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Abstract—An explicit code construction for using low-density
lattice codes (LDLC) on the constrained power AWGN channel
is given. LDLC lattices can be decoded in high dimension, so that
the code relies on the Euclidean distance between codepoints. A
sublattice of the coding lattice is used for code shaping. Lattice
codes are designed using the continuous approximation, which
allows separating the contribution of the shaping region and
coding lattice to the total transmit power. Shaping and lattice
decoding are both performed using a belief-propagation decoding
algorithm. At a rate of 3 bits per dimension, a dimension 100
code which is 3.6 dB from the sphere bound is found.

I. INTRODUCTION

In his 1959 paper, Shannon used random Euclidean-space
code constructions to prove that the AWGN channel capacity
is 1

2 log
(
1 + SNR

)
[1]. Lattices, however, are appealing for

their regular structure, and it is now known that codes based
upon lattices can also achieve the channel capacity [2] [3]. But
to use lattices on the AWGN channel with a power constraint,
a subset of the lattice points must be selected, or shaped,
to construct the lattice code. When designing codes for high
SNRs, the problem of shaping can be separated from that of
coding, that is, the design of the lattice [4].1

Channel capacity cannot be practically approached using
conventional lattices alone because the decoding complexity
grows quickly as the lattice dimension increases. However
recently, Sommer, Feder and Shalvi described LDLC lattices,
which have a sparse inverse generator matrix, making them
amenable to belief-propagation decoding with complexity
which is linear in the dimension. As such, it is computationally
tractable to decode a dimension 106 LDLC lattice, which
showed a noise threshold within 0.6 dB of the coding capacity
[5]. However, shaping aspects, required to use LDLC lattices
on AWGN channels, have not received attention.

Conway and Sloane suggested using “self-similar” lattices
for shaping, where the shaping region is a Voronoi region of
a shaping lattice, and the shaping lattice is a sublattice of the
coding lattice [11]. This scheme has an important practical
aspect: a one-to-one mapping between information bits and
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lattice code points is easy to find. However, it requires a lattice
quantizer, although it does not need to be an optimal quantizer.

In this paper, a construction of LDLC-based lattice codes
for the AWGN channel is given. A self-similar lattice is used
for shaping, and quantization is based on a belief-propagation
decoder. Whereas the belief-propagation decoder usually con-
verges when decoding on the unconstrained-power channel,
it usually does not converge when used for quantization. A
simple lattice quantizer is proposed which employs multiple
hard decisions made by the belief-propagation decoder. This
quantizer is not optimal, but its performance is good enough
to provide sufficient shaping performance. As a result, the
constructed code depends both upon the coding lattice (since
the shaping lattice is a sublattice of the coding lattice) and the
quantization algorithm.

For an LDLC lattice characterized by a parameter α, with
α ≥ 0, it is known that the coding loss decreases as alpha
increases towards one [5]. However, using the proposed quan-
tizer, it is found that the shaping loss increases for increasing
alpha. Thus, there is trade-off between shaping loss and coding
loss as α varies. For a specific dimension n = 100 LDLC
lattice, the value of α ≈ 0.64 minimized the sum of the coding
loss and shaping loss. At a rate of 3 bits/dimension, this loss
is 3.6 dB with respect to the sphere bound. At a rate of 2
bits/dimension, the loss is 3.8 dB.

In the coding literature, it is common to express the gain of
shaping and coding schemes with respect to a cube. However,
this paper instead expresses losses with respect to a sphere;
this facilitates comparisons with sphere bounds.

II. LATTICES FOR COMMUNICATIONS

A. Lattices

An n-dimensional lattice Λ is defined by an n-by-n gener-
ator matrix G. The lattice consists of the discrete set of points
x = (x1, x2, . . . , xn) for which

x = Gb, (1)

where b = (b1, . . . , bn) is from the set of all possible integer
vectors, bi ∈ Z. Lattices are a linear subspace of the n-
dimensional real space Rn. The volume of the Voronoi region
is V (Λ), found as the determinant of G:

V (Λ) = |det G|. (2)



Shortest-distance quantization finds the lattice point x̂ ∈ Λ
which is closest to a given point y, in the Euclidean distance
sense:

x̂ = arg min
x∈Λ

||y − x||2. (3)

Shortest-distance quantizers are difficult to implement. In-
stead, quantizers based upon belief-propagation decoding will
be used, described in the next section; such a quantizer is
denoted QΛ(y).

B. Unconstrained Power Communications Using Lattices

Although impractical, the unconstrained power communica-
tions channel is a useful theoretical device for considering the
coding aspects of lattices, separately for any shaping region.
An arbitrary point of a coding lattice Λc is transmitted over the
AWGN channel. Since there is no transmit power constraint,
the system is constrained by the lattice density measured by
V (Λc).

An arbitrary point of Λc is transmitted by n uses of an
AWGN channel with Gaussian variance σ2. The SNR is
defined as

SNRc =
V (Λc)2/n

σ2
. (4)

Maximum-likelihood decoding can be realized by shortest-
distance quantization, and a decoder error occurs if the quan-
tizer output is different from the transmitted lattice point.

Somewhat analogous to the Shannon limit, there exist
lattices such that the probability of decoder error becomes
arbitrary small, if and only if

SNRc ≥ 2πe, (5)

provided the lattice dimension is allowed to grow without
bound [6].

For lattices of finite dimension n, Tarokh, Vardy and Zeger
developed a universal lower bound on the probability of
decoder error by approximating Voronoi regions as spheres
[7]. This sphere bound is:

Pe ≥ e−z
(
1 +

z

1!
+

z2

2!
+ · · · zn/2−1

(n
2 − 1)!

)
, (6)

where

z =
Γ(n

2 + 1)2/n

2π
SNRc, (7)

with Γ(n
2 + 1) = (n/2)! the Gamma function. There exist

lattices for which this bound is tight, in dimensions as low as
16.

C. Constrained Power Communications using Lattice Codes

A lattice may also form the basis of a lattice code for use on
a constrained power communications channel. A lattice code
is the intersection of a shaping region B and a coding lattice
Λc. Information is encoded to one of M levels per dimension,
so that the code rate is R = log2 M bits per dimension. The
number of codepoints is Mn. Thus, V (B) = MnV (Λc), if

V (B) is the volume of the shaping region. All codepoints are
equally likely, so the average transmit power is given by:

Pav =
1

Mn

∑
x∈Λc∩B

||x||2. (8)

We distinguish between two types of decoders for lattice
codes. The lattice code decoder decodes to an element of the
lattice code Λc ∩ B. On the other hand, a lattice decoder
ignores the shaping region, and decodes to an element of
the lattice Λc. Thus it is possible that the lattice decoder
will decode to a lattice point which is not a member of the
codebook.

When lattice coding decoding is used, the Shannon limit
R ≤ 1

2 log2

(
1 + Pav

σ2

)
can be achieved [2] [3]. However,

when lattice decoding only is used, then the channel capacity
is strictly lower, and is given by, [8] [9], R ≤ 1

2 log2

(
Pav

σ2

)
.

However, at high rates, the missing 1 is not significant and
lattice decoding capacity approaches maximum-likelihood de-
coding.

Tarokh, et al. also developed a universal lower bound on the
probability of error for finite-dimensional codes under lattice
decoding (rather than lattice code decoding). This bound is
also given by (6), evaluated instead with:

z =
(n

2
+ 1

) 1
22R − 1

Pav

σ2
. (9)

This bound is also expected to be tight for lattice codes in
dimensions of interest.

Once the lattice code is determined by selection of the
coding lattice Λc and shaping region B, the average transmit
power is fixed. Because lattices points are regularly distributed,
the average power Pav of Λc ∩B maybe be approximated by
the average power of a probability distribution uniform over
B [4]. This is called the continuous approximation. Under this
assumption, the contribution of Λc and B to the average power
can be separated as:

Pav ≈ G(B)V (B)2/n, (10)

where,

G(B) =

∫
B
||x||2dx

nV (B)
2
n +1

. (11)

is the normalized second moment of B. In particular, V (B) =
MnV (Λc), so that once the codebook size Mn has been fixed,
V (B)2/n depends only on the lattice Λc. On the other hand,
the normalized second moment of the shaping region G(B)
depends only on the shape of B, but is not changed by scaling
of B.

Over all possible shaping regions, spheres minimize the
average transmit power. The normalized second moment of
an n-dimensional sphere Sn is.

G(Sn) =
Γ
(

n
2 + 1

)2/n

π(n + 2)
. (12)



Definition The shaping loss γs(B) of a shaping region B
with respect to a sphere is:

γs(B) =
G(B)
G(Sn)

=
π(n + 2)G(B)

Γ
(

n
2 + 1

)2/n
(13)

The shaping loss is greater than or equal to 1.

D. LDLC Lattice Construction

A low-density lattice code is a dimension n lattice with
a non-singular generator matrix G, for which H = G−1 is
sparse with constant row and column weight d. For a given
V = |det G| and a parameter w, the inverse generator H is
designed as follows. Let

h = [1, w, w, . . . , w, 0, . . . , 0] (14)

be a row vector with a single one, followed by d − 1 w’s
(w ≥ 0), followed by n − d zeros. The matrix H can be
written as permutations πi of h, followed by a random sign
change Si, followed by scaling by k > 0:

H = k


S1 · π1(h)
S2 · π2(h)

...
Sn · πn(h)

 (15)

such that the permutations result in H having exactly one 1
in each column, and exactly d − 1 w’s in each column. The
sign-change matrix Si is a square, diagonal matrix, where the
diagonal entries are +1 or -1 with probability one-half. Then,
k is selected to normalize the determinant to V :

k = V 1/n

∣∣∣∣∣ det


S1 · π1(h)
S2 · π2(h)

...
Sn · πn(h)


∣∣∣∣∣
−1/n

. (16)

The above is a special case of the standard LDLC con-
structions, which are characterized by a parameter α ≥ 0.
Belief-propagation decoding of LDLC lattices will converge
exponentially fast if and only if α ≤ 1 [5, Theorem 1]. For
the construction considered here, α = (d− 1)w2, or,

w =
√

α

(d− 1)
. (17)

Thus, in this paper, LDLC lattice constructions characterized
by the parameters (n, d, α, V ) are considered.

III. PROPOSED CODE AND ENCODER

A. BP Quantization of LDLC Lattices

On the unconstrained power channel, LDLC lattices are
well-suited for belief-propagation decoding. This decoding
algorithm has some similarities to the decoding of low-density
parity-check codes, but an important difference is that the
decoder messages are functions, rather than real numbers (such
as LLRs). This function may be quantized [5] or approximated
by a mixture of Gaussians [10]. On the unconstrained power
channel, the belief-propogation decoder usually converges, but
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Fig. 1. (a) Encoding Gcb before shaping. (b) Lattice code, Gcb mod Λs,
after shaping.

does not converge for quantization — that is, when the input
is an arbitrary point in Euclidean space Rn.

A suboptimal quantizer could be implemented by letting
the decoder iterate for a fixed number of iterations Imax,
generate a hard decision b̂, and producing x̂ = Gb̂ as the
quantizer output. However, the quantizer error can be improved
by searching over combinations of the less reliable integer
positions. A candidate list B is constructed, and for each
b ∈ B, the lattice point closest to y:

x̂ = min
b∈B

||y −Gb||2, (18)

is selected as the output x̂ = QΛ(y).
The candidate list B is constructed as follows. After each

iteration i, the decoder produces an estimated integer sequence
b(i). If the belief-propagation decoder does not converge, there
are some integer positions which are unstable as iterations
progress, that is, the estimated decisions change frequently
(most positions are stable, however). For each position t =
1, . . . , n, the set of integers observed over Imax iterations one
or more times is Ut (with Ut ⊂ Z). Associated with each ele-
ment in Ut, is the frequency ft,i, such that

∑|Ut|
i=1 ft,i = 1. The

maximum frequency is mt = maxi ft,i. The list m1, . . . ,mn

is sorted, and the least Q reliable positions form an index set
Q. The set of candidate vectors B consists of integers vectors
for which index positions Q = {q1, q2, . . . , qQ} are drawn
from the set Uq1 × Uq2 × · · · × UqQ

, and the values in the
remaining n−Q positions are fixed, with the same values as
in b(Imax).

In practice, it was found that the cardinality of Ut, that is
|Ut|, was usually no more than 2, that is, unstable positions
oscillated between one of two possible solutions.

B. Lattice Code

For the lattice code under consideration, the shaping region
is based upon the origin-centered Voronoi region of the shap-
ing lattice. The shaping lattice Λs is generated by Gs = MGc,
and Λs is a sublattice of the coding lattice Λc. If shortest-
distance quantization were feasible, then B would be equal
the origin-centered Voronoi region. First this idealized code is
described, and then a variation which allows for a sub-optimal
quantizer is described.



Voronoi-Cell Bounding Region [11]. If shortest-distance
quantization is possible, then the bounding region B is equal
to the Voronoi region of the shaping lattice centered on the
origin. The column vector b = (b1, . . . , bn) is the information
sequence, with bi ∈ {0, 1, · · · ,M − 1}. First, encode the
information to the lattice point Gcb and then:

x = Gcb−Gsc (19)

where c is a vector of integers such that Gsc is the element of
the shaping lattice closest to Gcb. This quantization operation
may be expressed as Gsc = QΛs(Gcb), or equivalently,

x = Gcb mod Λs, (20)

so x is inside the origin-centered Voronoi region. This is
illustrated in Fig. 1. Voronoi regions are not spheres, but may
be sufficiently sphere-like to have good shaping gain.

Best-Effort Quantizer Shaping Region. Here, a shortest-
distance quantizer is not required. Minimum-distance quanti-
zation is computationally difficult, but the belief-propogation
quantizer which does not necessarily find the element of Λc

closest to Gcb, may be used instead. Let

Gsc = QΛs(Gcb) (21)

be such a quantizer for Λs.
This encoding scheme generates a code with Mn points

which are a finite subset of Λc, and accordingly there exists a
shaping region B such that B ∩ Λc generates this code.

If the transmitted sequence is correctly received, that is,
x̂ = Gcb − Gsc, then the original data can be recovered by
first observing that:

Gcb−Gsc = Gc(b−Mc) (22)

Then, the decoder find the information sequence b by applying
the modulo M operation to each element of (b−Mc), since:

bi ≡ (bi −Mci) mod M. (23)

The suboptimal belief-propagation quantizer can be used
for code shaping; the penalty is losses due to poor shaping.
Additionally, losses may also be attributed to the non-spherical
nature of the shaping region.

C. Ineffective Shaping Approaches

Here, we consider two ineffective approaches for shaping
a coding lattice Λc. This allows us to argue that the practical
shaping scheme presented here is a suitable scheme.

First, a cubical power constraint could be enforced by
finding the vector Gb, and component-wise transmitting each
component modulo M . This guarantees that the vector lies
inside an n-dimensional cube of volume Mn. However, the
resulting codebook is not a subset of the coding lattice Λc,
and thus cannot be readily decoded.

Second, if the shaping region B is selected to be an n-
dimensional cube (or an n-dimensional sphere) of volume Mn

centered on the origin, then B∩Λc will be a codebook which
satisfies the cubical (spherical) power constraint. However,

there is no simple method to index the codebook points to an
information sequence. Further, while the size of the codebook
is approximately Mn, the exact size depends upon truncation
effects at the boundary of the cube (sphere).

D. Numerical Evaluation of G(B)
Evaluation of the normalized second moment G(B) is diffi-

cult, but can be estimated by Monte Carlo integration. Sample
points uniformly distributed over the integration region are
provided by the equally probable codepoints. Let x1, . . . ,xN

be N points uniformly distributed over B. Then,∫
B

||x||2dx ≈ V (B)
N

N∑
i=1

||xi||2. (24)

Note that V (B) = Mn, and V (Λc) = 1 is assumed. Then,

G(B) ≈
∑N

i=1 ||xi||2

NnM2
. (25)

IV. CODE DESIGN

In this section, the design LDLC-based lattice codes for
use on the power-constrained channel is described. The lattice
dimension n and code rate R = log2 M are fixed. For
convenience, the density of the coding lattice is assumed to
be 1, that is V (Λc) = 1. Since the shaping lattice Λs is a
sublattice of Λc, specifically Gs = MGc,

det Gs = Mn det Gc = Mn. (26)

The coding lattice Λc is (n, d, α, 1) and the shaping lattice
Λs is (n, d, α,Mn). Thus, the proposed lattice code has two
design parameters, d and α.

In particular, our design technique follows the principle of
separation of coding loss and shaping loss, and is illustrated
in Fig. 2. The shaping loss is found using the Monte Carlo
integration technique described earlier, and is shown on the
lower y-axis of Fig 2-(b). The coding loss is found by
comparing the transmit power of the LDLC lattice on the
unconstrained power channel with the corresponding lattice
sphere bound, (6) and (7), for a fixed probability of error, as
shown in Fig. 2-(a). This loss, as a function of α, is illustrated
in Fig. 2-(b), on the upper y-axis. From Fig. 2-(b), it can be
seen that the coding loss decreases for increasing α, but the
shaping loss increases. Thus, the code design should select the
value of α which minimizes the sum of the coding loss and
shaping loss. This sum is illustrated in Fig. 2-(c), and occurs
around α = 0.6 to 0.64.

The value α = 0.64 was selected for rates corresponding
to both M = 4 and M = 8. For the case of M = 8,
the combined loss is about 3.65 dB. The resulting lattice
code for M = 8 is then applied to the AWGN channel.
The decoder is the standard belief-propagation decoder for
the lattice Λc, resulting in a lattice decoder (rather than a
lattice code decoder) The performance is characterized by the
SNR loss of the lattice code relative to the corresponding
sphere bound (6) and (9), at a fixed error rate. In simulations,
the performance loss at error rate of 10−3 is about 3.6 dB,
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Fig. 2. Design of LDLC lattice codes with n = 100, d = 3. (a) Coding loss
for Λc, on unconstrained power channel. (b) Coding loss (from (a) at error
rate 10−3) and shaping loss (based on Monte Carlo integration; Q = 10 was
used) versus lattice parameter α. (c) Sum of coding loss and shaping loss,
that is, the gap in (b), and a minimum is observed around α = 0.6.

which is consistent with the predicted value. For the case of
M = 4 (rate 2 bits/dimension), the estimated loss is 3.5 dB
(Fig. 2-(b)), but the loss observed in the simulation is 3.8 dB.
The difference of 0.3 dB may be attributed to the continuous
approximation, which is less accurate at lower rates.

V. DISCUSSION

This paper demonstrated an explicit scheme for using LDLC
lattices to construct lattice codes for the AWGN channel. Even
though a shortest-distance quantizer for the lattice was not
feasible, it was shown that by using belief-propagation de-
coding to implement a sub-optimal quantizer, that reasonable
shaping gain and coding gain could be obtained. Lattices were
designed to trade-off shaping loss and coding loss to minimize
the overall performance loss.

When LDLC lattices are used for coding alone, performance
improves as the design parameter α approaches 1. However,
for the problem of performing shaping and coding together, we
found the best parameter to be α ≈ 0.6, which is noticeably
distinct. Note however, that this choice of α depended not only
on the lattice design, but on the performance of the quantizer
as well. If the quantizer is changed, the ideal value of α may
also change.

The shaping losses are close to the well-known shaping
loss of 1.53 dB associated with cubic shaping. However, the
coding lattice Λc cannot easily be shaped into an n-cube
while remaining easy to decode, as was discussed in Section
III-C. For similar reasons, using a spherical shaping region is
difficult. So we argue that it is reasonable to accept moderate
shaping losses in exchange for low coding losses provided by
LDLC lattices, so long as the sum of the losses is reasonable.
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