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ABSTRACT

In this paper, it is shown how (naive and structured) vaoiai

algorithms may be derived from a factor graph by mechanicall

applying generic message computation rules; in this was/cam
bypass error-prone variational calculus. In prior work bgi®p
et al., Xing et al., and Geiger, directed and undirected lgrap

cal models have been used for this purpose. The factor gra|

notation amounts to simpler generic variational message- co
putation rules; by means of factor graphs, variational w@sh
can straightforwardly be compared to and combined with-vari
ous other message-passing inference algorithms, e.gnd¢dil-
ters and smoothers, iterated conditional modes, expentatax-
imization (EM), gradient methods, and patrticle filters. ®oof
those combinations have been explored in the literatuteerst

seem to be new. Generic message computation rules for such }

combinations are formulated.

1. INTRODUCTION

Variational techniques have a long history and they arestly
appliedin various research fields. They have been used tadds
in quantum and statistical physics [2], where they are ddligean-
field approximations”. Variational methods have also betapted
for statistical inference (see, e.g., [3]-[8]), which ig tlopic of
this papet. We will consider the following generic inference
problem: suppose that we are given a multivariate prolsiiaili
model f(z, 8, y) with observed random variabl&s and hidden
random variable& and®©. The latter takes values in a subset
of R™. We will assume thaf (z, 6, y) is continuous (w.r.#d) in
and differentiable (w.r.#9) in the interior of(Q2. Suppose that we
are interested iX' butnotin © (“nuisance variable”), and that
we wish to compute the marginal

flwy) = /Hf(rvﬂ,y)cw

where [, denotes either summation or integration over the whol
range ofo.

The described problem arises, for example, in the context
estimation in state space models. In such a context, thablas
X and© are random vectors, and the functiffx, 6, y) is given

by

1)

f(x,&,y) éfA(e)fB(xvevy)a (2)
2 fa,(01)fa,(01,02) .. fa,(0n1,00) f B, (w0)
: .fB1 (x()vxl, Y1, 91) e an (Inflyxna Yn, on)a (3)

1A longer version of this paper is available [1].

where X, denotes the (unknown) state at tirhe}” are the ob-
served random variable®, are the (unknown) parameters of the
state space modef.4 () is the prior on®, and fp,(x¢) is the
prior on the initial stateX,. A factor graph of (2) and (3) is
shown in Fig. 1(a) and Fig. 1(b) respectively (see [9] for a tu
torial on factor graphs); the boxes and fp in Fig. 1(a) are

etailed in Fig. 1(b) (dashed boxes). We consider the gituat

ere we wish to estimate the stateand we are not interested

in the parameter®. In model (3), the integration ové (1) is
.often infeasible.
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Fig. 1. Factor graphs.

We will now assume that a factor graph fbiz, 6, y) is avail-
able. It may be possible to compuféz, y) (1) by sum-product
message passing [9]. Unfortunately, this naive approaoftés
impractical: the variabl® is supposed to be continuous, and the
sum-product rule may lead to intractable integrals. In sitla-
tions, variational methods become an attractive altereasince
they often lead to simple message computation rules (especi
if the modelf (z, 0, y) belongs to the conjugate-exponential fam-
ily [4] [8]). The naive and structured variational methodvla
been formulated as message-passing algorithms by Bislabj &t
Xing et al. [22] and Geiger [21] in the notation of directeddan
undirected graphical models; variational message-pgssgo-
rithms have also been derived by means of factor graphs fer ce
tain specific cases [7, pp. 256—258] [10]. In this paper, we de

L§cr|be the generic (naive and structured) variational ocbths

message-passing algorithms on factor graphs; the facémhgr

(ﬂotatlon allows a simpler formulation of variational megsaass-

Ing. Moreover, once the variational method is cast as messag
passing on factor graphs, we can compare it to other message-
passing algorithms; we may then also straightforwardly lziowe
the variational method with other message-passing algost
For instance, structured variational algorithms comp@sides
variational messages also sum-product messages. Thentatye
for example be represented as Gaussian distributions ticlpar
lists. This amounts to algorithms such as variational Kaltila
ters and smoothers [23] [4] and variational particle filtarsl
smoothers. If the variational messages are intractalég, rtray



be represented as particle lists, resulting in particlsetaalgo- A widely used familyQ is the set of fully factorized functions
rithms such as variational Markov Chain Monte Carlo metHa@s m

Alternatively, if the integral in (1) is intractable, oneteif )2
makes the (sometimes unsatisfactory) approximation Ftet

fla,y) ~ flz,y) = f(x,0,y), (4)  which amounts to the so-called “naive mean-field” approxima
. _ . . tions in statistical and quantum physics. Note that the matg
whered is a point estimate 0, typically the mode of q(z1,...,2n) are simply the factorg(z;,). With this choice
of D andQ, the variational method tries to find
gmax £ argmaxf(9 ), (5)

£ argmmD (qllf), (11)

where €Q
f(0,y) = / f(z,0,y)dx. (6) and the marginalg(z) (7) are approximated by*(z;). Note

that the objective functio® (¢|| f) (11) is in general non-convex
It may be possible to computg(6, y) (6) by sum-product in the factors;(z;,). By variational calculus, one can easily verify
message passing aft® (5) by max-product message passing [9khatq* (z) fulfills the equality
Also this approach, however, is often impractical:
1. Ifthe variableX is continuous, the sum-productrule may — ¢*(z,) & exp (/q*(zl) o @ (2 (2rs1) @ (2m)
lead to intractable integrals, whereasXifis discrete, the
sum-product rule may lead to an unwieldy sum; in both log f(21,...,2m)dz1dzs .. .dzk_1dzksq - .. dzm), (12)
cases, we cannot compute (6).
2. The max-product rule may lead to an intractable expresfhe equality (12) suggests to determine (11) by iteratimeguib-
sion; in this case, we cannot compute (5). date rule
Variational message passing may also be used to address thos
two problems, which results in variational estimation aigms ~ ¢'“*" (2) & exp (/q“)(zl) o q(221)d (2rg1) -9 (2m)
such as variational ICM, variational EM, and variationadgjent

methods. log f(z1,...,2m)dz1dza . . .dzi—1dz41 - . . dzm), (13)
This paper is structured as follows. In the following setio
we review the naive variational method (closely followir8iH  whereq()(z;) (k = 1,...,m) are the trial marginals at theth

[8]). In Section 3, we describe the naive variational meths@ iteration. This is precisely what is done by the naive vaoie!
message-passing algorithm and formulate the generic maire  method. It can be shown that at each iteration, the Kullback-
ational message computation rule. In Section 4, we invaigtig Leibler divergence) (¢||f) decreases, unless the algorithm has
the combination of naive variational methods with (gerieeal) reached a fixed point; the method is guaranteed to convesgenc
EM, gradient methods, and ICM; in Section 5, we considercstru a local minimum ofD (q|| f) (see [3]-[8]).

tured variational message passing.

X1
q(z1) X y
2. REVIEW OF THE NAIVE VARIATIONAL METHOD a(z) 5 alz) : —
— — q(zn) v (y)
Assume that we are given a generic multivariate functfon) v v (a) Xn
(not necessarily normalized) withe R™ , and suppose that we (a) Generic edge. (b) Generic node.
wish to compute its marginals
X X1
V1 (2) X N
Zk f 21, N1 ledZQ dzk_ldzkﬂ R dzm, (7) . — : g
177,(.7:)'/v ;(f) /X O

where [ denotes either summation or integration over the whole
range ofz. The idea behind variational methods is to find a suf-(c) Equality constraint (d) Generic node.
ficiently “simple” functiong(z) (belonging to a familyQ of trial node.

functions) that is as “close” as possiblejt(:), i.e _ o )
Fig. 2. Variational message passing.

¢* = argmin D (f,q), (8)
qeQ

whereD(f, q) is a measure for the distance betwgeandq. The 3. NAIVE VARIATIONAL MESSAGE PASSING

marginalsf(zx) (7) are then approximated by the marginals of
q*. The familyQ can be chosen in many ways, the only constrain
is that the marginals of the functiopse Q should be tractable.

If fis normalized, a popular measure is the Kullback-Leible
divergenceD (¢l f) defined as

f the function f factorizes, the update (13) can be carried out by
ocal computations. In particular, those computationstzanast
Ias message passing on a factor graph that represents tréziact

n of f. A message-passing formulation of the naive variational
method was proposed by Bishop and Winn [7] [8] in the setting 0
(alf A / (2) log () directed graphical models. Winn also formulated the naaréy

f(x) dz. tional message computation rule in the notation of factapbs



for the particular case of conjugate-exponential modelp¥ 4. NAIVE VARIATIONAL ESTIMATION

256-258]; Nissila et al. considered the particular cagaabrial

hidden Markov models with conditionally Gaussian disttéas  The naive variational method is also relevant for computirey
observations [10]. We will now formulate the generic vagaal ~ mode (5). If the marginaf (¢, y) (6) cannot be computed (exactly

message computation rule in the notation of factor graphs. ~ Or approximately) by the sum-product algorithm, one may -com
As is easily verified from (13), the variational method may bepute approximative marginajgts,) by naive variational message
formulated as the following message-passing algorithm: passing. Eventually, the mode (5) is then approximated by th
1. Initialize all messagesandy, e.g.,q(-) o« 1 andu(-) o  mode ofg(8) = q(61)...q(6,). If the mode ofy(6) is not avail-
1. able in closed form, one may resort to standard optimiza¢ion-
2. Selectan edgs, in the factor graph of (z1, . . ., z,,) (see  hiques such as ICM [11] (*variational ICM”) and gradient fmet
Fig. 2(a)). ods [12] (“variational gradient algorithms”).
3. Compute the two messag§s§zk) and Z(Zk) by applying Alternatively, one may determine the mode (5) by EM [15].
the generic rule (see Fig. 2(b)) If the E-step is intractable, one may approximate the E-btep
naive variational methods (“variational EM”) [5]; the iattable
;(y) o exp/q(xl)q(xQ) o q(z) marginals required in the E-step are then replaced by appete
marginals;.
logg(xy, ..., xn,y)day ... dx,  (14) Recently, ICM [13], gradient methods [14], and EM [16][174],

were described as message-passing algorithms operatinfgon

AN
X exp Eq[logg(Xl’ o ’X"’y)]' (15) tor graph of f(x,0,y). By slightly modifying those message-
4. Compute the marginal z;,) (see Fig. 2(a)) passing algorithms, one obtains a message-passing fdiomula
. _ of variational ICM, variational gradient methods, and &édnal
q(zk) o< v (2k) v (21), (16)  EM: one just needs to adapt certain messages, as we briefly out

line in the following.
5. Iterate 2—4 until convergence. _ Solving (5) by ICM involves sum-product messages; in vari-
) ational ICM, those messages are replaced by variational mes
Some rem.arks. . . sages (14). Gradient methods for solving (5) involve theligrat
o Interestingly, the rule (14) is often simpler than the sum-y¢ logarithmic sum-product messages [14] (see Fig. 2(d))
product rule [9], especially if the modélz, 6, y) belongs

to the conjugate-exponential family [4] [8]. L (1 g) o i@ é)Vekg(x, 0y )da

and send it to the two nodes connected to the eXige

The approximate margina. ropagate in the graph Vo, log u(0) = — - - , (19)
¢ PP arg lf2x) propag ? P g S 1(z1:0) .. (203 0) g2, 0))da
as messages (cf. Fig. 2(a) and 2(b)). In the sum-product
algorithm, the approximate marginals are computed from 4 B
sum-product messages; they are not propagated as méf\éhere“(x’“e) (k =1, >1) are sum-proQuct messages and
T = x1,Z2,...,I,. IN Naive variational gradient methods, those

sages in the graph. ) o
e Therule (14) can not be applied to deterministic node funcihessagesare replaced by the gradient of log-variatiorssages

tionsg, i.e., node functiong that are Dirac or Kronecker R R
deltas. At an equality constraint node (see Fig. 2(c)), the Vo, log V(9k)=/Q($C1; 0)...q(xn;0) Vo, log g(x, 0 )dz (20)

following rule applies:
g e app = E,[Ve, log g(X, 61)]. (21)
v(z) x vi(z)va(z)... va(x). a7) ) _ )
The E-step in (standard) EM involves the computation of g-lo
Other deterministic nodes can often (but not always!) benessages [16][17][18] (see Fig. 2(d))
handled by combining them with non-deterministic nodes.

o Ifthe messages (z;,) and v (z;,) are intractable, the mar- h(6y) = /p(x; 0) log g(x, 01,)dz 22)
ginal ¢(zx) may be represented as a particle list. The lat-
ter may be iteratively updated by Markov Chain Monte = Ep[logg(X7 ek);é]_ (23)
Carlo methods (MCMC) with target function (16), leading
to variational MCMC [20]. In the E-step of naive variational EM, those messages are re-

Let us now look back at the modg(z, #,) of Section 1. If (1)  placed by log-variational messages (cf. (14))

can not be computed by applying the sum-product algorithm on

a factor graph off(z,0,y) (cf., e.g., Fig. 1(b)), we may apply  logu(6) = / a(2150) ... q(2n;0) logg(z,00)dz  (24)
variational message passing on the graplf(@f, 6, y) with trial .

function (cf. (10)) = Ey[logg(X,0k); 6]. (25)

0) = 0,). 18
a(x,9) 1;[‘](”)1;“( ‘) (18 5 STRUCTURED VARIATIONAL MESSAGE PASSING

In the case of model (3), the naive variational method an®untSo far, we have considered fully factorized trial functi¢efs (10)).
to computing variational message§y) andv(xx), and mar-  |n this section, we consider more structured factorizatjéead-
ginalsq(fx) andgy(zx) in the subgraphga(¢) and fp(z,0) re-  ing to “structured” variational algorithms [3] [21][22] tSictured
spectively. The marginal (1) is then approximateddgy) £ variational methods have been formulated as messagepassi
q(x1) ... q(xy). gorithms by Bishop et al. [8], Xing et al. [22] and Geiger [21]



the notation of directed and undirected graphical modelsreH
we use the notation of factor graphs, which will lead to sienpl
generic message computation rules; it will also allow us &ken

the connection between structured variational messagengas
and the message-passing formulation of EM [16] [17] [18].

5.1. An Example

Suppose that we wish to improve the naive variational metbiod
computing (1) for the system depicted in Fig. 1(b). To thid,en
let us now use the trial function

g(x,0) = q(z)q(0), (26)

whereg(x) andg(6) arenotfurther factorized, in contrast to (18).
Based on the trial (26), one may derive a “structured” veomel
method [3] [21][22]: through variational calculus one dh&aan
equality similar to (12) and an update rule similar to (13gr
ating that update rule amounts to a “structured” variatiaigo-
rithm that can be formulated as the following message-pgssi
procedure (see Fig. 1(b)):

Update g(x)
Perform the forward recursion

—

/7(561@)0(/# (—1)exp [/qwk) log B, (Tk—1, %, 91@)d9k}d$k—1,

(27)
and the corresponding backward recursion with messﬁgeg).
Updateg(zy—1, 7):

—

q(@p—1, Tk) o< 1 (Th—1) eXP[/QWk) log fB, (Tk—1, Tk, 9k)d9k} (k)

(28)
Update q(0)
Compute the upward messages

v](6r) x GXP/(J(kal,Ik)IOg IBe (Th—1, Tk, Yi, Ok )dxp—1 dy,.
(29)

Perform the two-step forward recursion
—/ —
§ 00 [0t G000 (G0)
— —!
1 (0x) o< (0x)v1(0k), (31)

and the corresponding backward recursion with messadés)
and ﬁ’(ek). Compute the downward messages

!

ul(0n) & 1 (00 (O = K01 (0. (32)

Updateq(6y.):
(k) oc v1(0k) 1l (Ok)- (33)

Some remarks:

e The messages (z1), 1 (zx) andlor i (6y), u(0y) may
be represented (exactly or approximately) as Gaussian dis-
tributions; Step 1 and/or Step 4 then involves Kalman smooth
ing, resulting in “variational Kalman smoothing” [23]. Al-
ternatively, those messages may be represented as particle
lists (see, e.g., [24]-[25]); Step 1 and/or Step 4 then in-
volves particle smoothing (“variational particle smoathe
this option does not seem to have been explored yet.

e Readers familiar with the problem of parameter estima-
tion in state space models probably have noticed that the
above structured variational message-passing algorghm r
sembles an EM algorithm. Indeed, approximaty{g)
in (27)—(33) by a Dirac delta results in an EM algorithm
for estimating®:

E-step
In the subgraphfs(x, ), perform the sum-product for-
ward sweep (cf. (27))

—

(k) O</ w(xk_1) B, (Th_1, Tk, é](f))dxkflv (34)

and the corresponding backward sweep with messEQE§).
Compute the upward messages (cf. (29))

exp(h(0x)) exp/p(a:k,l,:zrk;é(g))
-log fB, (Tk—1, Tk, Ok ) dwp—1 dzy, (35)

where (cf. (28))

p(ap—1,75;09) o 1 (zh—1) o (@51, 2, él(f)) 1t ().
(36)

M-step (cf. (30)—(33))

0+ = argmax [£4(0) exp(h(6) .. exp(h(8,)].

(37)
We formulated this EM algorithm as a message-passing
algorithm operating on the factor graph of Fig. 1(b). Note
that the messagk(6;,) (35) is a particular instance of the
generic E-log message (22) [16] [17] [18]. The message
exp(h(0x)) (35) is closely related to 1 (6;) (29): the
marginalp(zj_1, zx; 0) in (35) is replaced by a varia-
tional marginaly(zx—_1, zx) in (29). Since we started from
a non-factorized trial function(x) (cf. (26)), we obtained
the standard EM algorithm; a factorized trigl:) leads
to a structured variational EM algorithm (see Section 5.2).
Note also that the EM algorithm yields a point estimate
6 of ©, whereas the structured variational algorithm com-
putes an approximate posterior densityain

5.2. Generic Formulation

From the previous example (and other examples in [1]), it is
straightforward to formulate a general recipe to derivecttired

e Since the above message-passing scheme is a (structurggyiational algorithms from factor graphs. Lgtoe multivariate
variational algorithm, itis guaranteed to converge [3][22]. function and assume that a factor grapbf f is available. As a

o The marginalg(z;) are computed ag(x;,) o (1) i (21). first step, we partition the sétof edges ofj in non-overlapping

e The updates (30)—(32) are instances of the sum-produstubsets, such that each edge belongs to one subgefor ex-

rule [9].

ample, the trial function (26) corresponds to the partgién =



© and& = X. Note that the edges connected to an equal-

ity constraint node correspond to the same variable (€g.,
in Fig. 1(b)), and they are supposed to belong to the s&me
We associate a subgragh C G to each subsef, consisting of
(i) all nodes ofgG that are connected to edges&f (ii) all edges
of G that are connected to those nodes. Note ¢haihay contain
edges that do not belong £; the latter are referred to as “ex-
ternal edges”, the other edges@f are called “internal edges”.
In the following, we will assume that the subgrag}jsC G, ob-

tained fromG, by removing the external edges, are cycle-free. A

generic nodg of G, is depicted in Fig. 3. The edgé§,, ..., X,
are internal edges, the eddés. . ., V,. are external. For the sake
of definiteness, we assume that the ediggs. ., V,. belong to
the same subse,, whereasV; is assumed not to belong that
subset—our considerations are trivially extendable teioplarti-

tions.

W

Vi

X1
=
o

Kn—1

Fig. 3. Structured variational message passing.

The generic structured variational message-passingitigor
iterates the following steps:
1. Select a subgraghy.
2. Update the messages along internal edggsf G, ac-
cording to the rule (see Fig. 3)

() 0</

- exp [/q(vl)q(vg, ooy up)logg(z,v)do|dey ... da, 1,

p(@) ... plen-1)

(38)
3. At nodesy connected to external edges (cf. Fig. 3), com-
pute
Q('rlv s 7xn) S E(Il) cee /_’L)('rnfl) ﬁ('rn)

- exp {/q(vl)q(vg, ..y vp) log g(x, ’U)dv} (39)

4. lterate 1-3.
Some remarks:
o If all subgraphgj; are cycle-free, the above algorithm is

In the naive variational approach, each sulsgatontains
either a single edge or all edges connected to a particular
equality constraint node (e.g., the three edges connexted t
each equality constraint no@; in Fig. 1(b)).

It is easily verified that the example of Section 5.1 is a
particular instance of the above generic message-passing
scheme.

Structured variational message passing can also be used
to determine the mode (5). The generic message com-
putation rules of such estimation algorithms are similar
to the ones of Section 4. The fully factorized marginals
q(x;0) = q(x1;0) ... q(zn; 0) (cf. (20) (24)) are replaced

by more structured factorizations.
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