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Abstract—A novel approach is proposed to quantify the
similarity (or “synchrony”) of multiple multi-dimensiona l point
processes. It is based on a generative stochastic model that
describes how two or more point processes are related to
each other. Inference in that model is carried out by integer
programming. As an application, the problem of diagnosing
Alzheimer’s disease (AD) from multi-channel EEG recordings
is considered. The proposed method seems to be more sensitive
to AD induced perturbations in EEG synchrony than classical
similarity measures.

I. I NTRODUCTION

Suppose we wish to quantify the correlation among multiple
signals. This question is for example important in the context
of neuroscience. Indeed, it has frequently been reported that
certain neurological diseases such as Alzheimer’s disease
(AD) causes brain signals from different brain regions (e.g.,
from left and right hemisphere) to be less correlated [1].
Therefore, if one is capable to reliably detect degradations
in brain signal coherence, one might be able to diagnose
such diseases. This is a challenging problem: one is mostly
interested in detecting brain diseases as early as possible,
and fluctuations in brain signal coherence are then usual very
weak. In earlier work [2], we compared the EEG synchrony
of early-stage AD patients to age-matched control patients
using a variety of interdependence measures including the
Pearson correlation coefficient (and several non-linear exten-
sions based on the theory of kernels), phase synchrony indices,
mutual information and related divergence measures (e.g.,
Kullback-Leibler divergence), Granger causality measures,
and state-space based measures [3]; we found that only very
few of them were able to capture the degradation of brain
signal coherence in AD patients, most similarity measures
amount to about the same numerical values for both groups
of subjects. There might be two reasons for this: either
the fluctuations are indeed very tiny, potentially hidden in
measurement noise and artifacts, which makes it notoriously
hard to detect them, or classical similarity measures are
simply not suitable for the problem at hand. Following this
last hypothesis, we developed in [4] a novel measure for
similarity (“stochastic event synchrony” or SES in short) that

captures alternative aspects of similarity. The underlying idea
is very simple: first we extract from each signal a point
process, i.e., a sequence of events, next we try to match
events from one signal to events from other signals. The
better the matching, the more similar the original signals are.
This approach differs from the classical approaches mentioned
earlier in one important point: classical measures are usually
directly computed from the original signals (either in timeor
time-frequency domain), in contrast, we determine the simi-
larity based on point processes extracted from those signals.
Obviously, we thereby assume that those event sequences
capture the most relevant characteristics of the signals. The
idea behind SES is illustrated in Fig. 1: the top row shows the
wavelet transform of EEG signals recorded by two different
electrodes. One can clearly see several distinct regions of
strong activity, and therefore, it is natural to approximate
each wavelet transform by a sequence of (half-ellipsoid) basis
functions (“bumps”) [5], as depicted in the bottom row; each
bump is described by five parameters: its center in time and
frequency, in addition to its width, height, and amplitude.
In order to quantify the similarity of the two EEG signals,
we align the resulting “bump models” (see Fig. 2): bumps
in one time-frequency map may not be present in the other
map (“spurious” bumps); other bumps are present in both
maps (“non-spurious bumps”), but appear at slightly different
positions on the maps. The black lines in Fig. 2 connect the
centers of non-spurious bumps, and hence, visualize the offset
in position between pairs of non-spurious bumps. Stochastic
event synchrony consists of five parameters that quantify the
alignment of two bump models:

• ρspur: fraction of spurious bumps,
• δt andδf : average time and frequency offset respectively

between non-spurious bumps,
• σt andσf : standard deviation of the time and frequency

offset respectively between non-spurious bumps.
We align the two bump models and determine the above
parameters by iterating the following two steps [4]:

1) For given estimates ofδt, δf , σt, andσf , we align the
two bump models (cf. Fig. 2 (bottom)) by iterative max-



product message passing on a graphical model [6]
2) Given this alignment, the SES parameters are updated

by maximum a posteriori (MAP) estimation [4].

The parametersρspurandσt quantify the synchrony between
bump models (and hence, the original time-frequency maps);
low ρspur andσt implies that the two time-frequency maps at
hand are well synchronized.

So far, we have developed SES forpairs of signals (as
in Fig. 1) [4]. In practice, however, one often needs to analyze
many more signals at the same time. For example, EEG is
usually recorded by an array of 21, 64 or 256 electrodes [7].
In principle, one may apply SES to each pair of signals, and
average the SES parameters over all those pairs, resulting in
a global measure for synchrony. However, multivariate SES
allows us to investigate interactions between more than two
signals; for example, it enables us to identify events that occur
in all signals or in a subset of signals.

The extension of SES from pairs of signals to multiple
signals is the subject of this paper. This non-trivial extension
involves two issues: first of all, it is not directly clear howto
extend Fig. 2 to multiple signals, or in other words, how can
we extend the graphical model of bivariate SES to multivariate
SES? Second, once we have designed such model, how can
we perform statistical inference?

This paper is organized as follows. In the following sec-
tion, we outline the statistical model underlying multivariate
SES, and describe how to perform inference for that model
in Section III. As an illustration, we use multivariate SES
in Section IV to detect AD induced perturbations in EEG
synchrony. At the end of the paper, we make some concluding
remarks.

Time-frequency map Time-frequency map

↓ ↓
Bump model Bump model

⇔
Fig. 1. Two-dimensional stochastic event synchrony.

II. M ULTIVARIATE MODEL

We considerN signals Y1, . . . , YN (for example, EEG
signals) from which we extracted point processesX1, . . . , XN

by some means, e.g., bump models (cf. Fig. 1). Each point
process is a list of points (“events”) in a given multi-
dimensional setS ⊆ R

M , i.e., Xi = {xi,1, xi,2, . . . , xi,ni
}

with xi,k ∈ S for k = 1, . . . , ni and i = 1 . . .N . Let us
again consider the example of bump models (cf. Fig. 1, where
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(a) Bump models of two EEG
channels.
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(b) Non-spurious bumps (ρspur =
27%); the black lines connect the
centers of non-spurious bumps.

Fig. 2. Spurious and non-spurious activity.

N = 2). Intuitively speaking,N bump modelsXi are well-
synchronized if the bumps of each model appear in most other
models, potentially with some small offset between them.
In other words, if one overlaysN well-synchronized bump
models, the bumps naturally appear in clusters that contain
precisely one bump from all (or almost all) bump models.
This intuitive concept of similarity may readily be translated
into a generative stochastic model. In that model, theN point
processesXi are treated as independent noisy observations of
a hidden “mother” process̃X. An observation sequenceXi

is obtained fromX̃ by the following three-step procedure:

1) generate a copy of the mother bump modelX̃,
2) delete some of the copied mother bumps,
3) slightly alter the position and shape of the remaining

mother bump copies, amounting to the bump modelXi.

As a result, eachXi consists of a “noisy” copy of a non-
empty subset of mother bumps. The point processesXi may
be considered well-synchronized if there only few deletions
(cf. Step 2) and if the bumps ofXi are “close” to the corre-
sponding mother bumps (cf. Step 3). One way to determine the
synchrony of given point processesXi is to first reconstruct
the hidden mother process̃X, and to next determine the
number of deletions and the average distance between the
point processesXi and the mother process̃X . Inferring the
mother process is a high-dimensional estimation problem, the
underlying stochastic model typically has a large number of
local extrema. Therefore, we will use a slightly alternative
procedure: we will assume that one bump in each cluster is
an identical copy of a mother bump, the other bumps in that
cluster arenoisy copies of that mother bump. The identical
copy, referred to as “exemplar”, plays the role of “center”
or “representative” of each cluster. We will assume, without
loss of generality, that there is an exemplar for each mother
bump. In addition, some point processesXi may contain
noisy copies of that mother bump, but this needs not always
be the case, in other words, there might be clusters of size
one, solely consisting of an exemplar. Note that under this
assumption, the mother processX̃ is the list of all exemplars.
The exemplar-based formulation amounts to the following
inference problem: given the point processesXi, we need
to infer whether each bump is an exemplar or a noisy copy
of some exemplar, with the constraint that each exemplar
has at most one copy per point processXi. Obviously, this
inference problem also has potentially many locally optimal
solutions, however, in contrast to the original (continuous)
inference problem, we can find the global optimum by integer
programming (see Section III).

We now proceed from the example of bump models to gen-
eral point processesXi, and describe the underlying stochastic
model in more detail. The mother processX̃ = {x̃1, . . . , x̃M},
which is the source of all points (“events”) inX1, X2, . . .XN ,
is modeled as follows:

• The numberM of points in X̃ is geometrically dis-
tributed with parameterλ vol(S):

p(M) = (1 − λ vol(S))
(

λ vol(S)
)M

, (1)
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where vol(S) is the multi-dimensional volume of setS.
• Each point x̃m for m = 1, . . . , M is uniformly dis-

tributed inS.

With those two choices, the prior of the mother processX̃
equals:

p(X̃) = (1 − λ vol(S))λM . (2)

From the mother process̃X , the point processesXi for
i = 1, . . . , N are generated according to the following two
steps:

• For each event̃xm in the mother process̃X, one of
the point processXi with i ∈ {1, . . . , N} is chosen at
random, denoted byXi(m), and a copy of mother event
x̃m is created inXi(m); this identical copy is referred to
as “exemplar”. For convenience, we will adopt a uniform
prior p

(

i(m) = i
)

= 1/N for i = 1, . . . , N .
• Next, for each event̃xm in the mother process̃X (with

m = 1, . . . , M ), a “noisy” copy may be created in the
point processesXj with j 6= i(m) (at most one copy per
point processXj). The numbercm of copies is modeled
by a priorp(cm). In this paper, we choose as priorp(cm)
a binomial distribution withN − 1 trials and probability
of successδ. Conditional on the numbercm of copies,
the copies are attributed uniformly at random to other
signalsXj , with the constraints of at most one copy per
signal andj 6= i(m); since there are

(

N−1
cm

)

possible
attributionsAm ⊆ {1, . . . , i(m) − 1, i(m) + 1, . . . , N}
with |Am| = cm, the probability mass of an attribution
Am is p(Am) =

(

N−1
c

)−1
. The process of generating

a noisy copyx from a mother bump̃xm for a point
processXi is described by a conditional distribution
p(x|x̃; θi), parameterized by some vectorθi that may
differ for each point processXi. For the sake of sim-
plicity, we will assume in this paper thatθi = θ
for all i. The vectorθi may be treated as a random
vector with non-trivial (perhaps conjugate) priorp(θi).
In the case of bump models, a simple mechanism to
generate copies is to slightly shift the mother bump
center while keeping the other mother bump parameters
(width, height, and amplitude) fixed. The center offset
may be modeled as a bivariate Gaussian random variable
with non-zero mean vector(δt,i, δf,i) and diagonal non-
isotropic covariance matrixVi = diag(σt,i, σf,i), and
hence,θi = (δt,i, δf,i, σt,i, σf,i).

For later convenience, we need to introduce some more
notation. The exemplar associated to mother eventx̃m is
denoted byxi(m),k(m), it is the eventk(m) in point process
Xi(m). We denote the set of pairs(i(m), k(m)) by Iex. A
noisy copy of x̃m is denoted byxj(m),ℓ(m), it is the event
ℓ(m) in point processXj(m) with j(m) ∈ Am. We denote
the set of all pairs(j(m), ℓ(m)) associated tõxm by Icopy

m ,
Icopy △

= I
copy
1 ∪ · · · ∪ I

copy
M and I = Iex ∪ Icopy. In this

notation, the overall probabilistic model may be written as:

p(X̃, X, I, θ) = p(θ)(1 − λ vol(S))λMN−M

·
M
∏

m=1

δ
(

xi(m),k(m) − x̃m

)

p(cm)

(

N − 1

cm

)−1

·
∏

(i,j)∈I
copy
m

p(xi,j |x̃m; θ). (3)

If the point processesX = (X1, . . . , XN) are well-
synchronized, almost all processesXi contain a copy of each
mother bumpx̃m, and therefore, the setsIcopy

m are either of
size N − 1 or are slightly smaller. Moreover, in the case of
bump models, the standard deviationsσt,i and σf,i are then
small. Therefore, given point processesX = (X1, . . . , XN ),
we wish to infer I and θ, since those variables contain
information about similarity.

III. I NFERENCE AS INTEGER PROGRAM

A reasonable approach to infer(I, θ) is maximum a pos-
teriori (MAP) estimation:

(Î, θ̂) = argmax
(I,θ)

log p(X̃, X, I, θ). (4)

There is no closed form expression for (4), therefore, we need
to resort to numerical methods. A simple technique to try to
find (4) is cyclic maximization: We first choose initial values
θ̂(0), and then perform the following updates forr ≥ 1 until
convergence:

Î(r) = argmax
I

log p(X̃, X, I, θ̂(r−1)) (5)

θ̂(r) = argmax
θ

log p(X̃, X, Î(r), θ). (6)

This procedure is guaranteed to converge as long as the
conditional maximizations (5) and (6) have unique solutions,
which is in practice most often the case.

The update (6) of the parametersθ is usually available
in closed form, on the other hand, the update (5) is less
trivial and requires some additional attention. We show that
it can be written as an integer program, which may be solved
by classical integer programming techniques or by max-
product message passing on a sparse cyclic factor graph of
p(X̃, X, I, θ) (3). In order to formulate that integer program,
we introduce the following variables:

• bi,k is a binary variable equal to one if and only if the
k-th event ofXi is an exemplar.

• bi,k,i′,k′ is a binary variable equal to one if and only if
the k-th event ofXi is a copy of the exemplarxi′,k′ .

• bi,i′,k′ is a binary variable equal to one if and only if no
event ofXi is a copy of exemplarxi′,k′ .

Note thatbi,k,i,k′ = 0 for all k andk′ andbi,i,k′ = 1 for all i
andk′, sinceXi must not contain a noisy copy of a mother
eventx̃m if it already contains the exemplar associated tox̃m.
With this parametrization, the conditional maximization (5)
may be cast as the problem of inferring the above variablesb:

min
b

α
∑

i,1≤k≤ni

bi,k + β
∑

i,i′ 6=i,1≤k′≤n
i′

bi,i′,k′

+
∑

i,i′,1≤k≤ni,1≤k′≤n
i′

− log p(xi,k|xi′,k′ ; θ) bi,k,i′,k′ (7)
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subject to

∀i, k,
∑

i′,k′

bi,k,i′,k′ + bi,k = 1 (8)

∀i, i′ 6= i, k′, bi,i′,k′ = bi′,k′ −
∑

1≤k≤ni

bi,k,i′,k′ , (9)

where

α = log λ + (N − 1) log δ andβ = log
(1 − δ

δ

)

. (10)

This optimization problem may be solved by max-product
message passing on a sparse graph ofp(X̃, X, I, θ) (3), along
the lines of the algorithm of [4]; we omit the details here due
to space constraints. We implemented this approach for the
problem described in Section IV, but observed that it does
not perform well, the solutions it provide are suboptimal and
not very useful. As an alternative, we solved the problem
by classical integer programming techniques, using CPLEX
(Ilog) [8]. Not only is this approach guaranteed to find the
optimal solution, but rather unexpectedly, it also ran vastly
faster (a factor of 10 to 100) than the max-product algorithm.

IV. A PPLICATION TO DIAGNOSIS OFAD FROM EEG

We analyzed rest eyes-closed EEG data recorded from
21 sites on the scalp based on the 10–20 system [7]. The
sampling frequency was 200 Hz, and the signals were band-
pass filtered between 4 and 30Hz. The subjects comprises
two study groups: the first consists of 22 patients diagnosed
as suffering from mild cognitive impairment (MCI), who
subsequently developed mild AD. The other group is a control
set of 38 age-matched, healthy subjects who had no memory
or other cognitive impairments. Pre-selection was conducted
to ensure that the data were of a high quality, as determined by
the presence of at least 20s of artifact free data. We aggregated
the 21 bump models in five regions (frontal, temporal left and
right, central, occipital) by means of the aggregation algorithm
described in [5], resulting in a bump model for each of those
five regions (N = 5).

As we pointed out earlier, in previous work [2], we have
applied a large variety ofclassical synchrony measures (more
than 30 in total, including various information-theoreticmea-
sures) to both data sets with the aim of detecting MCI induced
perturbations in EEG synchrony; we observed that none
of those classical measures except full frequency Directed
Transfer Function (ffDTF) [3], which is a Granger causality
measure, was able to detect significant loss of EEG synchrony
in MCI patients. More precisely, all measures amount to
Mann-Whitneyp-values larger than 0.005 with the exception
of ffDTF (p = 0.0012)—as a reminder, the smaller thep-
value, the more the statistics of the quantity at hand differin
both groups. On the other hand, bivariate SES resulted in sig-
nificant differences between both subject groups, in particular,
there was a significant increase ofρspur (p = 2 · 10−4). This
seems to indicate that there is an increase of unsynchronized
spurious activity in AD patients. Interestingly and perhaps
surprisingly, the timing jitterσt was in both subject groups
about the same, in other words, the non-spurious activity is
equally well synchronized in both populations.

The results for multivariate SES are summarized in Table I;
we studied the following statistics:

• (Posterior) distributionp(cm = i|X) = pc
i of the

number of copies of each exemplarcm, parameterized
by (pc

0, p
c
1, . . . , p

c
4),

• σt: standard deviation in time domain (“time jitter”),
• σf : standard deviation in frequency domain (“frequency

jitter”).
We also consider the linear combinationhc of all parameters
pc

i that optimally separates both subject groups. Interestingly,
the latter statistic amounts to about the samep-value as the
index ρspur of bivariate SES. The posteriorp(cm|X) mostly
differs in pc

4: in MCI patients, the number of clusters of size
five significantly decreases, which in turn causes an increase
in ρspur. Combininghc with ffDTF andσf allows to separate
the two groups quite well (about 90% correctly classified),
as shown in figures 3 and 4, far better than what can be
achieved by means of classical similarity measures (about
75% correctly classified).

Stat. pc
0

pc
1

pc
2

pc
3

pc
4

hc σt σf

p-value 0.07 0.08 0.23 0.03∗ 0.0013∗∗ 2.10−4∗∗
0.12 9.10−4∗∗

TABLE I
SENSITIVITY OF MULTIVARIATE SESFOR DIAGNOSINGAD (P-VALUES

FOR MANN-WHITNEY TEST; * AND ** INDICATE p < 0.05 AND

p < 0.005 RESPECTIVELY).
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Fig. 3. Classification with SES,ffDTF (left) and SES, ffDTF and σF (right)

V. CONCLUSION

We proposed a novel approach to determine the synchrony
of multiple multi-dimensional point processes; it is basedon
a graphical model that describes how the point processes
are related through a common hidden “mother” process. The
proposed technique may be used for various applications in
neuroscience (e.g., in brain-computer interfaces), biomedical
signal processing, and beyond.

REFERENCES
[1] J. Jong, “EEG Dynamics in Patients with Alzheimer’s Disease,”Clinical

Neurophysiology, 115:1490–1505 (2004).
[2] J. Dauwels, F. Vialatte, and A. Cichocki, “A ComparativeStudy of

Synchrony Measures for the Early Detection of AD,”Proc. ICONIP
2007, Kitakyushu, September 2007.

[3] E. Pereda, R. Q. Quiroga, and J. Bhattacharya, “Nonlinear Multivariate
Analysis of Neurophsyiological Signals,”Progress in Neurobiology, 77
(2005) 1–37.

[4] J. Dauwels, F. Vialatte, T. Rutkowski, and A. Cichocki, “Measuring
Neural Synchrony by Message Passing,”Proc. NIPS 2007, Vancouver,
Canada, December 2007.

[5] F. Vialatte, C. Martin, R. Dubois, J. Haddad, B. Quenet, R. Gervais,
and G. Dreyfus, “A Machine Learning Approach to the Analysisof
Time-Frequency Maps, and Its Application to Neural Dynamics,” Neural
Networks, 2007, 20:194–209.

[6] H.-A. Loeliger, “An Introduction to Factor Graphs,”IEEE Signal Pro-
cessing Magazine, Jan. 2004, pp. 28–41.

[7] P. Nunez and R. Srinivasan,Electric Fields of the Brain: The Neuro-
physics of EEG, Oxford University Press, 2006.

[8] http://www.ilog.com/products/optimization/

4


