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ABSTRACT

In this paper, it is shown how (naive and structured) variational
algorithms may be derived from a factor graph by mechanically
applying generic message computation rules; in this way, one can
bypass error-prone variational calculus. In prior work by Bishop
et al., Xing et al., and Geiger, directed and undirected graphi-
cal models have been used for this purpose. The factor graph
notation amounts to simpler generic variational message com-
putation rules; by means of factor graphs, variational methods
can straightforwardly be compared to and combined with vari-
ous other message-passing inference algorithms, e.g., Kalman fil-
ters and smoothers, iterated conditional modes, expectation max-
imization (EM), gradient methods, and particle filters. Some of
those combinations have been explored in the literature, others
seem to be new. Generic message computation rules for such
combinations are formulated.

1. INTRODUCTION

Variational techniques have a long history and they are currently
applied in various research fields. They have been used for decades
in quantum and statistical physics [2], where they are called “mean-
field approximations”. Variational methods have also been adopted
for statistical inference (see, e.g., [3]–[8]), which is the topic of
this paper1. We will consider the following generic inference
problem: suppose that we are given a multivariate probabilistic
modelf(x, θ, y) with observed random variablesY and hidden
random variablesX andΘ. The latter takes values in a subsetΩ
of R

n. We will assume thatf(x, θ, y) is continuous (w.r.t.θ) in Ω
and differentiable (w.r.t.θ) in the interior ofΩ. Suppose that we
are interested inX but not in Θ (“nuisance variable”), and that
we wish to compute the marginal

f(x, y)
△

=

∫

θ

f(x, θ, y)dθ, (1)

where
∫

θ denotes either summation or integration over the whole
range ofΘ.

The described problem arises, for example, in the context of
estimation in state space models. In such a context, the variables
X andΘ are random vectors, and the functionf(x, θ, y) is given
by

f(x, θ, y)
△

= fA(θ)fB(x, θ, y), (2)
△

= fA1
(θ1)fA2

(θ1, θ2) . . . fAn
(θn−1, θn)fB0

(x0)

· fB1
(x0, x1, y1, θ1) . . . fBn

(xn−1, xn, yn, θn), (3)

1A longer version of this paper is available [1].

whereXk denotes the (unknown) state at timek, Y are the ob-
served random variables,Θ are the (unknown) parameters of the
state space model,fA(θ) is the prior onΘ, andfB0

(x0) is the
prior on the initial stateX0. A factor graph of (2) and (3) is
shown in Fig. 1(a) and Fig. 1(b) respectively (see [9] for a tu-
torial on factor graphs); the boxesfA and fB in Fig. 1(a) are
detailed in Fig. 1(b) (dashed boxes). We consider the situation
where we wish to estimate the stateX and we are not interested
in the parametersΘ. In model (3), the integration overΘ (1) is
often infeasible.
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Fig. 1. Factor graphs.

We will now assume that a factor graph forf(x, θ, y) is avail-
able. It may be possible to computef(x, y) (1) by sum-product
message passing [9]. Unfortunately, this naive approach isoften
impractical: the variableΘ is supposed to be continuous, and the
sum-product rule may lead to intractable integrals. In suchsitua-
tions, variational methods become an attractive alternative, since
they often lead to simple message computation rules (especially
if the modelf(x, θ, y) belongs to the conjugate-exponential fam-
ily [4] [8]). The naive and structured variational method have
been formulated as message-passing algorithms by Bishop etal. [8],
Xing et al. [22] and Geiger [21] in the notation of directed and
undirected graphical models; variational message-passing algo-
rithms have also been derived by means of factor graphs for cer-
tain specific cases [7, pp. 256–258] [10]. In this paper, we de-
scribe the generic (naive and structured) variational method as
message-passing algorithms on factor graphs; the factor graph
notation allows a simpler formulation of variational message pass-
ing. Moreover, once the variational method is cast as message
passing on factor graphs, we can compare it to other message-
passing algorithms; we may then also straightforwardly combine
the variational method with other message-passing algorithms.
For instance, structured variational algorithms compute besides
variational messages also sum-product messages. The latter may
for example be represented as Gaussian distributions or particle
lists. This amounts to algorithms such as variational Kalman fil-
ters and smoothers [23] [4] and variational particle filtersand
smoothers. If the variational messages are intractable, they may



be represented as particle lists, resulting in particle-based algo-
rithms such as variational Markov Chain Monte Carlo methods[20].

Alternatively, if the integral in (1) is intractable, one often
makes the (sometimes unsatisfactory) approximation

f(x, y) ≈ f̂(x, y)
△

= f(x, θ̂, y), (4)

whereθ̂ is a point estimate ofΘ, typically the mode

θ̂max △

= argmax
θ

f(θ, y), (5)

where

f(θ, y)
△

=

∫

x

f(x, θ, y)dx. (6)

It may be possible to computef(θ, y) (6) by sum-product
message passing andθ̂max (5) by max-product message passing [9].
Also this approach, however, is often impractical:

1. If the variableX is continuous, the sum-product rule may
lead to intractable integrals, whereas ifX is discrete, the
sum-product rule may lead to an unwieldy sum; in both
cases, we cannot compute (6).

2. The max-product rule may lead to an intractable expres-
sion; in this case, we cannot compute (5).

Variational message passing may also be used to address those
two problems, which results in variational estimation algorithms
such as variational ICM, variational EM, and variational gradient
methods.

This paper is structured as follows. In the following section,
we review the naive variational method (closely following [3]–
[8]). In Section 3, we describe the naive variational methodas a
message-passing algorithm and formulate the generic naivevari-
ational message computation rule. In Section 4, we investigate
the combination of naive variational methods with (generalized)
EM, gradient methods, and ICM; in Section 5, we consider struc-
tured variational message passing.

2. REVIEW OF THE NAIVE VARIATIONAL METHOD

Assume that we are given a generic multivariate functionf(z)
(not necessarily normalized) withz ∈ R

m , and suppose that we
wish to compute its marginals

f(zk)
△

=

∫

f(z1, . . . , zm)dz1dz2 . . . dzk−1dzk+1 . . . dzm, (7)

where
∫

z
denotes either summation or integration over the whole

range ofz. The idea behind variational methods is to find a suf-
ficiently “simple” functionq(z) (belonging to a familyQ of trial
functions) that is as “close” as possible tof(z), i.e.,

q∗
△

= argmin
q∈Q

D (f, q) , (8)

whereD(f, q) is a measure for the distance betweenf andq. The
marginalsf(zk) (7) are then approximated by the marginals of
q∗. The familyQ can be chosen in many ways, the only constraint
is that the marginals of the functionsq ∈ Q should be tractable.

If f is normalized, a popular measure is the Kullback-Leibler
divergenceD (q‖f) defined as

D (q‖f)
△

=

∫

x

q(x) log
q(x)

f(x)
dx. (9)

A widely used familyQ is the set of fully factorized functions

q(z1, . . . , zm)
△

=

m
∏

k=1

q(zk), (10)

which amounts to the so-called “naive mean-field” approxima-
tions in statistical and quantum physics. Note that the marginals
of q(z1, . . . , zm) are simply the factorsq(zk). With this choice
of D andQ, the variational method tries to find

q∗
△

= argmin
q∈Q

D (q‖f) , (11)

and the marginalsf(zk) (7) are approximated byq∗(zk). Note
that the objective functionD (q‖f) (11) is in general non-convex
in the factorsq(zk). By variational calculus, one can easily verify
thatq∗(zk) fulfills the equality

q∗(zk)
△

∝ exp
(

∫

q∗(z1) . . . q∗(zk−1)q
∗(zk+1) . . . q∗(zm)

log f(z1, . . . , zm)dz1dz2 . . . dzk−1dzk+1 . . . dzm

)

. (12)

The equality (12) suggests to determine (11) by iterating the up-
date rule

q(ℓ+1)(zk)
△

∝ exp
(

∫

q(ℓ)(z1) . . . q(ℓ)(zk−1)q
(ℓ)(zk+1) . . . q(ℓ)(zm)

· log f(z1, . . . , zm)dz1dz2 . . . dzk−1dzk+1 . . . dzm

)

, (13)

whereq(ℓ)(zk) (k = 1, . . . , m) are the trial marginals at theℓ-th
iteration. This is precisely what is done by the naive variational
method. It can be shown that at each iteration, the Kullback-
Leibler divergenceD (q‖f) decreases, unless the algorithm has
reached a fixed point; the method is guaranteed to convergence to
a local minimum ofD (q‖f) (see [3]–[8]).

Zk

→
ν (zk)

q(zk)

←
ν (zk)

q(zk)

(a) Generic edge.

g...

X1

Xn

→
ν (y)

q(x1)

q(xn)

Y

(b) Generic node.

=...
→
ν (x)

→
ν 1(x)

→
νn(x)

X

(c) Equality constraint
node.

g...

Xn

Θk

X1

(d) Generic node.

Fig. 2. Variational message passing.

3. NAIVE VARIATIONAL MESSAGE PASSING

If the functionf factorizes, the update (13) can be carried out by
local computations. In particular, those computations canbe cast
as message passing on a factor graph that represents the factoriza-
tion of f . A message-passing formulation of the naive variational
method was proposed by Bishop and Winn [7] [8] in the setting of
directed graphical models. Winn also formulated the naive varia-
tional message computation rule in the notation of factor graphs



for the particular case of conjugate-exponential models [7, pp.
256–258]; Nissilä et al. considered the particular case offactorial
hidden Markov models with conditionally Gaussian distributed
observations [10]. We will now formulate the generic variational
message computation rule in the notation of factor graphs.

As is easily verified from (13), the variational method may be
formulated as the following message-passing algorithm:

1. Initialize all messagesq andν, e.g.,q(·) ∝ 1 andν(·) ∝
1.

2. Select an edgezk in the factor graph off(z1, . . . , zm) (see
Fig. 2(a)).

3. Compute the two messages
→
ν (zk) and

←
ν (zk) by applying

the generic rule (see Fig. 2(b))

→
ν (y) ∝ exp

∫

q(x1)q(x2) . . . q(xn)

· log g(x1, . . . , xn, y)dx1 . . . dxn (14)
△

∝ exp Eq

[

log g(X1, . . . , Xn, y)
]

. (15)

4. Compute the marginalq(zk) (see Fig. 2(a))

q(zk) ∝
→
ν (zk)

←
ν (zk), (16)

and send it to the two nodes connected to the edgeXk.
5. Iterate 2–4 until convergence.
Some remarks:
• Interestingly, the rule (14) is often simpler than the sum-

product rule [9], especially if the modelf(x, θ, y) belongs
to the conjugate-exponential family [4] [8].

• The approximate marginalsq(zk) propagate in the graph
as messages (cf. Fig. 2(a) and 2(b)). In the sum-product
algorithm, the approximate marginals are computed from
sum-product messages; they are not propagated as mes-
sages in the graph.

• The rule (14) can not be applied to deterministic node func-
tionsg, i.e., node functionsg that are Dirac or Kronecker
deltas. At an equality constraint node (see Fig. 2(c)), the
following rule applies:

→
ν (x) ∝

→
ν 1(x)

→
ν 2(x) . . .

→
νn(x). (17)

Other deterministic nodes can often (but not always!) be
handled by combining them with non-deterministic nodes.

• If the messages
→
ν (zk) and

←
ν (zk) are intractable, the mar-

ginal q(zk) may be represented as a particle list. The lat-
ter may be iteratively updated by Markov Chain Monte
Carlo methods (MCMC) with target function (16), leading
to variational MCMC [20].

Let us now look back at the modelf(x, θ, y) of Section 1. If (1)
can not be computed by applying the sum-product algorithm on
a factor graph off(x, θ, y) (cf., e.g., Fig. 1(b)), we may apply
variational message passing on the graph off(x, θ, y) with trial
function (cf. (10))

q(x, θ)
△

=
∏

k

q(xk)
∏

ℓ

q(θℓ). (18)

In the case of model (3), the naive variational method amounts
to computing variational messagesν(θk) and ν(xk), and mar-
ginalsq(θk) andqk(xk) in the subgraphsfA(θ) andfB(x, θ) re-
spectively. The marginal (1) is then approximated byq(x)

△

=
q(x1) . . . q(xn).

4. NAIVE VARIATIONAL ESTIMATION

The naive variational method is also relevant for computingthe
mode (5). If the marginalf(θ, y) (6) cannot be computed (exactly
or approximately) by the sum-product algorithm, one may com-
pute approximative marginalsq(θk) by naive variational message
passing. Eventually, the mode (5) is then approximated by the
mode ofq(θ)

△

= q(θ1) . . . q(θn). If the mode ofq(θ) is not avail-
able in closed form, one may resort to standard optimizationtech-
niques such as ICM [11] (“variational ICM”) and gradient meth-
ods [12] (“variational gradient algorithms”).

Alternatively, one may determine the mode (5) by EM [15].
If the E-step is intractable, one may approximate the E-stepby
naive variational methods (“variational EM”) [5]; the intractable
marginals required in the E-step are then replaced by approximate
marginalsq.

Recently, ICM [13], gradient methods [14], and EM [16][17][18],
were described as message-passing algorithms operating ona fac-
tor graph off(x, θ, y). By slightly modifying those message-
passing algorithms, one obtains a message-passing formulation
of variational ICM, variational gradient methods, and variational
EM: one just needs to adapt certain messages, as we briefly out-
line in the following.

Solving (5) by ICM involves sum-product messages; in vari-
ational ICM, those messages are replaced by variational mes-
sages (14). Gradient methods for solving (5) involve the gradient
of logarithmic sum-product messages [14] (see Fig. 2(d))

∇θk
log µ(θk) =

∫

µ
(

x1; θ̂
)

. . . µ
(

xn; θ̂
)

∇θk
g(x, θk)dx

∫

µ
(

x1; θ̂
)

. . . µ
(

xn; θ̂
)

g(x, θk)dx
, (19)

whereµ
(

xk; θ̂
)

(k = 1, . . . , n) are sum-product messages and
x = x1, x2, . . . , xn. In naive variational gradient methods, those
messages are replaced by the gradient of log-variational messages

∇θk
log ν(θk)=

∫

q
(

x1; θ̂
)

. . . q
(

xn; θ̂
)

∇θk
log g(x, θk)dx (20)

= Eq

[

∇θk
log g(X, θk)

]

. (21)

The E-step in (standard) EM involves the computation of E-log
messages [16][17][18] (see Fig. 2(d))

h(θk) =

∫

p
(

x; θ̂
)

log g(x, θk)dx (22)

= Ep

[

log g(X, θk); θ̂
]

. (23)

In the E-step of naive variational EM, those messages are re-
placed by log-variational messages (cf. (14))

log ν(θk) =

∫

q
(

x1; θ̂
)

. . . q
(

xn; θ̂
)

log g(x, θk)dx (24)

= Eq

[

log g(X, θk); θ̂
]

. (25)

5. STRUCTURED VARIATIONAL MESSAGE PASSING

So far, we have considered fully factorized trial functions(cf. (10)).
In this section, we consider more structured factorizations, lead-
ing to “structured” variational algorithms [3] [21][22]. Structured
variational methods have been formulated as message-passing al-
gorithms by Bishop et al. [8], Xing et al. [22] and Geiger [21]in



the notation of directed and undirected graphical models. Here
we use the notation of factor graphs, which will lead to simpler
generic message computation rules; it will also allow us to make
the connection between structured variational message passing
and the message-passing formulation of EM [16] [17] [18].

5.1. An Example

Suppose that we wish to improve the naive variational methodfor
computing (1) for the system depicted in Fig. 1(b). To this end,
let us now use the trial function

q(x, θ)
△

= q(x)q(θ), (26)

whereq(x) andq(θ) arenot further factorized, in contrast to (18).
Based on the trial (26), one may derive a “structured” variational
method [3] [21][22]: through variational calculus one obtains an
equality similar to (12) and an update rule similar to (13). Iter-
ating that update rule amounts to a “structured” variational algo-
rithm that can be formulated as the following message-passing
procedure (see Fig. 1(b)):

Update q(x)
Perform the forward recursion

→
µ (xk)∝

∫

→
µ (xk−1) exp

[

∫

q(θk) log fBk
(xk−1, xk, θk)dθk

]

dxk−1,

(27)
and the corresponding backward recursion with messages

←
µ (xk).

Updateq(xk−1, xk):

q(xk−1, xk)∝
→
µ (xk−1) exp

[

∫

q(θk) log fBk
(xk−1, xk, θk)dθk

]

←
µ (xk).

(28)
Update q(θ)
Compute the upward messages

ν↑(θk) ∝ exp

∫

q(xk−1, xk) log fBk
(xk−1, xk, yk, θk)dxk−1dxk.

(29)
Perform the two-step forward recursion

→
µ
′

(θk) ∝

∫

→
µ (θk−1)fAk

(θk−1, θk)dθk−1 (30)

→
µ (θk) ∝

→
µ
′

(θk)ν↑(θk), (31)

and the corresponding backward recursion with messages
←
µ (θk)

and
←
µ
′

(θk). Compute the downward messages

µ↓(θk)
△

∝
→
µ
′

(θk)
←
µ (θk) =

→
µ (θk)

←
µ
′

(θk). (32)

Updateq(θk):
q(θk) ∝ ν↑(θk)µ↓(θk). (33)

Some remarks:

• Since the above message-passing scheme is a (structured)
variational algorithm, it is guaranteed to converge [3] [21][22].

• The marginalsq(xk) are computed asq(xk) ∝
→
µ (xk)

←
µ (xk).

• The updates (30)–(32) are instances of the sum-product
rule [9].

• The messages
→
µ (xk),

←
µ (xk) and/or

→
µ (θk),

←
µ (θk) may

be represented (exactly or approximately) as Gaussian dis-
tributions; Step 1 and/or Step 4 then involves Kalman smooth-
ing, resulting in “variational Kalman smoothing” [23]. Al-
ternatively, those messages may be represented as particle
lists (see, e.g., [24]–[25]); Step 1 and/or Step 4 then in-
volves particle smoothing (“variational particle smoother”);
this option does not seem to have been explored yet.

• Readers familiar with the problem of parameter estima-
tion in state space models probably have noticed that the
above structured variational message-passing algorithm re-
sembles an EM algorithm. Indeed, approximatingq(θ)
in (27)–(33) by a Dirac delta results in an EM algorithm
for estimatingΘ:

E-step
In the subgraphfB(x, θ), perform the sum-product for-
ward sweep (cf. (27))

→
µ (xk)∝

∫

→
µ (xk−1)fBk

(xk−1, xk, θ̂
(ℓ)
k )dxk−1, (34)

and the correspondingbackward sweep with messages
←
µ (xk).

Compute the upward messages (cf. (29))

exp(h(θk)) ∝ exp

∫

p(xk−1, xk; θ̂(ℓ))

· log fBk
(xk−1, xk, θk)dxk−1dxk, (35)

where (cf. (28))

p(xk−1, xk; θ̂(ℓ)) ∝
→
µ (xk−1)fBk

(xk−1, xk, θ̂
(ℓ)
k )
←
µ (xk).

(36)

M-step (cf. (30)–(33))

θ̂(ℓ+1) = argmax
θ

[

fA(θ) exp(h(θ1)) . . . exp(h(θn))
]

.

(37)
We formulated this EM algorithm as a message-passing
algorithm operating on the factor graph of Fig. 1(b). Note
that the messageh(θk) (35) is a particular instance of the
generic E-log message (22) [16] [17] [18]. The message
exp(h(θk)) (35) is closely related toν ↑ (θk) (29): the
marginalp(xk−1, xk; θ̂(ℓ)) in (35) is replaced by a varia-
tional marginalq(xk−1, xk) in (29). Since we started from
a non-factorized trial functionq(x) (cf. (26)), we obtained
the standard EM algorithm; a factorized trialq(x) leads
to a structured variational EM algorithm (see Section 5.2).
Note also that the EM algorithm yields a point estimate
θ̂ of Θ, whereas the structured variational algorithm com-
putes an approximate posterior density inΘ.

5.2. Generic Formulation

From the previous example (and other examples in [1]), it is
straightforward to formulate a general recipe to derive structured
variational algorithms from factor graphs. Letf be multivariate
function and assume that a factor graphG of f is available. As a
first step, we partition the setE of edges ofG in non-overlapping
subsetsEℓ such that each edge belongs to one subsetEℓ. For ex-
ample, the trial function (26) corresponds to the partitions E1 =



Θ and E2 = X . Note that the edges connected to an equal-
ity constraint node correspond to the same variable (e.g.,Θk

in Fig. 1(b)), and they are supposed to belong to the sameEℓ.
We associate a subgraphGℓ ⊆ G to each subsetEℓ consisting of
(i) all nodes ofG that are connected to edges ofEℓ; (ii) all edges
of G that are connected to those nodes. Note thatGℓ may contain
edges that do not belong toEℓ; the latter are referred to as “ex-
ternal edges”, the other edges ofGℓ are called “internal edges”.
In the following, we will assume that the subgraphsG′ℓ ⊆ G, ob-
tained fromGℓ by removing the external edges, are cycle-free. A
generic nodeg of Gℓ is depicted in Fig. 3. The edgesX1, . . . , Xn

are internal edges, the edgesV1, . . . , Vr are external. For the sake
of definiteness, we assume that the edgesV2, . . . , Vr belong to
the same subsetEℓ, whereasV1 is assumed not to belong that
subset—our considerations are trivially extendable to other parti-
tions.

g

G′ℓ

. . .V2 Vr

...

Xn−1

V1

Xn

X1

Fig. 3. Structured variational message passing.

The generic structured variational message-passing algorithm
iterates the following steps:

1. Select a subgraphGℓ.
2. Update the messages along internal edgesXn of Gℓ ac-

cording to the rule (see Fig. 3)

→
µ (xn) ∝

∫

→
µ (x1) . . .

→
µ (xn−1)

· exp
[

∫

q(v1)q(v2, . . . , vr) log g(x, v)dv
]

dx1 . . . dxn−1,

(38)

3. At nodesg connected to external edges (cf. Fig. 3), com-
pute

q(x1, . . . , xn) ∝
→
µ (x1) . . .

→
µ (xn−1)

←
µ (xn)

· exp
[

∫

q(v1)q(v2, . . . , vr) log g(x, v)dv
]

(39)

4. Iterate 1–3.
Some remarks:

• If all subgraphsG′ℓ are cycle-free, the above algorithm is
a structured variational algorithm, and it is guaranteed to
converge; otherwise, there is no guarantee for convergence.
One may first convert the cyclic subgraphsG′ℓ into cycle-
free subgraphs and then apply the structured variational
message-passing algorithm.

• If the nodeg (cf. Fig. 3) is only connected to internal edges
of Gℓ, the rule (38) boils down to the generic sum-product
rule [9]. On the other hand, if the nodeg is connected to
oneinternal edgeX (i.e.,n = 1 andX

△

= X1) and to one
or more external edge(s)V1, . . . , Vr, the rule (38) becomes

→
µ (x) ∝ exp

[

∫

q(v1)q(v2, . . . , vr) log g(x, v)dv
]

,

(40)
which is similar to the naive variational message computa-
tion rule (14). The marginalq(v1, . . . , vr) is now not fully
factorized, i.e., it may now be arbitrarily factorized.

• In the naive variational approach, each subsetEℓ contains
either a single edge or all edges connected to a particular
equality constraint node (e.g., the three edges connected to
each equality constraint nodeΘk in Fig. 1(b)).

• It is easily verified that the example of Section 5.1 is a
particular instance of the above generic message-passing
scheme.

• Structured variational message passing can also be used
to determine the mode (5). The generic message com-
putation rules of such estimation algorithms are similar
to the ones of Section 4. The fully factorized marginals
q(x; θ̂) = q(x1; θ̂) . . . q(xn; θ̂) (cf. (20) (24)) are replaced
by more structured factorizations.
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