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Abstract

This paper reviews recent progress in the diagnosis of Alzheimer’s disease (AD) from
electroencephalograms (EEG). Three major effects of AD on EEG have been observed:
slowing of the EEG, reduced complexity of the EEG signals, and perturbations in EEG
synchrony. In recent years, a variety of sophisticated computational approaches has
been proposed to detect those subtle perturbations in the EEG of AD patients. The
paper first describes methods that try to detect slowing of the EEG. Next the paper
deals with several measures for EEG complexity, and explains how those measures
have been used to study fluctuations in EEG complexity in AD patients. Then various
measures of EEG synchrony are considered in the context of AD diagnosis.

Also the issue of EEG pre-processing is briefly addressed. Before one can analyze
EEG, it is necessary to remove artifacts due to for example head and eye movement
or interference from electronic equipment. Pre-processing of EEG has in recent years
received much attention. In this paper, several state-of-the-art pre-processing tech-
niques are outlined, for example, based on blind source separation and other non-linear
filtering paradigms.

In addition, the paper outlines opportunities and limitations of computational
approaches for diagnosing AD based on EEG. At last, future challenges and open
problems are discussed.

Keywords: Alzheimer’s disease (AD), mild cognitive impairment (MCI), Electroen-
cephalography (EEG), synchrony, slowing, complexity, differential diagnosis, cognitive
decline, medication



List

of Abbreviations

AD: Alzheimer’s disease

AERP: auditory event-related potential (ERP)
ARMA model: autoregressive-moving average model
BESA: Brain Electric Source Analysis

BSS: blind source separation

DTF: directed transfer function

DTT: diffusion tensor imaging

ECG: electrocardiogram

EEG: electroencephalogram

EMG: electromyogram

EP: evoked potential

EOG: electro-oculogram

ERD: event-related desynchronization

ERP: event-related potential

fIDTF: full-frequency directed transfer function (DTF)
GFS: global field synchrony

LORETA': low-resolution brain electromagnetic tomography
MCT: mild cognitive impairment

MMSE: mini mental state examination

MRI: magnetic resonance imaging

PCA: principal component analysis

PDC: partial directed coherence

PLI: phase lag index

PMCT: progressive mild cognitive impairment (MCT)
REM sleep: rapid eye movement sleep

SES: stochastic event synchrony

SMC: subjective memory complaints

SMCT: stable mild cognitive impairment (MCI)
SPECT: single photon emission computed tomography
SSR: steady-state response

TMS: transcranial magnetic stimulation



1 Introduction 3

1 Introduction

Alzheimer’s disease (AD) is a neuro-degenerative disease, the most common
form of dementia, third most expensive disease and sixth leading cause of death
in the United States. It affects more than 10% of Americans over age 65, nearly
50% of people older than 85, and it is estimated that the prevalence of the dis-
ease will triple within the next 50 years [1, 2]. While no known cure exists for
Alzheimer’s disease, a number of medications are believed to delay the symp-
toms (and perhaps causes) of the disease.

The progression of the disease can be categorized in four different stages. The
first stage is known as Mild Cognitive Impairment (MCI), and corresponds to
a variety of symptoms — most commonly memory loss — which do not signifi-
cantly alter daily life. Between 6 and 25% of people affected with MCI progress
to AD every year. The next stages of Alzheimer’s disease (Mild and Moderate
AD) are characterized by increasing cognitive deficits, and decreasing indepen-
dence, culminating in the patient’s complete dependence on caregivers and a
complete deterioration of personality (Severe AD) [3].

Diagnosis of MCI and AD is important for several reasons [4, 5, 6, 7, 8]

e A positive diagnostic gives the patient and his family time to inform them-
selves about the disease, to make life and financial decisions related to the
disease, and to plan for the future needs and care of the patients.

e A negative diagnostic may ease anxiety over memory loss associated with
aging. It also allows for early treatments of reversible conditions with
similar symptoms (such as thyroidal problems, depression, and nutrition
or medication problems).

e Current symptoms-delaying medications have a given time frame during
which they are effective. Early diagnosis of AD helps ensure prescription
of these medications when they are most useful.

e Early diagnosis of AD also allows prompt treatment of psychiatric symp-
toms such as depression or psychosis, and as such reduces the personal
and societal costs of the disease.

e As research progresses, preventive therapies may be developed. Early
diagnosis raises the chance of treating the disease at a nascent stage,
before the patient suffers permanent brain damage.

e Finally, as institutionalization accounts for a large part of health care costs
incurred because of AD, by preserving patients’ independence longer and
preparing families for the needs of AD patients, timely diagnosis further
decreases the societal cost of the disease.

Medical diagnosis of Alzheimer’s disease is hard, and symptoms are often
dismissed as normal consequences of aging. Diagnosis is usually performed
through a combination of extensive testing and eliminations of other possible
causes. Psychological tests such as Mini Mental State Examinations (MMSE),
blood tests, spinal fluid, neurological examination, and increasingly, imaging
techniques are used to help diagnose the disease [9, 10, 11, 12, 13].

In the last years, several research groups have started investigating the poten-
tial of electroencephalograms (EEGs) for diagnosing AD. Since EEG recording



2 Preprocessing 4

systems are inexpensive and (potentially) mobile, EEG may potentially be used
as a tool to screen a large population for the risk of AD.

In this paper, we review and assess the progress that has been made in recent
years in diagnosing AD from EEG signals. Studies have shown that AD has (at
least) three major effects on EEG (see [14] for an in-depth review): slowing of
the EEG, enhanced complexity of the EEG signals, and perturbations in EEG
synchrony. Those effects, however, are not always easily detectable: there tends
to be large variability among AD patients. As a result, none of those phenomena
allow at present to reliably diagnose AD at an early stage. Many recent studies
have investigated how to improve the sensitivity of EEG for detecting AD. In
this paper we review and assess those studies.

The paper is structured as follows. We start by reviewing various methods
to preprocess EEG signals (Section 2): before EEG signals can be analyzed,
they need to be appropriately filtered and artifacts need to be removed. Next we
review several state-of-the-art signal processing methods to detect perturbations
in EEG signals caused by AD; we will treat the three major effects of AD on EEG
separately: slowing of the EEG (Section 3), enhanced complexity of the EEG
signals (Section 4), and perturbations in EEG synchrony (Section 5). We assess
the potential and limitation of such computational approaches (Section 6), and
address remaining challenges and open problems (Section 7). At the end of the
paper, we offer some concluding remarks (Section 8).

This paper is one of the few studies in recent years to provide an overview
and critical assessment of various state-of-the-art signal processing methods for
diagnosing AD from EEG signals (see [15, 16, 17] for related earlier reviews).

2 Preprocessing

Before EEG signals can be analyzed, they need to be appropriately processed,
for example, to remove artifacts; this section is devoted to such preprocessing
methods. We first explain why preprocessing is necessary, and then we outline
the state-of-the-art in EEG preprocessing. At the end of this section, we briefly
address EEG preprocessing in the context of diagnosing AD.

2.1 Need for Preprocessing

EEG recordings typically not only contain electrical signals from the brain, but
also several unwanted signals [18, 19, 20, 21]:

e interference from electronic equipment, as for example the 50 or 60Hz

power supply signals,

e clectromyographic (EMG) signals evoked by muscular activity,

e ocular artifacts, due to eye movement or blinking.
Those unwanted components may bias the analysis of the EEG, and may lead
to wrong conclusions [21, 22]. Consequently, artifact rejection is an important
issue in biomedical [23] and clinical [24] applications of EEG.
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It is often believed that EMG activity is confined to high frequencies (above
20 or 40Hz); therefore, one often applies a low-pass filter to the EEG, with
the aim of removing EMG and other artifacts. Several studies have shown,
however, that the frequency range of EMG is in fact much wider than commonly
believed [25, 26, 27, 24]:

e EMG from skeletal muscles, recorded from the skin, has a frequency dis-
tribution from 0 to more than 200Hz; this EMG signal contains several
distinct components: a delta range component (05 Hz), probably associ-
ated with common drive to the motor units; an alpha component (about
10 Hz), believed to be associated with motor unit firing and physiological
tremor; a beta component (20-30 Hz), referred to as EMG beta rhythm;
a gamma component (35-60 Hz), commonly referred to as Piper rhythm.

e EMG from facial muscles also shows a broad frequency distribution, with
two peaks corresponding to the EMG beta and Piper rhythms.

Interestingly, muscle artifacts during resting EEG conditions seem to be mostly
generated by temporalis and frontalis muscles [28, 29]. Therefore, EMG ac-
tivity can usually be recognized by its peripheral location on EEG scalp to-
pographs [24].

A related issue is “blurring” or “volume conduction”, i.e., the spreading of
cortical sources as their voltage propagates to the scalp. This spreading can
result in spurious coupling between electrodes, due to a common source in-
fluencing two electrodes and producing apparently synchronous activity. As a
consequence, it is difficult to relate perturbations in EEG synchrony to physi-
ological phenomena. One option is to try to infer the electrical activity inside
the brain; in particular, one commonly assumes that the EEG is generated by
a limited number of sources (“source model”), and one tries to localized those
sources. Various inverse methods have been developed for this purpose. How-
ever, all of those methods have their own drawbacks, and volume conduction
remains hard to handle. We will return to this issue in Section 5.3.

2.2 Preprocessing Methods

We describe here various preprocessing techniques to remove unwanted signals
from EEG.

2.2.1 Filtering

The spurious 50 or 60Hz power supply signals are typically removed by a band-
stop filter, which is a filter that passes most frequencies unaltered, but attenuates
those in a specific range (e.g., at 50 or 60Hz) to very low levels. However,
other artifacts such as EMG signals and ocular artifacts typically affect a large
frequency band and their spectrum may vary over time. Therefore, band-stop
filters are usually not effective to eliminate such artifacts.

One is often interested in specific frequency bands in the EEG, such as
4-8Hz (theta), 8-10Hz (alpha 1), 10-12Hz (alpha 2), 12-30Hz (beta), and 30—
100Hz (gamma) [30]. Such frequency bands are usually extracted by a bandpass
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filter, which is a filter that passes frequencies within a certain range and rejects
(attenuates) frequencies outside that range.

2.2.2 Artifact Suppression

To reduce artifacts, one may simply ask the subjects to suppress eye move-
ment or blinking and to keep still. However, this approach is problematic: in
clinical studies, subjects may have difficulties to follow those guidelines. More-
over, suppressing eye movement or blinking may significantly distort brain ac-
tivity [18, 19], since it requires attention from the subject.

2.2.3 Artifact Rejection

Alternatively, one often rejects corrupted epochs or trials, detected by visual
inspection. Also this approach is problematic: first of all, this method results in
loss of data, and therefore, it may not be applicable if the number of trials is low.
Moreover, visual inspection is subjective and time consuming [20]. To overcome
those issues, an automatic objective criterion is sometimes used; in particular,
one often detects artifacts by means of a threshold: signals above a certain
threshold are considered to be spurious. Unfortunately, such simple automatic
criterion was shown not to be capable of detecting muscle artifacts [21].

Instead of rejecting epochs contaminated by artifacts, one may try to remove
artifacts. Various approaches to artifact removal have been proposed:

e adaptive filtering [31, 32, 33], in particular Kalman filtering [34, 35],

e regression [36, 37, 38, 39],

e blind source separation (BSS; see, e.g., [40, 41, 42]).
In the following, we describe those three approaches to artifact removal.

2.2.4 Adaptive Filtering

Artifacts may be detected in frequency domain. However, the spectrum of ar-
tifacts is a priori unknown. Therefore, applying a fixed filter to EEG data
would not be effective to remove artifacts; a fixed filter is highly effective to
remove power supply signals, as we mentioned earlier, since those signals ap-
pear at a particular frequency (50Hz or 60Hz). To remove artifacts, on the
other hand, the filter needs to adapt to the spectrum of the recorded EEG: it
should attenuate the recorded EEG in frequency ranges that mostly contain ar-
tifacts [31, 32, 33]. For instance, instead of using an online notch filter centered
at a fixed frequency, one may apply an offline notch filter whose characteristics
are determined by the spectrum of the recorded EEG. One may additionally
use EOG (electro-oculographic) or EMG measurements to design the adaptive
filter, since those measurements are usually strongly correlated with artifacts.
Adaptive filters can be designed in various ways; one approach is based on the
assumption that EEG signals can be well described by a linear model [34, 35],
in particular, an autoregressive-moving average model (ARMA); such model is
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fitted to the recorded EEG (using Kalman filtering and standard parameter es-
timation methods), and significant deviations from the model are considered as
artifacts and are therefore eliminated.

Adaptive filters have two obvious drawbacks: they not only attenuate arti-
facts, but also affect the “wanted” signal, i.e., components of the recorded EEG
that stem from brain activity; moreover, the EEG signals are assumed to be
well-described by a linear system, which may not always be the case.

2.2.5 Regression

As we pointed out earlier, artifacts are often correlated with EOG or EMG
channels. Regression may be used to quantify this correlation [36, 37, 38, 39],
and to infer artifacts from EOG or EMG channels. The estimated artifacts are
subtracted from the EEG signals. This approach has the following problem:
EEG activity may propagate to EOG or EMG sensors (known as “bidirectional
contamination”), and part of the EEG signal may therefore be removed by the
subtraction procedure.

2.2.6 Blind Source Separation

An alternative approach, known as “blind source separation” (BSS; see, e.g.,
[40]), starts from the assumption that EEG signals can be described, to a good
approximation, by a finite set of sources, located within the brain; each of those
sources generate certain components of the EEG. Besides EEG, one sometimes
also incorporates EOG and EMG signals into the analysis.

In the context of artifact rejection, one makes the additional assumption that
artifacts are generated by a subset of the extracted sources; one removes those
sources, and next reconstructs the EEG from the remaining “clean” sources.
Not surprisingly, the key challenge is to determine what sources need to be
removed.

BSS appears to be more suitable for artifact rejection than adaptive filtering
and regression (see, e.g., [19, 20, 22, 41, 42, 43, 44]). The two main assumptions
behind the BSS approach, i.e., both EEG and artifacts may be described by a
limited number of sources, seem to good approximation to be fulfilled in the
case of EEG recordings [21, 24]. As major advantage of BSS, artifacts within
the EEG spectrum of interest can be removed without affecting the EEG, at
least in principle [41].

Of course, as any method, BSS has its limitations. First of all, BSS is not
fully automatic: one needs to visually inspect the components extracted by
BSS and decide which components to remove; this time consuming process is
not suitable for routine clinical EEG [41]. Furthermore, visual inspection is sub-
jective [22], and the reliability of BSS is therefore limited. To limit the need for
visual inspection, semi-automatic methods have been developed; those methods
compute statistical markers to determine which BSS components should be re-
moved [21, 43, 44]. Examples of such statistical markers are kurtosis, entropy,
Hurst exponent, Renyi’s entropy, time-frequency deviation, source scalp or EMG
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sensor location, and source amplitude. Semi-automatic artifact removal meth-
ods use more objective criteria and are hence more consistent; moreover, since
they rely less on visual inspection, they tend to be much faster than techniques
that require visual inspection. An exhaustive comparison of statistical markers
has not been conducted yet, and consequently, it is unclear at this point which
markers are the most appropriate for artifact detection.

2.3 Preprocessing: Results and Discussion

EEG recordings often contain unwanted signals which may bias the analysis of
the EEG, and may lead to wrong conclusions; it is therefore necessary to elim-
inate or limit unwanted signals (artifacts) before analyzing EEG. We have re-
viewed various approaches to reduce artifacts: (i) one may try to suppress/avoid
artifacts by instructing the subjects; (ii) alternatively, one may discard the trials
with artifacts; (iil) one may try to remove artifacts by advanced signal process-
ing methods such as adaptive filtering and blind source separation (BSS).

Artifact rejection methods seem generally to improve the separation between
control subjects and AD patients, at different stages of the disease; in particular,
a variety of studies report encouraging results for BSS methods [45, 46, 47, 48,
49, 50].

We conclude this section with an important observation: EEG experts do
not always agree on what the artifacts in a given EEG signal are; for example,
in a recent EEG study [51], EEG experts only agreed in 75% of the cases.
Therefore, removing all artifacts from EEG signals is virtually impossible. A
probably more realistic objective, especially in studies of brain disorders, is to
try to make sure that the EEG of different populations (e.g., control subjects and
different types of patients) contain about the same amount of artifacts [43, 44].
Indeed, the results of the EEG analysis may be biased if one population contains
substantially more artifacts than the other(s).

3 Slowing of EEG

As we mentioned earlier, one is often interested in specific frequency bands
in the EEG, such as 4-8Hz (theta), 8-10Hz (alpha 1), 10-12Hz (alpha 2),
12-30Hz (beta), and 30-100Hz (gamma) [30]. AD seems to affect those dif-
ferent frequency bands in specific ways. One of the major effects is EEG
“slowing”; many studies have shown that Mild Cognitive Impairment (MCI)
and Alzheimer’s disease (AD) causes EEG signals to slow down (see, e.g.,
[52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65]): MCI/AD is associated
with an increase of power in low frequencies (delta and theta band, 0.5-8Hz)
and a decrease of power in higher frequencies (alpha and beta, 8-30Hz). How-
ever, increased gamma band power (30-100Hz) has been reported in MCI/AD
patients compared to healthy age-matched control subjects [67].

To quantify the changes in spectral power, one usually applies Fourier trans-
forms [52, 53, 54, 55, 56, 57, 58, 59, 60, 61]: one first computes the discrete
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Fourier transform X (f) (see Fig. 1) at multiples of f; = 1/T, where T is the
length of the signal. For example, if T = 20s and the sampling frequency is
200Hz, one may compute the discrete Fourier transform at 0Hz, 0.05Hz, 0.1Hz,
..., 200Hz. According to Nyquist theorem, the discrete Fourier transform is
affected by aliasing at frequencies larger than half the sampling frequency, and
those values need to be discarded. In the previous example, one would only re-
tain the discrete Fourier transform at OHz, 0.05Hz, 0.1Hz, ..., 100Hz. In EEG
analysis, however, one is often more conservative, and retains fewer frequency
values, e.g., all frequencies up to one fifth of the sampling frequency [66]. In the
same example, that would be OHz, 0.05Hz, 0.1Hz, ..., 40Hz.

Next one computes the total power within each frequency band of interest,
by summing the magnitude | X (f)| of X (f) over all integer frequencies within
the frequency band; at last, one normalizes the power within each band by the
total power, resulting in the relative power of each frequency band of interest.

Alternatively, one sometimes computes relative power by means of time-
frequency maps X (¢, f) [62] (see Fig. 1); such map indicates how much energy
of the signal is contributed by frequency f at time instance t. Such maps are
particularly useful if one is interested in the spectrum at a specific instance of
time, for example, at a specific stage of a working memory or oddball task (see
Section 7.4.1); such task was considered in [62], and therefore, time-frequency
maps X (¢, f) were used in that study.

Interestingly, time-frequency maps of EEG signals are often sparse, as can
be seen from Fig. 1: most energy is contained in specific regions of the time-
frequency map (“bumps”), corresponding to transient oscillations. Recently,
a procedure was proposed to extract such transient oscillations from time-
frequency maps [68, 69, 70]; it was shown that transient oscillations in the
EEG of MCI and AD patients occur more often at low frequencies compared to
healthy control subjects [63, 64, 65]. In other words, those transient oscillations
also exhibit slowing.

4 Reduced Complexity of EEG Signals

Several studies have investigated the complexity of EEG signals in MCI and AD
patients. We will first review the complexity measures that have been used in
those studies (Section 4.1); next we summarize the results from those studies
(Section 4.2).

4.1 Review of Complexity Measures

Various complexity measures have been used to quantify EEG complexity; some
of them stem from information theory [71, 72], including Tsallis entropy [72],
approximate entropy [73], sample entropy [74], multiscale entropy [75, 76], auto-
mutual information (see, e.g., [77]), and Lempel-Ziv complexity [78, 79, 80, 81].

Entropy is a central quantity in physics and information theory. In informa-
tion theory, entropy is a measure of the uncertainty associated with a random
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time-frequency transform | X (¢, f)|?
wavelet transform

time-frequency events
“bumps”

EEG X(f)

Fourier power

amplitude

EEG x(t)

Fig. 1: Typical EEG signal, shown in time-domain z(t), frequency domain X (f),
and time-frequency domain |X (¢, f)|. As can be seen from this figure,
time-frequency maps of EEG signals are often sparse: most energy is
contained in specific regions of the time-frequency map (“bumps”), cor-
responding to transient oscillations.
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variable; this formulation of entropy was introduced by Shannon [71] (see [72]
for an excellent textbook on information theory), and is often referred to as
“Shannon entropy”. Tsallis entropy is a family of entropy measures parameter-
ized by a real number ¢ [72]. Tsallis entropy reduces to Shannon entropy for
q = 1. The parameter ¢ is a measure of the non-extensitivity of the system of
interest: the Tsallis entropy of two independent systems is in general not equal
to the sum of the Tsallis entropies of those systems; only when ¢ = 1 the Tsallis
entropy of two independent systems is equal to the sum of the Tsallis entropies
of those systems, as expected for an extensive system. In [82] the Tsallis entropy
of EEG signals is determined by quantizing the amplitude of the EEG; Tsallis
entropy is computed from the histogram of amplitude values (with ¢ = 0.5, for
the sake of definiteness).

Approximate entropy [73] reflects the likelihood that patterns in a given
signal will not be followed by additional “similar” patterns. Sample entropy [74]
is a refinement of approximate entropy that it designed to have smaller bias.

The idea behind multi-scale entropy [75, 76] is simple: consecutive coarse-
grained time series are constructed from the original time series, with increasing
coarseness parameter 7; the entropy of each resulting time series is computed.
To this end, one may apply approximate, sample, or Tsallis entropy. As a result,
one has determined how entropy of the time series depends on the time scale 7.
By averaging the entropy over several values of 7, a multi-scale estimate of the
entropy may eventually be obtained.

Auto-mutual information of a time series (see, e.g., [77]) is the mutual in-
formation between a time series and its time-shifted copies; note that the time
series is supposed to be stationary. The faster auto-mutual information decays
with time lag, the more complex the time series is considered to be.

Lempel-Ziv complexity [78] counts the number of different patterns in a
signal; the less such patterns, the better a signal may be compressed. The
well-known Lempel-Ziv-Welch compression algorithm is derived from that basic
idea [79, 80, 81]. The extent of compression can be computed as the ratio of
the file size before and after compression. The compression rate is a measure of
the regularity of the signal.

Some complexity measures have their roots in physics: fractal dimension [83],
correlation dimension [84], and largest Lyapunov exponent [85, 86]. Fractal di-
mension is a statistical quantity that indicates how completely a fractal appears
to fill space, as one zooms down to finer and finer scales. A fractal is gener-
ally a fragmented geometric shape that can be split into parts, each of which is
(at least approximately) a reduced-size copy of the whole [83]. Natural objects
that approximate fractals to a degree include clouds, mountain ranges, light-
ning bolts, coastlines, and snow flakes. There are several definitions of fractal
dimension; correlation dimension [84] is one of them, other definitions are closely
related to entropy, and are information-theoretic in nature.

The Lyapunov exponent of a dynamical system is a quantity that char-
acterizes the rate of separation of infinitesimally close trajectories [85, 86]; it
is noteworthy that Lyapunov exponents are closely related to the entropy of
the dynamical system [86]. The maximal Lyapunov exponent determines the
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predictability of a dynamical system. A positive maximal Lyapunov exponent
usually indicates that the system is chaotic.

4.2 Overview Of Results

As pointed out earlier, several studies have investigated whether the complex-
ity of EEG signals is perturbed by MCI or AD [77, 82, 87, 88, 89, 90, 91, 92,
93, 94, 95]. The following measures have been applied in this context: approx-
imate entropy [87, 88, 89, 90], sample entropy [87, 94], Tsallis entropy [82],
multiscale entropy [87, 95], auto-mutual information [77, 87, 88|, Lempel-Ziv
complexity [87], universal compression [82], fractal dimension [91], correlation
dimension [92, 93], and largest Lyapunov exponent [93].

Interestingly, those studies all observed that the EEG of MCI and AD pa-
tients seems to be more regular (and, equivalently, less complex) than of age-
matched control subjects. As far as we know, no study has identified the under-
lying biological phenomenon. We conjecture that due to the MCI/AD induced
loss of neurons and perturbed anatomical and/or functional coupling, fewer neu-
rons interact with each other, and the neural activity patterns and dynamics
become simpler and more predictable. Moreover, it is possible that the MCI/AD
induced phenomenon of reduced complexity is related to slowing, since “slower”
(lowpass) signals are intrinsically more regular.

5 Perturbations in EEG Synchrony

Numerous studies have reported decreased EEG synchrony in MCI and AD
patients under rest conditions (“spontaneous EEG”): the statistical dependence
between spontaneous EEG signals recorded from different channels seems to be
generally lower in MCI and AD patients than in age-matched control subjects.

In those studies, a large variety of synchrony measures have been applied,
e.g., Pearson correlation coefficient [96, 97, 98], coherence [96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107], Granger causality [96, 97, 98, 108, 109],
information-theoretic [77, 96, 97, 98] and state space based synchrony mea-
sures [55, 96, 97, 98, 110, 111, 112, 113, 114, 115, 116], phase synchrony in-
dices [55, 96, 97, 98, 107, 117, 118], and stochastic event synchrony [96, 97, 98,
119, 120, 121, 122].

In the following, we will briefly review some of those synchrony measures
(Section 5.1); next we describe results of studies that have applied those mea-
sures to the EEG of MCI and AD patients (Section 5.2).

5.1 Review of Synchrony Measures

Many different measures of synchrony have been employed in the physical sci-
ences, signal processing and in the study of neurobiology (see, e.g., [123, 124,
125]). Many of these techniques have overlapping properties while some are
substantially different. All seek to quantify the relationship between two signals
or sensors and, by extension, the sources they represent.
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Probably the most basic synchrony measure is the Pearson correlation co-
efficient; it quantifies linear correlations between pairs of signals. The (mag-
nitude) coherence function is an extension of the correlation coefficient from
time-domain to frequency domain; it measures linear correlations in frequency
domain [125]. Non-linear extensions of the correlation coefficient have been
proposed (see, e.g., [126]). Granger causality extends the correlation coefficient
from pairs of signals to multiple signals [127]. It allows us to estimate the causal-
ity of linear interactions. Examples of Granger measures are directed transfer
function (DTF) and partial directed coherence (PDC); at least ten other linear
Granger measures have been proposed in the literature [127]. In addition, non-
linear extensions of Granger causality have recently been developed (see, e.g.,
[128, 129]).

The approaches mentioned so far use information about the amplitude (“mag-
nitude”) of the signals (“magnitude synchrony”). Alternatively, one may inves-
tigate correlations between the phase of signals [130]. Indeed, the instantaneous
phase of different signals may be strongly synchronized even if the amplitudes
of those signals are statistically independent. Examples of such measures are
mean phase coherence [130], phase lag index [107], imaginary coherence [131],
and global field synchrony (GFS) [132]; the first three measures are only appli-
cable to pairs of signals, the latter allows us to detect phase coupling between
a large number of signals.

An interesting alternative family of synchrony measures, referred to as state
space based synchrony or generalized synchrony, stems from physics [123, 133].
The signals at hand are assumed to be generated by some (unknown) determin-
istic, potentially high-dimensional, non-linear dynamical system. As a first step,
one tries to reconstruct that system, by representing the signals in a state space:
each signal is represented as a trajectory in that space. Signals are considered
to be synchronous if their trajectories remain close to each other. Examples of
state space based synchrony measures are synchronization likehood [133], omega
complexity [134], the S-estimator [135], and the S-H-N-indices [124].

Yet another approach draws inspiration from information theory [72]: one
treats the given signals as stochastic processes and calculates classical simi-
larity and distance measures for such processes, e.g., mutual information and
Kullback-Leibler divergence, in time domain (see, e.g., [136]) as well time-
frequency domain [137, 138] (see also [139, 140]).

An entirely different approach has been developed recently, referred to as
stochastic event synchrony (SES) [119, 120, 121]; it characterizes the interaction
between certain events in signals. In brain signals, those events can be spikes
or transient oscillatory components (see Section 3 and Fig. 1). Those two types
of events are considered in [119, 120, 121].

Many other synchrony measures have been developed; the above list contains
most common and some recent approaches to determine synchrony, but it is by
no means exhaustive.

In a recent study, it was shown that many classical and recently proposed
similarity measures, although developed from different perspectives, lead to sim-
ilar numerical values [96, 97] (at least for one particular EEG data set). A total
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of 35 similarity measures were applied to normal EEG, and the correlation be-
tween those measures was determined. Many measures are strongly correlated
(either positively or negatively). As a consequence, distinct families of syn-
chrony measures may be identified. This result suggests that it is not necessary
to apply 35 or more synchrony measures; it probably suffices to combine mea-
sures from each family.

5.2 Overview Of Results
5.2.1 Pearson Correlation Coefficient

The Pearson correlation coefficient, albeit a simple and well-understood mea-
sure, does not seem to be often used to determine EEG synchrony in MCI and
AD; a recent study [97] reports decrease in Pearson correlation in the EEG of
MCI patients compared to healthy age-matched subjects, however, it was not
statistically significant. No effect was found in AD patients compared to healthy
age-matched subjects [98].

5.2.2 Magnitude and Phase Coherence

A large number of studies have reported decreased magnitude and phase coher-
ence in the EEG of MCI and AD patients [99, 100, 101, 102, 103, 104, 105, 106,
107, 141, 142]. In [100] those measures even allowed to separate depressed MCI
patients from healthy age-matched subjects (control subjects). In some other
studies, however, no significant effects on coherence was observed, neither be-
tween AD and controls [98, 111, 133] nor between MCI and controls [96, 97, 143].

5.2.3 Granger Causality

Various (linear) Granger measures have been applied to the EEG of MCI [97]
and AD patients [98]. The full frequency directed transfer function (fDTF) was
significantly reduced in MCI [97] and AD patients [98] in comparison to con-
trol subjects, whereas DTF was only significantly reduced in AD patients [98].
In [109] directed transfer function (DTF) was applied to the EEG of amnesic
MCI and AD patients; it was found that the parietal to frontal direction of the
information flux was weaker in MCI and AD subjects, specifically for alpha and
beta rhythms.

5.2.4 Phase Synchrony

Decreased phase synchrony has been reported in EEG of patients with mild AD
(resting condition), using three different measures: phase coherence, phase lag
index (PLI), and imaginary component of coherence [107]. Koenig et al. [117]
observed a general decrease of global field synchrony (GFS) in correlation with
cognitive decline and AD. In [97], however, GFS did not manifest this effect in
MCI. Besides GFS, five alternative phase synchrony measures were investigated
in that study; only one of them indicated a decrease in phase synchrony, but
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it was not significant after post-correction. In a similar study [98], no effect
was found in AD patients. Recently, the spatial distribution of EEG phase
synchrony in AD patients has been investigated [144]; robust differences in that
distribution were found between AD patients and healthy subjects.

5.2.5 State Space Synchrony

Using state space based synchrony methods, significant loss of EEG synchrony
was found in MCI [111] and AD patients [14, 111, 112, 113, 114, 115, 116, 145],
which evolved consistently from MCI to AD stage [111]. In [97] the indices N
and S, and the S-estimator were lower in MCI patients, however, the effect
was not significant after Bonferroni correction. The index S was found to be
significantly lower in AD patients [98]. In a related study [110], the index H
was significantly lower in MCI and AD patients, however, no such effect was
observed for S. Omega complexity was found to be increased in patients with
mild AD, which corresponds to decreased synchronization [146]; that effect was
also observed in MCI patients [97], but it was non-significant.

5.2.6 Information Theoretic Measures

The mutual information between different EEG channels was observed to be
significantly lower in AD patients than in control subjects [77]. No significant
effects were found in MCI patients [97], using mutual information (in time do-
main as well as time-frequency domain), Kullback-Leibler divergence, and other
divergence measures (in time-frequency domain).

5.2.7 Stochastic Event Synchrony

The stochastic event measures have been applied to the EEG of MCI [97] and
AD patients [97]. In both studies, a significant reduction in EEG synchrony was
found compared to healthy age-matched subjects; stochastic event synchrony
(SES) and a Granger measure (ffDTF; see Section 5.2.3) were used as features
in discriminant analysis: MCI [97] and AD patients [97] could be fairly well
separated from healthy control subjects.

5.2.8 Graph-Theoretic Methods

Synchrony measures may be used to construct macroscopic network models
of the brain, particularly, from EEG signals; for example, each node in the
network may correspond to an EEG channel (electrode), and one may draw
an edge between a pair of nodes if the synchrony value between the EEG of
the corresponding channels is above a certain threshold. The properties of the
resulting networks may be analyzed through graph theory, in particular, the
theory of small-world networks [147]. By means of that theory, several studies
have shown that EEG signals of MCI and AD patients have weaker small-world
network characteristics compared to age-matched control subjects [148, 149].
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5.2.9 Increased Synchrony during Working Memory Task

The results we have discussed so far in Section 5.2 are mostly for EEG recorded
under rest conditions. Some researchers have also recorded EEG of MCI and AD
patients while they perform certain tasks (see Section 7.4.1). More specifically,
in some studies that investigate the EEG of MCI and AD patients performing
working memory tasks [143, 150, 151], an increase of EEG synchrony was ob-
served. This inverse effect is often interpreted as the result of a compensatory
mechanism in the brain; magnitude coherence was applied as a measure for EEG
synchrony. In [114] a similar effect was observed in MCI patients by means of
the synchronization likelihood measure: one observed an increase of EEG syn-
chrony during working memory task, but there was no significant effect in rest
condition.

5.3 Perturbations in EEG Synchrony: Discussion

Numerous studies have reported decreased EEG synchrony in MCI/AD patients.
However, as our review has shown, there is no consensus yet as to what syn-
chrony measures are the most effective in the context of diagnosing AD. The
main problem is that most studies use just one measure or very few measures,
and many of those studies analyze different data sets; consequently, it is diffi-
cult to rigorously compare the various measures. Moreover, as we pointed out
earlier, it has been shown recently that many classical and recently proposed
similarity measures lead to similar numerical values [96, 97] (at least for one
particular EEG data set), and that several families of synchrony measures may
be identified. Therefore, we suggest to apply synchrony measures from each
of those families (e.g., Pearson correlation coefficient, Granger measures, phase
synchrony, state space synchrony, and stochastic event synchrony) to EEG data
of AD patients. Such studies may eventually provide us a clearer picture of
what measures are most relevant for diagnosing AD.

The observed loss in synchrony in AD is often attributed to a functional
disconnection of the neocortex; it is probably not simply due to a loss of corti-
cal neurons. For example, it may result from anatomical disconnections among
different cortical regions in combination with reduced cholinergic coupling be-
tween cortical neurons [77]. In particular, a common hypothesis is that basal
forebrain neurons may be severely affected in AD, resulting in a cerebral cholin-
ergic deficit that leads to memory loss and other cognitive symptoms [77]. In
other words, not solely loss of neurons but also perturbed anatomical and/or
functional coupling may result in impairments in the temporal coordination of
distributed neuronal activity [152], which in turn may lead to the cognitive
disturbances associated with AD.

One should keep in mind, however, that it is hard to directly interpret re-
sults obtained with synchrony measures. Synchrony measures obtained from
EEG signals may be significantly affected by brain events other than changes
of synchrony, and by choices (like the reference electrodes) that necessary have
to be made during the analysis. Furthermore, as a single active source in the
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brain may affect the EEG signals across the entire scalp, changes in synchrony,
and especially simultaneity of some events across channels, may be observed
when the activity of one source alone changes, which is remote from a change
in synchrony.

Interestingly, various studies have constructed source models from the EEG
of MCI and AD patients [108, 153, 154, 155, 156, 157, 158, 159, 160]. We will
discuss some of those studies later on in this paper.

6 Discussion: Where Are We standing?

As pointed out earlier, EEG seems an attractive brain imaging modality for
diagnosing AD, since EEG recording systems are relatively inexpensive and
(potentially) mobile. Moreover, in contrast to most other non-invasive brain
imaging methods, EEG has high temporal resolution, and may as a consequence
contain crucial information about abnormal brain dynamics in AD patients. In
particular, three major effects of AD on EEG have been observed: slowing of
the EEG, reduced complexity of the EEG signals, and perturbations in EEG
synchrony; an overview of the studies reviewed in Sections 3 to 5 is given in
Table 1.

Numerous studies have investigated the potential of EEG as a diagnostic tool
for AD. At present, however, it is hard to assess whether EEG is truly useful
for diagnosing AD. First of all, most studies report the results of statistical
tests (p-values) without statistical post-correction. Since typically one conducts
multiple tests simultaneously (sometimes hundreds or even thousands), e.g.,
individual pairs of electrodes or frequency bands, it is important to eliminate
false positives. To this end, one may apply Bonferroni post-correction [161], or
more powerful alternatives, such the false-discovery-rate correction method of
Storey [162]. Unfortunately, not all studies on diagnosing AD from EEG signals
apply such post-correction methods, and therefore, it is not always obvious how
to interpret the reported results.

Second, few studies conduct discriminant analysis (linear or non-linear dis-
criminant analysis, using support vector machines, neural networks, etc.; see [163]
for a study that tests various classification algorithms for diagnosing AD). A
major challenge is to obtain a reliable estimate of the classification error. Many
studies that do conduct discriminant analysis report unreliable estimates of the
classification error, since the classifiers are trained and tested with the same
data set. The classifiers may be overfitted to the data at hand; as a conse-
quence, the reported classification results may not generalize to other data sets,
and hence, they may be overoptimistic. To obtain more reliable classification
results, one may for example apply crossvalidation, as has indeed been done in
a handful studies (e.g., [45, 53, 62, 94, 97, 163, 164, 165]). However, crossvali-
dation only yields reliable classification rates if the data set is sufficiently large
and the classifiers have a limited number of parameters. To obtain more reliable
classification results, one should ideally use three independent data sets:

e The first data set is used to train various classifiers.
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Perturbed synchrony

Magnitude/phase coherence
Granger causality
Phase synchrony

State space synchrony
Information theoretic measures
Stochastic event synchrony

Graph-theoretic methods

Phenomenon Approach References
Fourier power [52, 53, 54, 55, 56, 57, 58, 59, 60, 61]
Slowing Time-frequency map (62]
Bump models (63, 64, 65]
Approximate entropy (87, 88, 89, 90]
Sample entropy (87, 94]
Tsallis entropy (82]
Multiscale entropy [87, 95]
Reduced complexity Auto-mutual information (77, 87, 88]
Lempel-Ziv complexity [87]
Universal compression (82]
Fractal dimension [91]
Correlation dimension [92, 93]
Largest Lyapunov exponent (93]
Pearson correlation coefficient (96, 97, 98]

[96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107]
[96, 97, 98, 108, 109]
55, 96, 97, 98, 107, 117, 118]
[55, 96, 97, 98, 110, 111, 112, 113, 114, 115, 116]
[77, 96, 97, 98]
[96, 97, 98, 119, 120, 121, 122]
(147, 148, 149)]

Tab. 1: Overview of studies concerning the three major effects of MCI/AD on
EEG: slowing of the EEG, reduced complexity of the EEG signals, and
perturbations in EEG synchrony. The studies are described in detail in
Sections 3 to 5.
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e The resulting classifiers are evaluated on the second data set; one retains
the classifier with the best classification results on the second data set.
e The latter classifier is then evaluated on the third data set.

The classification results on the third data set are a reliable estimate of the
actual classification performance, as long as the three data sets are sufficiently
large and independent.

Third, in most existing studies, a single measure to detect EEG abnormalities
is applied to a single EEG data set. Since almost every study considers a
different measure and a different EEG data set (but see, e.g., [156, 163]), it is
hard to compare existing studies and to verify whether results are consistent.

Fourth, it is likely that one will need to combine various EEG characteristics
in order to obtain a good diagnostic tool for AD, e.g., based on slowing, loss
in EEG synchrony and complexity, and other features yet to be discovered.
However, few studies systematically investigate large collections of EEG features
(e.g., [63, 97]); it would be of great interest to apply dimensionality reduction
methods to hundreds or even thousands of EEG features, to determine the most
discriminative EEG features in a disciplined and statistically rigorous fashion.
Moreover, it still needs to be verified whether the effects listed in Sections 3 to 5
are independent. For example, it may be that EEG slowing and loss of EEG
complexity are two sides of the same coin.

At last, most EEG studies (if not all) on the diagnosis of MCI/AD are ret-
rospective: they are based on the medical diagnosis of AD, and the subsequent
analysis of two (or more) patient populations, i.e., one population medically
diagnosed with AD or MCI and the other medically diagnosed as healthy. The
EEG studies then classify the patients based on EEG metrics, and claim to
have built a diagnostic tool. As far as we know, no studies so far use EEG in a
predictive way to actually diagnose patients, and verify the results with medical
diagnosis later.

7 Remaining Challenges and Topics for Future Research

In this section, we point out several remaining challenges and topics for future
research.

7.1 Bottleneck: EEG Databases of AD patients

At present, it is fairly difficult to gain access to EEG data of MCI or AD
patients. Such databases are not publicly available, in contrast to ECG (elec-
trocardiogram) and other biomedical data (e.g., [166]). As a result, it is hard to
systematically benchmark and assess the existing methods for diagnosing AD
from EEG signals. A freely accessible repository for anonymized EEG data
(perhaps organized by NIH or similar organizations) may be a solution to this
problem.
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7.2 Relation Between EEG Markers and Cognitive Decline

The precise relation between EEG abnormalities and the decline of cognition
and memory in AD patients remains largely unexplored. A few recent studies
address this issue; we outline some of the results.

7.2.1 Overview of Recent Results

It was observed in [61] that the theta/gamma ratio of relative EEG power is
significantly associated to memory decline in MCI patients. Similar results
have been obtained in [54] for MCI and AD patients: theta relative power and
alpha reactivity (i.e. loss in alpha power during cognitive task as compared to
eyes closed) seem to be related to decreased performance in various cognitive
domains (global cognition, language, memory and executive functioning); alpha
coherence, however, does not seem to correlate with cognitive decline. In a
related study [118], it was observed that GFS values of the EEG of AD patients
are positively correlated with MMSE and CDR scores, which are both measures
of cognitive performance.

In [155], cortical sources were extracted from resting eyes-closed EEG of MCI
and AD patients, by means of low-resolution brain electromagnetic tomography
(LORETA); the cortical sources of resting delta and alpha rhythms seemed to
correlate with neuropsychological measures of immediate memory, in particular,
corsi span forward (visuo-spatial immediate memory probing focused attention)
and digit span forward (immediate memory for digits probing focused attention).

Another study [167] deals with the rate of cognitive decline, i.e., the rate at
which cognition declines over the years. More precisely, it investigates the rela-
tion between rate of cognitive decline in SMC (subjective memory complaints),
MCI and AD patients, and its relation to EEG markers; it was found that the
rate of cognitive decline increased between groups: AD showed advanced de-
cline, and SMC/MCI groups represented intermediate stages of decline relative
to normal aging expectations. Substantial perturbations in the EEG of AD pa-
tients were observed over age, coupled with memory decline: EEG slowing and
decreased working memory P450 component. The MCI group, however, showed
less severe cognitive changes but loss in the working memory N300 component
and slow-wave (delta) EEG, associated with decline in memory. Interestingly,
in this study the EEG markers in MCI and AD patients seem to be quite dis-
tinct, although the cognitive decline rate progresses continuously between both
groups [167]; this is strong contrast with [155], where the EEG markers changed
continuously between MCI and AD patients.

7.2.2 Cognitive Decline and EEG: Discussion

A handful of studies have shown that certain EEG markers seem to correlate
with decreased performance in various cognitive domains. More research is
required though before any conclusions can be drawn.

Those observations also seem to suggest that EEG markers may help to sep-
arate MCI from AD. Such differential diagnosis is important, since potential
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therapies and treatments may differ depending on the disease (MCI vs. AD).
Several recent studies have assessed the potential of EEG for distinguishing
MCT from AD patients (see [116, 154, 164, 168, 169, 170, 171, 172, 173, 174]),
some of which we will discuss later on. Along similar lines, a few studies have
investigated whether EEG allows us to separate MCI patients that develop AD
(Progressive MCI; PMCI) from MCI patients that do not develop AD (Sta-
ble MCI; SMCI) [168, 169, 189]; those studies are discussed in Section 7.4.4
and 7.4.5. Although such studies are very promising, more research in this di-
rection is required in order to assess whether EEG may be used to differentiate
MCI from AD patients, and SMCI from PMCI patients.

7.3 Differential Diagnosis of Dementia

It is also of great importance to verify whether EEG helps to distinguish be-
tween AD and other dementias; in the last years, studies have investigated
whether EEG alone allows to differentiate between AD, subjective memory com-
plaints [116, 173, 175], psychiatric disorders [173], vascular dementia [173, 176,
177, 178, 179, 180], fronto-temporal dementia [116, 173, 180], dementia with
Lewy bodies [173, 181, 182], dementia with Parkinson’s disease [182], and vas-
cular dementia with Alzheimer’s disease [60]. The preliminary results are gener-
ally promising, but surely, additional investigations will be required to explore
the potential of EEG for differential diagnosis of dementia, and brain disorders
at large.

7.4 Design of EEG Experiments

An important degree of freedom is the EEG recording condition. One may
record EEG:
e while the subject is at rest awake (with open or closed eyes) or asleep,
e while the subject is being stimulated with auditory, visual, tactile, or other
signals,
e while the subject performs a task, e.g., an oddball or working memory
task (see Section 7.4.1).

Such stimulation protocols may be used to probe specific brain circuits suppos-
edly disrupted AD, and therefore, they may make EEG even more sensitive to
brain pathologies related to AD.

Most EEG studies of MCI and AD conduct recordings in resting condition.
Several recent studies consider alternative EEG recording conditions, e.g., dur-
ing stimulation with light or during oddball or working memory tasks. In the
following, we will review some results of those studies (Section 7.4.2 to 7.4.5),
after reminding the reader of some basic terminology (Section 7.4.1); next we
point out important open problems in this research area (Section 7.4.6).



7 Remaining Challenges and Topics for Future Research 22

7.4.1 Relevant Basic Terminology

An evoked potential (or “evoked response”; EP) is an electrical potential
recorded from the nervous system of a human or other animal following pre-
sentation of a stimulus, as distinct from spontaneous potentials [183].

An event-related potential (ERP) is any measured brain response that is
directly the result of a thought or perception [184]. More formally, it is any
stereotyped electrophysiological response to an internal or external stimulus.
The major ERP components are given distinct names: they are referred to by
a preceding letter indicating polarity (N or P) followed by the typical latency
in milliseconds. Thus, the N400 ERP component is described as a negative
voltage deflection occurring approximately 400ms after stimulus onset, whereas
the P600 component describes a positive voltage deflection 600ms after stimulus
onset. The stated latencies for ERP components are often quite variable; for
example, the N400 component may exhibit a latency between 300ms and 500ms.

It is noteworthy that evoked potentials and event-related potentials are quite
different: While evoked potentials reflect the processing of the physical stimu-
lus, event-related potentials are caused by the “higher” processes, that might
involve memory, expectation, attention, or changes in the mental state, among
others [184].

In an oddball task, subjects respond to target stimuli that occur infrequently
and irregularly within a series of standard stimuli. Detection of these targets
reliably evokes transient activity (ERP).

In a working memory task, subjects are tested whether they can memorize
(“encode”) and recall (“retrieve”) certain stimuli, e.g., images or letters. A
classical example is the n-back task: The subject is presented with a sequence
of stimuli, and the task consists of indicating when the current stimulus matches
the one from n steps earlier in the sequence. The load factor n can be adjusted
to make the task more or less difficult. For example, an auditory three-back test
(n = 3) could consist of the experimenter reading the following list of letters to
the test subject:

TLHCHSCCQLCKLHCQTRRKO CHR.

The subject is supposed to indicate when the letters marked in bold are read,
because those correspond to the letters that were read three steps earlier.

We will now discuss some recent studies that have considered sleep EEG
(Section 7.4.2), visual and auditory EP/ERP (Section 7.4.3 and 7.4.4 respec-
tively), and working memory ERP (Section 7.4.5) in MCI and AD.

7.4.2 Sleep EP in MCI and AD

To our knowledge, only one study has investigated evoked potentials during
sleep in AD patients [185]. In the latter, EEG data were recorded during stage 2
non-REM sleep, which is characterized by sleep spindles and K-complexes. Tone
clicks were presented binaurally, which sometimes evoked K-complexes; it was
observed that AD patients produced significantly fewer evoked K-complexes,
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and had substantially smaller N550 amplitudes than control subjects. Moreover,
a lower probability of eliciting a K-complex correlated with greater dementia
severity, as measured by the MMSE and Dementia Rating Scale. Interestingly,
an earlier study [187] with young and elderly healthy subjects had shown that
there were significant reductions in evoked K-complex probability and N550
amplitude and a significant increase in N550 latency, as a function of age. Both
studies are therefore in agreement with theories that consider AD to represent
an intensified form of the process of aging.

7.4.3 Visual EP and ERP in MCI and AD

The potential of visual EPs for diagnosing AD was assessed in [186]. Sta-
tionary pattern onset EPs, visual motion onset EPs, and behavioral ERPs (dur-
ing centered visual fixation) were recorded in AD patients and healthy control
subjects. Psychophysical assessment demonstrated visual motion perceptual
impairments in AD patients, half of whom also showed low sensitivity in the
attentional task. The low sensitivity AD patients had small pattern onset and
absent motion onset EPs, whereas the high sensitivity AD patients had large
pattern onset EPs and normal motion onset EPs; visual EPs hence seemed to
be abnormal in all AD patients.

In the experiments of [174], EEG of MCI and AD patients, and control
subjects was recorded while subjects were passively viewing a visual stimulus.
EEG source reconstruction revealed robust differences in the source locations in
those three groups.

Event related EEG coherence in patients with AD and control subjects was
analyzed in [142], using a visual oddball paradigm. The AD patients showed
lower values of evoked coherence.

7.4.4 Auditory EP and ERP in MCl and AD

Two recent studies [62, 188] consider auditory ERP (AERP) in AD patients,
using an auditory oddball paradigm. In [188] the N200 and P300 latency were
found to be significantly prolonged in AD patients, but there were no differences
in amplitude. Moreover, differences were observed in stimulus-related responses
in the delta band: a significant enhancement of the delta response occurred in
healthy subjects (especially at the frontal location), whilst this delta reactivity
was not detectable in AD patients. In [62] various types of wavelets were used
to extract features from ERP recorded during auditory oddball tasks; those
features were then exploited in discriminative analysis with leave-one-out cross-
validation. Consequently, (probable) AD patient patients could be separated
fairly well from healthy control subjects. Interestingly, especially the AERPs
induced by novel tones (as opposed to target tones) were discriminative.

Along the same lines, AERPs of MCI and AD patients, and healthy subjects
were studied in [170]. As in [188], latencies of N200 and P300 components were
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prolonged in patients compared to controls; using those latencies, one was able
to separate the three different subject groups fairly well.

Using a similar auditory oddball paradigm as in [62, 170, 188], it was inves-
tigated in [189] whether latencies and amplitudes of the major waves of AERP
correlate with memory status of patients with MCI and with conversion to AD.
Latencies of all major AERP components were prolonged in patients compared
to controls. The N200 amplitudes were significantly higher in patients, but
no significant differences were observed in P300 amplitudes. Based on N200
latency, one could distinguish MCI patients that converted to AD from MCI
patients that had not converted. However, MMSE scores of patients did not
correlate with latency or amplitude of the AERP components.

Similar results were reported in [156, 190, 191]. In [190] P300 components
in MCI and AD patients and healthy control subjects were analyzed, with an
auditory oddball paradigm. Subcomponents of the P300, i.e., P3a and P3b, were
determined by dipole source analysis, using the Brain Electric Source Analysis
software (BESA) [192]. AD patients were characterized by a diminished P3b
amplitude and longer P3a latency and reaction time. Those results were later
replicated on a different EEG data set [156]. In [191] the P300 component
of ERP was investigated in AD patients and control subjects, but now using
a visual and auditory oddball paradigm. All subjects performed four oddball
tasks that varied systematically in task difficulty. The P300 amplitude was
smaller and the peak latency was longer for the AD patients across tasks and
modalities. P300 differences between AD patients and controls were largest for
the relatively easy tasks, with little influence of stimulus modality observed.

The relation between P300 latency and response speed in MCI and AD was
investigated in [193], again using an auditory oddball paradigm. The P300 am-
plitude and latency distinguished the groups and showed a significant correlation
with response speed.

The aim of [194] was to investigate whether steady state EPs are relevant for
diagnosing AD. More precisely, 40Hz auditory steady state EPs were recorded
in MCI and AD patients, and healthy control subjects. The results showed a
significant increase of 40Hz SSR power in the AD group compared to MCI and
controls. Furthermore a moderate correlation between 40Hz steady state EP
power and cognitive performance was shown.

7.4.5 Working Memory Tasks in MCI and AD

In [195] event-related desynchronization (ERD) and synchronization (ERS)
was studied in MCI and AD patients during a working-memory task; the 1-20Hz
frequency band was analyzed. The AD patients were reported to make more
errors than the controls and the MCI group. During encoding of the memory
set, ERD in the 10-20Hz band occurred in the MCI group, but not (or less) in
the controls or AD patients. During retrieval, ERD in the 7-17Hz occurred in
MCI patients and controls, but was absent in the AD patients.

As in [189], the aim of [168] was to find ERP signatures that correlate with
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conversion from MCI to AD. Patients with amnestic MCI were longitudinally
studied annually with an ERP paradigm in which semantically congruous and
incongruous target words are repeated after initial presentation. When congru-
ous category-exemplars are repeated, smaller P600s (relative to initial presenta-
tion) are normally elicited; repetitions of semantically incongruous words yield
normally smaller N400 amplitude. Interestingly, those effects were observed in
the non-converting MCI patients but not (or less) in the MCI patients that
converted to AD. Abnormalities of the P600 or N400 in MCI seem therefore to
be associated with an increased risk of subsequent conversion to AD. The same
ERP paradigm was also used in [196]; it was shown there that normal N400 and
P600 word repetition effects were absent in AD patients.

The potential of ERP to predict conversion from MCI to AD was also ex-
plored in [169]. To this end, MCI and AD patients, and healthy control sub-
jects performed a working memory task. At 1 year follow-up, about half of the
MCT patients showed progressive cognitive decline (PMCI), the others remained
stable (SMCI). The P200 and N200 ERP latency and beta event-related syn-
chronization (ERS) were analyzed. Both P200 and N200 latencies were longer
in PMCI and AD patients compared with healthy subjects and SMCI patients,
and beta ERS was of lower amplitude. Similar results were obtained in [172],
using the same ERP paradigm; besides the working memory task, the subjects
also performed a control task. The ERP of the control task was subtracted from
the ERP of the working memory task; the resulting component P, was sig-
nificantly larger than baseline in SMCI patients, but much weaker (or entirely
absent) in PMCI patients; component Py, therefore seems to discriminate be-
tween SMCI and PMCI.

In [165], working memory ERPs of AD patients and healthy control subjects
were investigated, using principal component analysis (PCA); the latter allows
to decompose the ERPs as superpositions of elementary scalp voltage compo-
nents. The ERP components extracted through PCA allowed, to some extent,
to separate AD patients from healthy control subjects.

7.4.6 Design of EEG Experiments: Discussion

In summary, various studies have demonstrated changes in ERP and ERS in

MCI/AD patients. The main three effects are: (i) larger ERP latencies; (ii)
smaller ERP amplitudes; (iii) smaller ERS. As far as we know, no study has
identified the underlying biological factors for those three observations. How-
ever, one may conjecture that the brain becomes slower and weaker to respond
since neurons and synapses are damaged due to AD: it becomes more diffi-
cult and it takes more time for information to propagate from one brain area
to an other. In other words, loss of neurons but also perturbed anatomical
and/or functional coupling may result in impairments in the temporal coor-
dination of distributed neuronal activity, resulting in slower, weaker, or even
absent responses to stimuli. Some studies have made similar observations in
elderly subjects (e.g., [187]), which supports the idea that MCI and AD may
be viewed as intensified forms of aging.
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A large palette of different stimuli and tasks are available to the EEG exper-
imentalist; moreover, the induced responses may be analyzed in various ways,
e.g., one may quantify amplitude, latency, coherence, and complexity. Some of
those options have already been explored to characterize MCI and AD, as we
outlined in Section 7.4.2 to 7.4.5. The results from those studies seem to be
very promising: EP and ERP may complement resting EEG as diagnostic tools
for MCI and AD.

In the light of the current results, it is likely that a combination of several
EP and/or ERPs (potentially in conjunction with resting EEG) may be highly
discriminative for MCI, AD, and other brain disorders. However, too few studies
have so far been carried out to be able to identify the most promising approaches.
Additional studies are required to further explore different types of EP and/or
ERPs and to identify which of those are the most discriminative. However, we
speculate that ERPs involving cognitive functions (working memory, emotions,
task planning, etc.) may prove to be effective, since AD mostly induces cognitive
impairments.

7.5 Combining EEG with Other Approaches

Virtually none of the existing EEG based methods for diagnosing AD incor-
porate biophysical knowledge about AD (but see [197]); detailed mathematical
models of the pathology of AD, in conjunction with EEG data analysis, may
help us to improve the diagnosis of AD and to gain insight in the pathology of
AD. Along the same lines, one may combine EEG with other imaging modalities,
such as magnetic resonance imaging (MRI; e.g., [108, 157, 160, 198, 199, 200]),
diffusion tensor imaging (DTT) [201], Doppler techniques [176], transcranial
magnetic stimulation (TMS) [202], and single photon emission computed to-
mography (SPECT) [203]. We briefly outline the results from those preliminary
studies.

7.5.1 EEG and MRI

MRI provides useful information about the anatomy of the brain; it can for
example be used to measure the volume of specific brain areas, such as the hip-
pocampus. It is well known that MCI and AD are associated with brain atrophy,
most prominently in particular brain areas such as hippocampus. Brain atrophy
can be detected from MRI images, by computing the volume of brain areas. It
is natural to hypothesize that AD induced brain atrophy and perturbations in
brain rhythms are correlated. In principle, this question may be addressed by
simultaneously analyzing EEG and MRI data. Several such studies have been
conducted in MCI and/or AD patients.

In [157] it was observed that the power of certain alpha sources was linearly
and non-linearly correlated with the normalized hippocampal volume in MCI
and AD patients; moreover, the normalized hippocampal volume was statisti-
cally greater in MCI than in AD subjects. Those results suggest that progressive
atrophy of hippocampus correlates with decreased cortical alpha power, in the
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continuum along MCI and AD conditions. Along the same lines, a negative
correlation was observed between the frontal white matter and the amplitude
of frontal delta sources (2-4 Hz) across MCI and AD subjects [160].

In a similar study [198], it was found that increase of EEG theta/gamma
and alpha3/alpha2 ratio in MCI patients can be associated with amygdalar and
hippocampal atrophy respectively; moreover, amygdalo-hippocampal atrophy
was seen to be associated with memory deficits. Along the same lines, a negative
correlation was observed between the volume of frontal white matter and the
amplitude of frontal delta sources (2-4 Hz) across MCI and AD subjects [160].

Similar findings were reported in [199], for the corpus callosum. More specif-
ically, the correlation between interhemispheric EEG synchrony and the size of
the corpus callosum was considered in AD patients and healthy subjects. The
following observations were made: (i) the cross sectional area of corpus callosum
was significantly reduced in AD patients relative to controls; (ii) the interhemi-
spheric EEG coherence correlated significantly with the size of corpus callosum
area. The decline in interhemispheric connectivity in AD may therefore be as-
sociated with a loss of cortical neurons projecting through the corpus callosum.

MRI may also be used to detect lesions in brain tissue. In particular, lesions
in the cholinergic system seem to play an important role in the development of
MCI and AD. Therefore, it is not improbable that such lesions are associated
with the abnormal brain rhythms observed in MCI and AD patients; this issue
may be addressed by combining EEG analysis with MRI. Such study was car-
ried out in [108] for amnesic MCI (aMCI) patients; the results are as follows:
the power of specific alpha and theta sources was maximum in the control sub-
jects, intermediate in aMCI patients with little cholinergic damage, and low in
aMCI patients with significant cholinergic damage. These results are consistent
with the hypothesis that damage to the cholinergic system is associated with
perturbations in EEG rhythms in MCI patients.

In a related study [200], the relation between vascular lesions and abnormal
EEG synchrony in MCI patients was investigated; EEG synchrony (computed
by a Granger measure) was highest in control subjects, intermediate in MCI pa-
tients with more vascular lesions, and low in MCI patients less vascular lesions.
The results of this study seem to suggest that loss in EEG synchrony in MCI
patients is not necessarily associated with cerebrovascular lesions: other factor
may play a role such as neurodegenerative lesions [200].

It is evident that all those preliminary results need to be verified through
numerous additional investigations. One thing is for sure though: the combina-
tion of MRI and EEG is a promising approach to relate EEG markers to brain
anatomy.

7.5.2 EEG and DTI

Diffusion tensor imaging (DTI) is an emerging non-invasive technology to visu-
alize subcortical fiber tracts. As we pointed out earlier, by applying synchrony
measures to EEG recordings, one may assess the functional connectivity of the
brain. By combining EEG and DTI, it is in principle possible to investigate
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the relation between anatomical and functional connectivity. In [201] the inter-
hemispheric connectivity of MCI patients was studied through such combined
approach; it was found that coherence in the alpha band was significantly cor-
related with diffusivity in particular brain areas.

7.5.3 EEG and Doppler Techniques

Doppler techniques allow us to visualize the cerebral blood flow; in conjunction
with EEG, Doppler techniques can be used to investigate the coupling between
neural activity and blood flow, often referred to as activation-flow coupling.
Such study was conducted in [176], with the aim of differentiating AD patients
from vascular dementia patients. Evoked EEG and blood flow responses during
a visual stimulation task were analyzed; it was observed that the activation flow
differs significantly between AD and vascular dementia patients. Therefore,
simultaneous assessment of electrical as well as vascular integrity might help in
differentiating both forms of dementia.

7.5.4 EEG and TMS

TMS can be used to evoke electrical responses in the brain. In [202] TMS-
evoked EEG responses in MCI and AD patients and healthy control subjects
are analyzed. Significantly reduced TMS-evoked N100 and P30 was observed
in the MCI and AD subjects respectively; this observation suggests that TMS
may provide a novel tool for examining the degree and progression of dementia.

7.5.5 EEG and SPECT

SPECT may be used to visualize the metabolism and blood flow in the brain;
combined with EEG, SPECT enables us to verify whether neural impairment
correlate with changes in cerebral metabolism and blood flow. In [203] EEG and
SPECT recordings of AD patients were simultaneously analyzed. It was found
that a specific EEG measure, i.e., resting state EEG alpha dipolarity, correlates
with regional cerebral blood flow; both measures seem to decline with increasing
dementia severity, and they allow to some extent to separate AD patients from
healthy subjects.

7.5.6 Combining EEG with Other Approaches: Discussion

Multi-modal approaches seem to have strong potential to improve the diagnosis
of AD and other dementias, and many interesting topics in this area remain
unexplored. The preliminary results discussed in Section 7.5.1 to 7.5.5 are just
the tip of the iceberg.

First, multi-modal approaches may help us to relate characteristics of EEG
in MCI and AD to neurological, vascular, or anatomical abnormalities. Second,
EEG responses evoked by TMS or alternative stimulation methods that directly
interact with the brain may contain more signatures of MCI and AD than
standard ERPs, evoked by visual, tactile, or auditory stimulation.
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7.6 EEG and Animal Models of AD

In animal models of AD, the progression of AD can be rigorously assessed and

controlled; analyzing EEG of AD animal models may help us to relate EEG
abnormalities to the neuropathology of AD. Few studies have been conducted
in this important area (see, e.g., [204]).

7.7 Effect of AD Therapies and Medication on EEG

Another interesting topic of research is the effect of medication and therapy on
the EEG of AD patients. Recent reports investigate the effect of ibuprofen [158],
rivastigmine [205], cholinesterase inhibitors [206], tetrahydroaminoacridine [207],
and donepezil [159, 208] on the EEG of AD patients. Although those studies
provide exciting preliminary results, more work along those lines will be needed
before any solid conclusions can be drawn.

7.8 EEG and Risk Factors for AD

It is unclear how risk factors for AD correlate with EEG markers. Very few
studies have dealt with that topic; in [209] the relation between high plasma con-
centration of homocysteine and EEG abnormalities in AD patients is studied.
Understanding of the interaction between AD risk factors and EEG abnormali-
ties may lead to improved diagnostics for AD.

8 Conclusions

Diagnosis of AD is an important clinical problem. Since EEG is a non-invasive,
simple, relatively inexpensive, and potentially mobile brain imaging technology
with high temporal resolution, it seems to be a natural candidate as diagnostic
tool for AD. Numerous studies indeed confirm the great potential of EEG for
diagnosing AD; moreover, some studies show promising results for MCI (“pre-
dementia”), which is the stage before AD. However, many crucial issues will
need to be addressed before EEG can enter clinical practice for diagnosing AD.
In other words, this research field still offers ample opportunities for exciting
and clinically relevant research. We believe that this review may help to iden-
tify important research topics, which in turn may in the long term improve the
reliability of EEG as a diagnostic tool for AD.
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