SC 173 066 42.17| 1.74 0.67 42.17
MC-Image | 0 199 057 4215| 199 057 4215
MC-t/dt/s 2.04 057 4214| 206 057 4214
MC-s/s/t 214 057 4214| 210 057 4214
SC 328 730 31.74| 331 730 3174
MC-Image 5 412 6.22 31.73| 412 6.22 31.73
MC-t/dt/s 436 6.09 31.73| 442 6.09 31.73
MC-s/slt 478 596 31.73| 460 6.02 31.73
SC 421 1377 28.93| 424 1376 28.93
MC-Image | 10 | 5.65 10.99 28.92| 5.64 11 28.92
MC-t/dt/s 6.02 10.11 28.92| 6.12 9.97 28.92
MC-s/s/t 6.63 9.21 28.92| 6.36  9.53 28.92
BCI3-MI
SC 168 0.10 51.23] 1.68 0.10 51.23
MC-lmage | 0 175 0.07 51.22| 1.75 0.07 51.22
MC-t/dt/s 193 0.07 51.18| 1.94 0.07 51.18
MC-s/slt 191 0.07 51.18| 1.86 0.07 51.18
SC 266 131 40.77| 267 1.04  40.77
MC-Image 5 284 081 40.77| 2.84 0.81  40.77
MC-t/dt/s 332 081 40.76| 3.36 0.81  40.76
MC-s/s/t 323 081 40.76| 3.14 0.81 40.76
SC 317 198 37.96| 3.18 198 37.96
MC-lmage | 10 | 340 155 37.96| 340 155 37.96
MC-t/dt/s 410 154 3795| 415 155 37.95
MC-s/slt 403 155 3795|383 155 37.95
BCI4-MI
SC 151 010 51.30( 152 0.11 51.30
MC-Image | 0 151 008 51.29| 151 0.08 51.29
MC-t/dt/s 150 0.08 51.18| 1.50 0.08 51.18
MC-s/s/t 149 0.08 51.18| 1.48 0.08 51.18
SC 227 116 40.77] 228 1.16 40.78
MC-Image 5 227 090 40.77| 227 0.90 40.77
MC-t/dt/s 224 089 40.76| 225 090 40.76
MC-s/s/t 221 090 40.76| 221 090 40.76
SC 264 222 3796| 265 223 3797
MC-Image | 10 | 2.63 1.72 37.96| 263 1.72 37.96
MC-t/dt/s 261 172 3795| 261 172 37.95
MC-s/s/t 256 172 3795| 255 172 37.95
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