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Abstract. It has repeatedly been reported in the medical literature
that the EEG signals of Alzheimer’s disease (AD) patients are less syn-
chronous than in age-matched control patients. This phenomenon, how-
ever, does at present not allow to reliably predict AD at an early stage,
so-called mild cognitive impairment (MCI), due to the large variabil-
ity among patients. In recent years, many novel techniques to quan-
tify EEG synchrony have been developed; some of them are believed to
be more sensitive to abnormalities in EEG synchrony than traditional
measures such as the cross-correlation coefficient. In this paper, a wide
variety of synchrony measures is investigated in the context of AD de-
tection, including the cross-correlation coefficient, the mean-square and
phase coherence function, Granger causality, the recently proposed corr-
entropy coefficient and two novel extensions, phase synchrony indices de-
rived from the Hilbert transform and time-frequency maps, information-
theoretic divergence measures in time domain and time-frequency do-
main, state space based measures (in particular, non-linear interdepen-
dence measures and the S-estimator), and at last, the recently proposed
stochastic-event synchrony measures. For the data set at hand, only two
synchrony measures are able to convincingly distinguish MCI patients
from age-matched control patients (p < 0.005), i.e., Granger causality
(in particular, full-frequency directed transfer function) and stochastic
event synchrony (in particular, the fraction of non-coincident activity).
Combining those two measures with additional features may eventually
yield a reliable diagnostic tool for MCI and AD.

1 Introduction

Many studies have shown that the EEG signals of AD patients are generally less
coherent than in age-matched control patients (see [1] for an in-depth review).
It is noteworthy, however, that this effect is not always easily detectable: there
tends to be a large variability among AD patients. This is especially the case for
patients in the pre-symptomatic phase, commonly referred to as Mild Cognitive
Impairment (MCI), during which neuronal degeneration is occurring prior to the
clinical symptoms appearance. On the other hand, it is crucial to predict AD at
an early stage: medication that aims at delaying the effects of AD (and hence
intend to improve the quality of life of AD patients) are the most effective if
applied in the pre-symptomatic phase.

In recent years, a large variety of measures has been proposed to quantify
EEG synchrony (we refer to [2]–[5] for recent reviews on EEG synchrony mea-
sures); some of those measures are believed to be more sensitive to perturbations
in EEG synchrony than classical indices as for example the cross-correlation co-
efficient or the coherence function. In this paper, we systematically investigate
the state-of-the-art of measuring EEG synchrony with special focus on the detec-
tion of AD in its early stages. (A related study has been presented in [6, 7] in the
context of epilepsy.) We consider various synchrony measures, stemming from a
wide spectrum of disciplines, such as physics, information theory, statistics, and
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signal processing. Our aim is to investigate which measures are the most suitable
for detecting the effect of synchrony perturbations in MCI and AD patients; we
also wish to better understand which aspects of synchrony are captured by the
different measures, and how the measures are related to each other.

This paper is structured as follows. In Section 2 we review the synchrony
measures considered in this paper. In Section 3 those measures are applied to
EEG data, in particular, for the purpose of detecting MCI; we describe the EEG
data set, elaborate on various implementation issues, and present our results. At
the end of the paper, we briefly relate our results to earlier work, and speculate
about the neurophysiological interpretation of our results.

2 Synchrony Measures

We briefly review the various families of synchrony measures investigated in
this paper: cross-correlation coefficient and analogues in frequency and time-
frequency domain, Granger causality, phase synchrony, state space based syn-
chrony, information theoretic interdependence measures, and at last, stochastic-
event synchrony measures, which we developed in recent work.

2.1 Cross-Correlation Coefficient

The cross-correlation coefficient r is perhaps one of the most well-known mea-
sures for (linear) interdependence between two signals x and y. If x and y are
not linearly correlated, r is close to zero; on the other hand, if both signals are
identical, then r = 1 [8].

2.2 Coherence

The coherence function quantifies linear correlations in frequency domain. One
distinguishes the magnitude square coherence function c(f) and the phase co-
herence function φ(f) [8].

2.3 Corr-Entropy Coefficient

The corr-entropy coefficient rE is a recently proposed [9] non-linear extension of
the correlation coefficient r; it is close to zero if x and y are independent (which
is stronger than being uncorrelated).

2.4 Coh-Entropy and Wav-Entropy Coefficient

One can define a non-linear magnitude square coherence function, which we will
refer to as “coh-entropy” coefficient cE(f); it is an extension of the corr-entropy
coefficient to the frequency domain. The corr-entropy coefficient rE can also be
extended to the time-frequency domain, by replacing the signals x and y in the
definition of rE by their time-frequency (“wavelet”) transforms. In this paper,
we use the complex Morlet wavelet, which is known to be well-suited for EEG
signals [10]. The resulting measure is called “wav-entropy” coefficient wE(f).
(To our knowledge, both cE(f) and wE(f) are novel.)

2.5 Granger Causality

Granger causality1 refers to a family of synchrony measures that are derived
from linear stochastic models of time series; as the above linear interdependence

1 The Granger causality measures we consider here are implemented in the BioSig
library, available from http://biosig.sourceforge.net/.
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measures, they quantify to which extent different signals are linearly interde-
pendent. Whereas the above linear interdependence measures are bivariate, i.e.,
they can only be applied to pairs of signals, Granger causality measures are
multivariate, they can be applied to multiple signals simultaneously.

Suppose that we are given n signals X1(k), X2(k), . . . , Xn(k), each stemming
from a different channel. We consider the multivariate autoregressive (MVAR)
model:

X(k) =

p
∑

ℓ=1

A(j)X(k − ℓ) + E(k), (1)

where X(k)
△

= (X1(k), X2(k), . . . , Xn(k))T , p is the model order, the model
coefficients A(j) are n× n matrices, and E(k) is a zero-mean Gaussian random
vector of size n. In words: Each signal Xi(k) is assumed to linearly depend on its
own p past values and the p past values of the other signals Xj(k). The deviation
between X(k) and this linear dependence is modeled by the noise component
E(k). Model (1) can also be cast in the form:

E(k) =

p
∑

ℓ=0

Ã(j)X(k − ℓ), (2)

where Ã(0) = I (identity matrix) and Ã(j)
△

= −A(j) for j > 0. One can
transform (2) into the frequency domain (by applying the z-transform and by

substituting z
△

= e−2πi∆t, where 1/∆t is the sampling rate):

X(f) = Ã−1(f)E(f)
△

= H(f)E(f). (3)

The power spectrum matrix of the signal X(k) is determined as

S(f)
△

= X(f)X(f)∗ = H(f)VH∗(f), (4)

where V stands for the covariance matrix of E(k). The Granger causality mea-
sures are defined in terms of coefficients of the matrices A, H, and S. Due to
space limitations, only a short description of these methods is provided here,
additional information can be found in existing literature (e.g., [4]).

From these coefficients, two symmetric measures can be defined:

– Granger coherence |Kij(f)| ∈ [0, 1] describes the amount of in-phase com-
ponents in signals i and j at the frequency f .

– Partial coherence (PC) |Cij(f)| ∈ [0, 1] describes the amount of in-phase
components in signals i and j at the frequency f when the influence (i.e.,
linear dependence) of the other signals is statistically removed.

The following asymmetric (“directed”) Granger causality measures capture causal
relations:

– Directed transfer function (DTF) γ2
ij(f) quantifies the fraction of inflow

to channel i stemming from channel j.
– Full frequency directed transfer function (ffDTF)

F 2
ij(f)

△

=
|Hij(f)|2

∑

f

∑m

j=1 |Hij(f)|2
∈ [0, 1], (5)

is a variation of γ2
ij(f) with a global normalization in frequency.

– Partial directed coherence (PDC) |Pij(f)| ∈ [0, 1] represents the fraction
of outflow from channel j to channel i

– Direct directed transfer function (dDTF) χ2
ij(f)

△

= F 2
ij(f)C2

ij(f) is non-

zero if the connection between channel i and j is causal (non-zero F 2
ij(f))

and direct (non-zero C2
ij(f)).
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2.6 Phase Synchrony

Phase synchrony refers to the interdependence between the instantaneous phases
φx and φy of two signals x and y; the instantaneous phases may be strongly
synchronized even when the amplitudes of x and y are statistically independent.
The instantaneous phase φx of a signal x may be extracted as [11]:

φH
x (k)

△

= arg [x(k) + ix̃(k)] , (6)

where x̃ is the Hilbert transform of x. Alternatively, one can derive the instan-
taneous phase from the time-frequency transform X(k, f) of x:

φW
x (k, f)

△

= arg[X(k, f)]. (7)

The phase φW
x (k, f) depends on the center frequency f of the applied wavelet.

By appropriately scaling the wavelet, the instantaneous phase may be computed
in the frequency range of interest.

The phase synchrony index γ for two instantaneous phases φx and φy is
defined as [11]:

γ =
∣

∣

〈

ei(nφx−mφy)
〉∣

∣ ∈ [0, 1], (8)

where n and m are integers (usually n = 1 = m). We will use the notation
γH and γW to indicate whether the instantaneous phases are computed by the
Hilbert transform or time-frequency transform respectively. In this paper, we
will consider two additional phase synchrony indices, i.e., the evolution map
approach (EMA) and the instantaneous period approach (IPA) [12]. Due to
space constraints, we will not describe those measures here, instead we refer
the reader to [12]2; additional information about phase synchrony can be found
in [6].

2.7 State Space Based Synchrony

State space based synchrony (or “generalized synchronization”) evaluates syn-
chrony by analyzing the interdependence between the signals in a state space
reconstructed domain (see e.g., [7]). The central hypothesis behind this ap-
proach is that the signals at hand are generated by some (unknown) deter-
ministic, potentially high-dimensional, non-linear dynamical system. In order to
reconstruct such system from a signal x, one considers delay vectors X(k) =
(x(k), x(k − τ), . . . , x(k − (m − 1) τ))T , where m is the embedding dimension
and τ denotes the time lag. If τ and m are appropriately chosen, and the signals
are indeed generated by a deterministic dynamical system (to a good approxi-
mation), the delay vectors lie on a smooth manifold (“mapping”) in R

m, apart
from small stochastic fluctuations.

The S-estimator [13], here denoted by Sest, is a state space based measure
obtained by applying principal component analysis (PCA) to delay vectors3. We
also considered three measures of nonlinear interdependence, Sk, Hk, and Nk

(see [6] for details4).

2.8 Information-Theoretic Measures

Several interdependence measures have been proposed that have their roots
in information theory. Mutual Information I is perhaps the most well-known
information-theoretic interdependence measure; it quantifies the amount of in-
formation the random variable Y contains about random variable X (and vice

2 Program code is available at www.agnld.uni-potsdam.de/%7Emros/dircnew.m
3 We used the S Toolbox downloadable from http://aperest.epfl.ch/docs/software.htm
4 Software is available from http://www.vis.caltech.edu/~rodri/software.htm
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versa); it is always positive, and it vanishes when X and Y are statistically in-
dependent. Recently, a sophisticated and effective technique to compute mutual
information between time series was proposed [14]; we will use that method in
this paper5. The method of [14] computes mutual information in time-domain;
alternatively, this quantity may also be determined in time-frequency domain
(denoted by IW ), more specifically, from normalized spectrograms [15, 16] (see
also [17, 18]).

We will also consider several information-theoretic measures that quantify
the dissimilarity (or “distance”) between two random variables (or signals). In
contrast to the previously mentioned measures, those divergence measures van-
ish if the random variables (or signals) are identical ; moreover, they are not
necessarily symmetric, and therefore, they can not be considered as distance
measures in the strict sense. Divergences may be computed in time domain and
time-frequency domain; in this paper, we will only compute the divergence mea-
sures in time-frequency domain, since the computation in time domain is far
more involved. We consider the Kullback-Leibler divergence K, the Rényi diver-
gence Dα, the Jensen-Shannon divergence J , and the Jensen-Rényi divergence
Jα. Due to space constraints, we will not review those divergence measures here;
we refer the interested reader to [15, 16].

2.9 Stochastic Event Synchrony (SES)

Stochastic event synchrony, an interdependence measure we developed in ear-
lier work [19], describes the similarity between the time-frequency transforms
of two signals x and y. As a first step, the time-frequency transform of each
signal is approximated as a sum of (half-ellipsoid) basis functions, referred to as
“bumps” (see Fig. 1 and [20]). The resulting bump models, representing the most
prominent oscillatory activity, are then aligned (see Fig. 2): bumps in one time-
frequency map may not be present in the other map (“non-coincident bumps”);
other bumps are present in both maps (“coincident bumps”), but appear at
slightly different positions on the maps. The black lines in Fig. 2 connect the

Fig. 1. Bump modeling.

centers of coincident bumps, and hence, visualize the offset in position between
pairs of coincident bumps. Stochastic event synchrony consists of five parameters
that quantify the alignment of two bump models:

– ρ: fraction of non-coincident bumps,
– δt and δf : average time and frequency offset respectively between coinci-

dent bumps,
– st and sf : variance of the time and frequency offset respectively between

coincident bumps.

5 The program code (in C) is available at www.klab.caltech.edu/~kraskov/MILCA/
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The alignment of the two bump models (cf. Fig. 2 (right)) is obtained by iterative
max-product message passing on a graphical model; the five SES parameters
are determined from the resulting alignment by maximum a posteriori (MAP)
estimation [19]. The parameters ρ and st are the most relevant for the present
study, since they quantify the synchrony between bump models (and hence, the
original time-frequency maps); low ρ and st implies that the two time-frequency
maps at hand are well synchronized.
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Fig. 2. Coincident and non-coincident activity (“bumps”); (left) bump models of two
signals; (right) coincident bumps; the black lines connect the centers of coincident
bumps.

3 Detection of EEG Synchrony Abnormalities in MCI

Patients

In the following section, we describe the EEG data we analyzed. In Section 3.2
we address certain technical issues related to the synchrony measures, and in
Section 3.3, we present and discuss our results.

3.1 EEG Data

The EEG data6 analyzed here have been analyzed in previous studies concern-
ing early detection of AD [21]–[25]. They consist of rest eyes-closed EEG data
recorded from 21 sites on the scalp based on the 10–20 system. The sampling
frequency was 200 Hz, and the signals were band pass filtered between 4 and
30Hz. The subjects comprised two study groups. The first consisted of a group
of 25 patients who had complained of memory problems. These subjects were
then diagnosed as suffering from MCI and subsequently developed mild AD.
The criteria for inclusion into the MCI group were a mini mental state exam
(MMSE) score above 24, the average score in the MCI group was 26 (SD of 1.8).
The other group was a control set consisting of 56 age-matched, healthy subjects
who had no memory or other cognitive impairments. The average MMSE of this
control group was 28.5 (SD of 1.6). The ages of the two groups were 71.9 ±
10.2 and 71.7 ± 8.3, respectively. Pre-selection was conducted to ensure that the
data were of a high quality, as determined by the presence of at least 20 sec. of
artifact free data. Based on this requirement, the number of subjects in the two
groups described above was reduced to 22 MCI patients and 38 control subjects.

3.2 Methods

In order to reduce the computational complexity, we aggregated the EEG signals
into 5 zones (see Fig. 3); we computed the synchrony measures (except the S-
estimator) from the averages of each zone. For all those measures except SES,
we used the arithmetic average; in the case of SES, the bump models obtained
from the 21 electrodes were clustered into 5 zones by means of the aggregation
algorithm described in [20]. We evaluated the S-estimator between each pair of
zones by applying PCA to the state space embedded EEG signals of both zones.

We divided the EEG signals in segments of equal length L, and computed
the synchrony measures by averaging over those segments. Since spontaneous
EEG is usually highly non-stationary, and most synchrony measures are strictly
speaking only applicable to stationary signals, the length L should be sufficiently

6 We are grateful to Prof. T. Musha for providing us the EEG data.
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small; on the other hand, in order to obtain reliable measures for synchrony, the
length should be chosen sufficiently large. Consequently, it is not a priori clear
how to choose the length L, and therefore, we decided to test several values, i.e.,
L = 1s, 5s, and 20s.

In the case of Granger causality measures, one needs to specify the model
order p. Similarly, for mutual information (in time domain) and the state space
based measures, the embedding dimension m and the time lag τ needs to be
chosen; the phase synchrony indices IPA and EMA involve a time delay τ . Since
it is not obvious which parameter values amount to the best performance for
detecting AD, we have tried a range of parameter settings, i.e., p = 1, 2,. . . , 10,
and m = 1, 2,. . . , 10; the time delay was in each case set to τ = 1/30s, which is
the period of the fastest oscillations in the EEG signals at hand.

F7 F8

T3 C3
C4

T4

Oz

Fp2

O2

Fp1

O1

T5 T6

Fpz

P3 P4

Cz

Fz
F4F3

Pz

1

2 33 4

5

Fig. 3. The 21 electrodes used for EEG recording, distributed according to the 10–
20 international placement system [8]. The clustering into 5 zones is indicated by the
colors and dashed lines (1 = frontal, 2 = left temporal, 3 = central, 4 = right temporal
and 5 = occipital).

3.3 Results and Discussion

Our main results are summarized in Table 1, which shows the sensitivity of the
synchrony measures for detecting MCI. Due to space constraints, the table only
shows results for global synchrony, i.e., the synchrony measures were averaged
over all pairs of zones. (Results for local synchrony and individual frequency
bands will be presented in a longer report, including a detailed description of the
influence of various parameters such as model order and embedding dimension
on the sensitivity.) The p-values, obtained by the Mann-Whitney test, need
strictly speaking to be Bonferroni corrected; since we consider many different
measures simultaneously, it is likely that a few of those measures have small p-
values merely due to stochastic fluctuations (and not due to systematic difference
between MCI and control patients). In the most conservative Bonferroni post-
correction, the p-values need to be divided by the number of synchrony measures.

From the table, it can be seen that only a few measures evince significant
differences in EEG synchrony between MCI and control patients: full-frequency
DTF and ρ are the most sensitive (for the data set at hand), their p-values
remain significant (pcorr < 0.05) after Bonferroni correction. In other words, the
effect of MCI and AD on EEG synchrony can be detected, as was reported earlier
in the literature; we will expand on this issue in the following section.

In other to gain more insight in the relation between the different measures,
we calculated the correlation between them (see Fig. 5; red and blue indicate
strong correlation and anti-correlation respectively). From this figure, it becomes
strikingly clear that the majority of measures are strongly correlated (or anti-
correlated) with each other; in other words, the measures can easily be classified
in different families. In addition, many measures are strongly (anti-)correlated
with the classical cross-correlation coefficient r, the most basic measure; as a
result, they do not provide much additional information regarding EEG syn-
chrony. Measures that are only weakly correlated with the cross-correlation co-
efficient include the phase synchrony indices, Granger causality measures, and
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stochastic-event synchrony measures; interestingly, those three families of syn-
chrony measures are mutually uncorrelated, and as a consequence, they each
seem to capture a specific kind of interdependence.

In Fig. 4, we combine the two most sensitive synchrony measures (for the data
set at hand), i.e., full-frequency DTF and ρ. In this figure, the MCI patients are
fairly well distinguishable from the control patients. As such, the separation is
not sufficiently strong to yield reliable early prediction of AD. For this purpose,
the two features need to be combined with complementary features, for example,
derived from the slowing effect of AD on EEG, or perhaps from different modal-
ities such as PET, MRI, DTI, or biochemical indicators. On the other hand,
we remind the reader of the fact that in the data set at hand, patients did not
carry out any specific task; moreover, the recordings were short (only 20s). It is
plausible that the sensitivity of EEG synchrony could be further improved by
increasing the length of the recordings and by recording the EEG before, while,
and after patients carry out specific tasks, e.g., working memory tasks.

Measure Cross-correlation Coherence Phase Coherence Corr-entropy Wave-entropy

p-value 0.028∗ 0.060 0.72 0.27 0.012∗

References [8] [9]

Measure Granger coherence Partial Coherence PDC DTF ffDTF dDTF

p-value 0.15 0.16 0.60 0.34 0.0012∗∗ 0.030∗

References [4]

Measure Kullback-Leibler Rényi Jensen-Shannon Jensen-Rényi IW I

p-value 0.072 0.076 0.084 0.12 0.060 0.080

References [15] [14]

Measure Nk Sk Hk S-estimator

p-value 0.032∗ 0.29 0.090 0.33

References [6] [13]

Measure Hilbert Phase Wavelet Phase Evolution Map Instantaneous Period

p-value 0.15 0.082 0.072 0.020∗

References [6] [12]

Measure st ρ

p-value 0.92 0.00029∗∗

Table 1. Sensitivity of synchrony measures for early prediction of AD (p-values for
Mann-Whitney test; * and ** indicate p < 0.05 and p < 0.005 respectively).
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Fig. 4. ρ vs. ffDTF

4 Conclusions

In previous studies, brain dynamics in AD and MCI patients were mainly in-
vestigated using coherence (cf. Section 2.2) or state space based measures of
synchrony (cf. Section 2.7). During working memory tasks, coherence shows sig-
nificant effects in AD and MCI groups [26] [27]; in resting condition, however,
coherence does not show such differences in low frequencies (below 30Hz), nei-
ther between AD and controls [28] nor between MCI and controls [27]. These
results are consistent with our observations. In the gamma range, coherence
seems to decrease with AD [29]; we did not investigate this frequency range,
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Fig. 5. Correlation between the synchrony measures

however, since the EEG signals analyzed here were band pass filtered between 4
and 30Hz.

Synchronization likelihood, a state space based synchronization measure sim-
ilar to the non-linear interdependence measures Sk, Hk, and Nk (cf. Section 2.7),
is believed to be more sensitive than coherence to detect changes in AD pa-
tients [28]. Using state space based synchrony methods, significant differences
were found between AD and control in rest conditions [28] [30] [32] [33]. State
space based synchrony failed to retrieve significant differences between MCI
patient and control subjects on a global level [32] [33], but significant effects
were observed locally: fronto-parietal electrode synchronization likelihood pro-
gressively decreased through MCI and mild AD groups [30]. We report here a
lower p-value for the state space based synchrony measure Nk (p = 0.032) than
for coherence (p = 0.06); those low p-values, however, would not be statistically
significant after Bonferroni correction.

By means of Global Field Synchronization, a phase synchrony measure simi-
lar to the ones we considered in this paper, Koenig et al. [31] observed a general
decrease of synchronization in correlation with cognitive decline and AD. In our
study, we analyzed five different phase synchrony measures: Hilbert and wavelet
based phase synchrony, phase coherence, evolution map approach (EMA), and
instantaneous period approach (IPA). The p-value of the latter is low (p =
0.020), in agreement with the results of [31], but it would be non-significant
after Bonferroni correction.

The strongest observed effect is a significantly higher degree of local asyn-
chronous activity (ρ) in MCI patients, more specifically, a high number of non-
coincident, asynchronous oscillatory events (p = 0.00029). Interestingly, we did
not observe a significant effect on the timing jitter st of the coincident events (p
= 0.92). In other words, our results seem to indicate that there is significantly
more non-coincident background activity, while the coincident activity remains
well synchronized. On the one hand, this observation is in agreement with pre-
vious studies that report a general decrease of neural synchrony in MCI and AD
patients; on the other hand, it goes beyond previous results, since it yields a
more subtle description of EEG synchrony in MCI and AD patients: it suggests
that the loss of coherence is mostly due to an increase of (local) non-coincident
background activity, whereas the locked (coincident) activity remains equally
well synchronized. In future work, we will verify this conjecture by means of
other data sets.
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