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Abstract—A novel approach is proposed to quantify the captures alternative aspects of similarity. The undegyitea
similarity (or “synchrony”) of multiple multi-dimensiona | point s very simple: first we extract from each signal a point
processes. It is based on a generative stochastic model tha rocess, i.e., a sequence of events, next we try to match

describes how two or more point processes are related to ts f . |t ts f th . ls. Th
each other. Inference in that model is carried out by integer events irom one signal to events irom other signals. e

programming_ As an a_pp”ca_tior]l the prob|em of diagnosing better the matching, the more similar the Original Signm a
Alzheimer's disease (AD) from multi-channel EEG recording This approach differs from the classical approaches meatio

is considered. The proposed method seems to be more sensitiv earlier in one important point: classical measures arellysua
to AD induced perturbations in EEG synchrony than classical  gjrectly computed from the original signals (either in time
similarity measures. . S . .
time-frequency domain), in contrast, we determine the simi
larity based on point processes extracted from those signal
Suppose we wish to quantify the correlation among multip@bviously, we thereby assume that those event sequences
signals. This question is for example important in the ceintecapture the most relevant characteristics of the signdis. T
of neuroscience. Indeed, it has frequently been reported tidea behind SES is illustrated in Fig. 1: the top row shows the
certain neurological diseases such as Alzheimer's diseagavelet transform of EEG signals recorded by two different
(AD) causes brain signals from different brain regions .(e.electrodes. One can clearly see several distinct regions of
from left and right hemisphere) to be less correlated [13trong activity, and therefore, it is natural to approxienat
Therefore, if one is capable to reliably detect degradatiorach wavelet transform by a sequence of (half-ellipsoid)sha
in brain signal coherence, one might be able to diagnoeictions (“bumps”) [5], as depicted in the bottom row; each
such diseases. This is a challenging problem: one is modtymp is described by five parameters: its center in time and
interested in detecting brain diseases as early as passiblequency, in addition to its width, height, and amplitude.
and fluctuations in brain signal coherence are then usugl vém order to quantify the similarity of the two EEG signals,
weak. In earlier work [2], we compared the EEG synchronye align the resulting “bump models” (see Fig. 2): bumps
of early-stage AD patients to age-matched control patientsone time-frequency map may not be present in the other
using a variety of interdependence measures including tmap (“spurious” bumps); other bumps are present in both
Pearson correlation coefficient (and several non-linetgrex maps (“non-spurious bumps”), but appear at slightly défdr
sions based on the theory of kernels), phase synchronyesdigositions on the maps. The black lines in Fig. 2 connect the
mutual information and related divergence measures (egpenters of non-spurious bumps, and hence, visualize tketoff
Kullback-Leibler divergence), Granger causality measurdn position between pairs of non-spurious bumps. Stoahasti
and state-space based measures [3]; we found that only vevent synchrony consists of five parameters that quantdy th
few of them were able to capture the degradation of braatignment of two bump models:
signal coherence in AD patients, most similarity measurese pspur fraction of spurious bumps,
amount to about the same numerical values for both groupe d: andd;: average time and frequency offset respectively
of subjects. There might be two reasons for this: either between non-spurious bumps,
the fluctuations are indeed very tiny, potentially hidden in ¢ o+ andoy: standard deviation of the time and frequency
measurement noise and artifacts, which makes it notogious| ~ offset respectively between non-spurious bumps.
hard to detect them, or classical similarity measures aée align the two bump models and determine the above
simply not suitable for the problem at hand. Following thigarameters by iterating the following two steps [4]:
last hypothesis, we developed in [4] a novel measure forl) For given estimates a¥, ¢, o¢, ando, we align the
similarity (“stochastic event synchrony” or SES in shohit two bump models (cf. Fig. 2 (bottom)) by iterative max-

|I. INTRODUCTION



product message passing on a graphical model [6] N = 2). Intuitively speaking,N bump modelsX; are well-
2) Given this alignment, the SES parameters are updawghchronized if the bumps of each model appear in most other
by maximum a posteriori (MAP) estimation [4]. models, potentially with some small offset between them.
The parametersspurando; quantify the synchrony between!n other words, if one overlay®’ well-synchronized bump
bump models (and hence, the original time-frequency map8)Pdels, the bumps naturally appear in clusters that contain
low pspur ando; implies that the two time-frequency maps aPrecisely one bump from all (or almost all) bump models.
hand are well synchronized. This intuitive concept of similarity may readily be transld
So far, we have developed SES fpairs of signals (as iNto a generative stochastic model. In that model,ihpoint
in Fig. 1) [4]. In practice, however, one often needs to amaly Processes\; are treated as independent noisy observations of
many more signals at the same time. For example, EEG&d1idden “mother” proces&. An observation sequenck;
usually recorded by an array of 21, 64 or 256 electrodes [1§. Obtained fromX by the following three-step procedure:
In principle, one may apply SES to each pair of signals, and1) generate a copy of the mother bump model
average the SES parameters over all those pairs, resutting i2) delete some of the copied mother bumps,
a global measure for synchrony. However, multivariate SES3) slightly alter the position and shape of the remaining
allows us to investigate interactions between more than two  mother bump copies, amounting to the bump mao¥gl
signals; for example, it enables us to identify events teatio pg g result, eachX; consists of a “noisy” copy of a non-

in all signals or in a subset of signals. ~empty subset of mother bumps. The point proceségmay
The extension of SES from pairs of signals to multiplge considered well-synchronized if there only few deletion
signals is the subject of this paper. This non-trivial ezten (cf. Step 2) and if the bumps of; are “close” to the corre-
involves t_wo issues: f_irst of all, it is npt directly clear haw sponding mother bumps (cf. Step 3). One way to determine the
extend Fig. 2 to multiple signals, or in other words, how cagynchrony of given point processés is to first reconstruct
we extend the graphical model of bivariate SES to multivariaine nidden mother proces¥, and to next determine the
SES? Second, once we have designed such model, how f@mper of deletions and the average distance between the
we perform statistical inference? . point processes(; and the mother process. Inferring the
~ This paper is organized as follows. In the following seGyother process is a high-dimensional estimation problem, t
tion, we outline the statistical model underlying multiee ngerlying stochastic model typically has a large number of
SES, and describe how to perform inference for that modgka| extrema. Therefore, we will use a slightly alternativ
in Section Ill. As an illustration, we use multivariate SE%rocedure: we will assume that one bump in each cluster is
in Section IV to detect AD induced perturbations in EE_ nidentical copy of a mother bump, the other bumps in that
synchrony. At the end of the paper, we make some concludiggster arenoisy copies of that mother bump. The identical
remarks. _ copy, referred to as “exemplar”, plays the role of “center”
Tlme-fr.e"lquency 'm'{{‘p . T|rr|1e-frequen'<iy map  or “representative” of each cluster. We will assume, withou
' .}.Mylﬁ .‘13 'Vr{:; loss of generality, that there is an exemplar for each mother
—— - = - bump. In addition, some point process&s may contain
l l noisy copies of that mother bump, but this needs not always
Bump model Bump model be the case, in other words, there might be clusters of size
one, solely consisting of an exemplar. Note that under this
m ~ m assumption, the mother proceXsis the list of all exemplars.
The exemplar-based formulation amounts to the following
inference problem: given the point process€s we need
Il. MULTIVARIATE MODEL to infer whether each bump is an exemplar or a noisy copy
We considerN signalsYi,...,Yy (for example, EEG of some exemplar, with the F:onstraint that gach exe_mplar
signals) from which we extracted point proces3gs. .., Xy has at most one copy per point process Obviously, this

by some means, e.g., bump models (cf. Fig. 1). Each poimerence problem also has potentially many locally optima

process is a list of points (“events”) in a given multi-$O|Uti0nS’ however, in contrast to the original (continsjou

dimensional selS C RY, i.e., X, = {1, 5 - inference problem, we can find the global optimum by integer
with z;, € S for7~c =1,...,n; andi ’:71.7. .’N. ’Le’t Ls programming (see Section Il).

again consider the example of bump models (cf. Fig. 1, where'Veé now proceed from the example of bump models to gen-
eral point processek;, and describe the underlying stochastic

Fig. 1. Two-dimensional stochastic event synchrony.

s , 3 model in more detail. The mother proc@és: {Z1,...,Zm}
2 ﬂ ‘\¢ 3 2 which is the source of all points (“events”) X, Xo, ... Xy,
I, %ﬁg@@ﬂ go,/n bl D kot D@@@ b is modeled as follows:

Y gcoskse ™9 olotssoat, d « The numberM of points in X is geometrically dis-
© LY T ° STy v tributed with parametek vol(S):

(a) Bump models of two EEGb) Non-spurious bumpspépur = M

channels. 27%); the black lines connect the p(M) = (1- /\vol(S))()\ V0|(S)) , 1)

centers of non-spurious bumps.
Fig. 2. Spurious and non-spurious activity.



where vo[S) is the multi-dimensional volume of sé  notation, the overall probabilistic model may be written as

o Each pointz,, for m = 1,..., M is uniformly dis- ~ o
tributed in S. p(X7X7I7 9) = p(e)(l - )‘VOI(S))/\AIN M
M N_—1 —1
With those two choices, the prior of the mother procéss - H 5 (Zi(m) k(m) — im)p(cm)( . )
equals: me1 m
) I pijlam:0). €)
p(X) = (1 = Avol(S)A\M. ) (i,5) €T
If the point processesX = (Xi,...,Xy) are well-

- , synchronized, almost all processEs contain a copy of each
From the mother procesX, the point processeX’; for . ,ier bumpz,,, and therefore, the sef,,"” are either of

t = 1_’ ..., N are generated according to the following WQize N — 1 or are slightly smaller. Moreover, in the case of
steps: bump models, the standard deviatians, and o, are then
. For each events,, in the mother processt, one of Small- Therefore, given point process&s= (Xi,..., Xn),
the point processX; with i € {1 N} is chosen at we wish to inferZ and 6, since those variables contain
3 LIRS . . . . .

random, denoted by;,,,), and a copy of mother event”“corm""t'ol?I a?zl;tEi'lrEn’\'llglr_:'tX'S INTEGER PROGRAM

T, is created inX;,,,); this identical copy is referred to ' _ ) )

as “exemplar”. For convenience, we will adopt a uniform A reasonable approach to infef, 0) is maximum a pos-

prior p(i(m) =) =1/Nfori=1,...,.N. teriori (MAP) estimation:
« Next, for each event,, in the mother procesX (with (Z,6) = argmaxlog p(X, X, Z,0). (4)
m = 1,..., M), a “noisy” copy may be created in the

. (Z,0) .

point processeX’; with j # i(m) (at most one copy per There is no closed_form expression f_or 4, there_fore, wealnee
point processX-)J The numbet,, of copies is modeled to resort to numerical methods. A simple technique to try to

; : : find (4) is cyclic maximization: We first choose initial vakie
by a priorp(c;, ). In this paper, we choose as pria(e:.) 6(0) (azld th)(/en erform the following updates foe> 1 until
a binomial distribution withV — 1 trials and probability ' _ P g up =
of success). Conditional on the numbet,,, of copies, convergelj(cg. 5 A1)
the copies are attributed uniformly at random to other 7V = arg;ﬂaXlOgP(XaXa Z,077) (5)
signalsX;, with the constraints of at most one copy per ) - = ()
signal andj # i(m); since there arg" ') possible o = arggnaX1ng(X’X’I ,0). 6)
attributions A,,, C {1,...,i(m) — 1,i(m) T, ., N} This procedure is guaranteed to converge as long as the
with | A,.| = ¢, the probability mass of an attributionconditional maximizations (5) and (6) have unique solwion

A iS p(Am) = (N—l)_l' The process of generatingWhiCh is in practice most often the case.

a noisy copyz from a mother bumpz,, for a point . The update (6) of the parametefsis usually availaple
processX; is described by a conditional distributionn closed form, on the other hand, the update (5) is less
(2| 6;), parameterized by some vect6r that may trivial and requires some additional attention. We showt tha

differ for each point procesX;. For the sake of sim- it can be_writt_en as an integer program, Which may be solved

plicity, we will assume in this paper thal; — by classical integer programming technlqu_es or by max-

for all i. The vectorf; may be treated as a randonProduCt message passing on a sparse cyclic factor graph of

vector with non-trivial (perhaps conjugate) priptg;). P(X,X.Z,0) (3). In order to formulate that integer program,

In the case of bump models, a simple mechanism Y¢¢ introduce the following variables:

generate copies is to slightly shift the mother bump * bi,x is @ binary variable equal to one if and only if the

center while keeping the other mother bump parameters k-th event ofX; is an exemplar.

(width, height, and amplitude) fixed. The center offset * bi,xi,x IS @ binary variable equal to one if and only if

may be modeled as a bivariate Gaussian random variable thek-th event ofX; is a copy of the exemplar; i’

with non-zero mean vectdp, ;, §;) and diagonal non-  * biirx is @ b.inary variable equal to one if and only if no

isotropic covariance matri¥; = diag(o;i, o), and event of X; is a copy of exemplag;: ;.

henced; = (0¢4,054,04,i,054)- Note thatb;  ; »» = 0 for all £ andk’ andb; ; » = 1 for all i

and%’, since X; must not contain a noisy copy of a mother

For later convenience, we need to introduce some MQiGenti,, if it already contains the exemplar associated: o
notation. The exemplar associated to mother evéptis \jth this parametrization, the conditional maximizatids) (

denoted byz;(m) k(m), it is the eventk(m) in point process may be cast as the problem of inferring the above variables
Xi(m)- We denote the set of pairg(m), k(m)) by 7. A

noisy copy ofz,, is denoted byz;(,) «(m). it is the event mbin a Z bik + 3 Z bi it kr

£(m) in point processX .,y with j(m) € A,. We denote i,1<k<n; 1,1/ 71, 1<K/ </
the set of all pairgj(m), ¢(m)) associated ta@,, by Z,", + 3 —log p(wi p|ir 1 0) b i (7)

zew = 7Py U 20 and T = U I, In this bt 1<k <m A<k <n



subject to The results for multivariate SES are summarized in Table I;
we studied the following statistics:

Vi, k, Z biskit ke + big =1 ®) « (Posterior) distributionp(c,, = i|X) = p$ of the
R number of copies of each exemplgy,, parameterized
Viyi' £k by = by g — Z bi kit ke, (9) by 5, ps, - - -, pS),
1<k<n; o 0. standard deviation in time domain (“time jitter”),
where 125 « o;: standard deviation in frequency domain (“frequency
a=logh+ (N —1)logd and 8 = log (T) (10) jitter”).

We also consider the linear combinatibf of all parameters
This optimization problem may be solved by max-produgk that optimally separates both subject groups. Interelgting
message passing on a sparse graph(&f, X, 7, ) (3), along  the |atter statistic amounts to about the samealue as the
the lines of the algorithm o.f [4]; we omit th_e details here dugdex pspur Of bivariate SES. The posterigr(c,,|X ) mostly
to space constraints. We implemented this approach for ers in p¢: in MCI patients, the number of clusters of size
problem described in Section IV, but observed that it dogge significantly decreases, which in turn causes an inereas
not perform well, the solutions it provide are suboptimad anj, pspur COmbininghe with ffDTF and o, allows to separate
not very useful. As an alternative, we solved the problefde two groups quite well (about 90% correctly classified),
by classical integer programming techniques, using CPLEZS shown in figures 3 and 4, far better than what can be

(llog) [8]. Not only is this approach guaranteed to find thgchieved by means of classical similarity measures (about
optimal solution, but rather unexpectedly, it also ran lyast75o4 correctly classified).

faster (a factor of 10 to 100) than the max-product algorithm

IV. APPLICATION TO DIAGNOSIS OFAD FROM EEG B e e B o et e B B e
p-value 0.07 0.08 0.23 0.03 0.0013 2.10 0.12 9.10
We analyzed rest eyes-closed EEG data recorded from TABLE |

21 sites on the scalp based on the 10-20 system [7] T[ﬁ?NSITIVITYOF MULTIVARIATE SESFOR DIAGNOSINGAD (P-VALUES
FORMANN-WHITNEY TEST; * AND ** INDICATE p < 0.05 AND

sampling frequency was 200 Hz, and the signals were band- n < 0005 RESPECTIVEIW
pass filtered between 4 and 30Hz. The subjects comprises
two study groups: the first consists of 22 patients diagnosed |- ., . g Sonp o

as suffering from mild cognitive impairment (MCI), who o DR
subsequently developed mild AD. The other group is a control
set of 38 age-matched, healthy subjects who had no memory

or other cognitive impairments. Pre-selection was coretlict wzf'fDTFm -
to ensure that the data were of a high quality, as determipedgiy. 3. Classification with SES,fDTF (left) and SES, fiDTRdw - (right)
the presence of at least 20s of artifact free data. We aggeiga V. CONCLUSION

the 21 bump models in five regions (frontal, temporal left and \ye proposed a novel approach to determine the synchrony
right, central, occipital) by means of the aggregation&atm ot myitiple multi-dimensional point processes; it is based
described in [5], resulting in a bump model for each of thosg graphical model that describes how the point processes
five regions (V = 5). are related through a common hidden “mother” process. The

As we pointed out earlier, in previous work [2], we hav§roposed technique may be used for various applications in
applied a large variety aflassical synchrony measures (moreneuroscience (e.g., in brain-computer interfaces), biticad
than 30 in total, including various information-theoratiea- gjgnal processing, and beyond.
sures) to both data sets with the aim of detecting MCI inducedg REFERENCES
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