On various applications of message passing on factor graphs

Justin Dauwels

www.dauwels.com

Signal and Information Processing Laboratory
ETH Zurich

December 13
Two threads

1. **Particular** problem of carrier-phase synchronization in single-carrier communications systems.

2. **Message-passing algorithms** for various applications.
Forney-style factor graphs (FFGs)

- **Factor graphs** represent the factorization of a function.
- **Example**

\[
f(x_1, x_2, x_3, x_4, x_5) = f_A(x_1, x_2, x_3)f_B(x_3, x_4, x_5)f_C(x_4).
\]

- **Rules** for drawing a factor graph
 - A **node** for every factor
 - An **edge** for every variable
 - Node \(g \) is connected to edge \(x \) iff variable \(x \) appears in factor \(g \)
Forney-style factor graphs (FFGs)

- **Factor graphs** represent the factorization of a function.

- **Example**
 \[
 f(x_1, x_2, x_3, x_4, x_5) = f_A(x_1, x_2, x_3)f_B(x_3, x_4, x_5)f_C(x_4)f_D(x_3).
 \]

- **Rules** for drawing a factor graph
 - A node for every factor
 - An edge for every variable
 - Node \(g \) is connected to edge \(x \) iff variable \(x \) appears in factor \(g \)

\[
f_{\boxdot} = \delta(x_3 - x_3')\delta(x_3 - x_3'')
\]
Forney-style factor graphs (FFGs)

- **Factor graphs** represent the factorization of a function.
- **Example**
 \[f(x_1, x_2, x_3, x_4, x_5) = f_A(x_1, x_2, x_3)f_B(x_3, x_4, x_5)f_C(x_4)f_D(x_3). \]

- **Rules for drawing a factor graph**
 - A node for every factor
 - An edge for every variable
 - Node \(g \) is connected to edge \(x \) iff variable \(x \) appears in factor \(g \)

\[f_D = \delta(x_3 - x'_3)\delta(x_3 - x''_3) \]
Computing marginals

- **Given**: Discrete probability mass function

\[f(x_1, \ldots, x_8) = (f_1(x_1)f_2(x_2)f_3(x_1, x_2, x_3, x_4)) \cdot (f_4(x_4, x_5, x_6)f_5(x_5)(f_6(x_6, x_7, x_8)f_7(x_7))) \]

- **Wanted**: Marginal probability

\[p(x_4) = \sum_{x_1, x_2, x_3, x_5, x_6, x_7, x_8} f(x_1, \ldots, x_8) \]

- This factorization can be represented by a factor graph.
Computing marginals

\[f(x_1, \ldots, x_8) = \left(f_1(x_1)f_2(x_2)f_3(x_1, x_2, x_3, x_4)\right) \cdot \left(f_4(x_4, x_5, x_6)f_5(x_5)(f_6(x_6, x_7, x_8)f_7(x_7))\right) \]
Computing marginals

\[
p(x_4) = \left(\sum_{x_1} \sum_{x_2} \sum_{x_3} f_3(x_1, x_2, x_3, x_4) f_1(x_1) f_2(x_2) \right) \cdot \mu_{f_3 \rightarrow x_4}
\]

\[
\left(\sum_{x_5} \sum_{x_6} f_4(x_4, x_5, x_6) f_5(x_5) \left(\sum_{x_7} \sum_{x_8} f_6(x_6, x_7, x_8) f_7(x_7) \right) \right) \cdot \mu_{f_6 \rightarrow x_6}
\]

\[
\mu_{f_4 \rightarrow x_4}
\]
Sum-product algorithm ("belief propagation")

Sum-product rule

\[\mu(y) \propto \sum_{x_1, \ldots, x_n} g(x_1, \ldots, x_n, y) \cdot \mu(x_1) \cdot \ldots \cdot \mu(x_n). \]

Marginal

\[p(y) \propto \mu_{\rightarrow}(y) \mu_{\leftarrow}(y) \]

Cyclic graphs

Still applicable, but approximate marginals; may not convergence!
Two threads

1. **Particular** problem of carrier-phase synchronization in single-carrier communications systems.

2. **Message-passing algorithms** for various applications.
Single-Carrier Communications System

Block diagram

\[
\begin{align*}
 s_{BB}(t) &= \sum_i c_i g(t - iT) \\
 s(t) &= \text{Re}\left\{ s_{BB}(t) e^{j(\omega_c t + \phi_c)} \right\}
\end{align*}
\]

- \(\tau\): channel delay
- \(\omega_c\): carrier frequency
- \(\phi_c\): carrier phase
- \(T\): symbol length
- \(g(t)\): pulse shape
- \(c_i\): data symbols
- \(s_{BB}(t)\): baseband signal
- \(s(t)\): passband signal
- \(N(t)\): AWGN

\[r(t) = s(t - \tau) + N(t)\]
Single-Carrier Communications System

Block diagram

\[s_{BB}(t) = \sum_i c_i g(t - iT) \]
\[s(t) = \text{Re}\left\{ s_{BB}(t)e^{j(\omega_c t + \phi_c)} \right\} \]
\[r(t) = s(t - \tau) + N(t) \]

Labels:
- \(\tau \): channel delay
- \(\omega_c \): carrier frequency
- \(\phi_c \): carrier phase
- \(T \): symbol length
- \(g(t) \): pulse shape
- \(c_i \): data symbols
- \(s_{BB}(t) \): baseband signal
- \(s(t) \): passband signal
- \(N(t) \): AWGN

12/79
Questions

Modeling
Which **physical mechanisms** are responsible for (phase) noise?
How can (phase) noise be **modeled**?

Algorithms
How can phase-estimation algorithms **systematically** be derived?

Performance limits
How well can the (noisy) carrier phase be **estimated**?
How much does the **information rate** decrease due to phase noise?
Contributions

Modeling
Which **physical mechanisms** are responsible for (phase) noise?
How can (phase) noise be **modeled**?

Simple intuitive model for phase noise.

Algorithms
How can phase-estimation algorithms **systematically** be derived?
As message passing on factor graph of the system a hand.

Performance limits
How well can the (noisy) carrier phase be **estimated**?
How much does the **information rate** decrease due to phase noise?

Computation of Cramér-Rao bounds/information rates/capacities.
Introduction Model Phase Estimation Cramér-Rao-type Bounds Information Rates Analog Circuit Summary Outlook

Channel model

Model for single-carrier system with slowly varying phase offset

\[Y_k = X_k e^{j\Theta_k} + W_k, \quad W_k \sim \mathcal{CN}_{0,\sigma_N^2}. \]

Constant-phase model

\[\Theta_k = \Theta \in [0, 2\pi). \]

Random-walk phase model

\[\Theta_k = (\Theta_{k-1} + N_k) \mod 2\pi, \quad N_k \sim \mathcal{N}_{0,\sigma_N^2}. \]

\(\sigma_N^2\) and \(\sigma_W^2\) are assumed to be known. The input symbols \(X_k\) are protected by an error-correcting code.
Contributions

Modeling

Which physical mechanisms are responsible for (phase) noise? How can (phase) noise be modeled?

Simple intuitive model for phase noise.

Algorithms

How can phase-estimation algorithms *systematically* be derived?

As message passing on factor graph of the system a hand.

Performance limits

How well can the (noisy) carrier phase be estimated? How much does the information rate decrease due to phase noise?

Computation of Cramér-Rao bounds/information rates/capacities.
Algorithms for joint decoding and phase estimation

Estimation task

Given a block of observations $Y \equiv (Y_1, Y_2, \ldots, Y_N)$, infer:

- the **coded symbols** $X \equiv (X_1, X_2, \ldots, X_N)$
- the **phase** $\Theta \equiv (\Theta_1, \Theta_2, \ldots, \Theta_N)$.

Derivation of message-passing estimation algorithms [Wiberg, 1996]

1. Draw factor graph of joint pdf $p(x, y, \theta)$.
2. Apply sum-product rule at each node.
3. If sum-product rule is **infeasible** at a certain node, then apply an **approximation** = choose appropriate **message types**.
4. Choose an update schedule.
Factor graphs

Factor graph of \(p(x, y, \theta) \)

- **Constant-phase model**
 - \(X_1 \) \(\times \) \(S_1 \) \(g \) \(Z_1 \)
 - \(X_2 \) \(\times \) \(S_2 \) \(g \) \(Z_2 \)
 - \(\ldots \)
 - \(X_L \) \(\times \) \(S_L \) \(g \) \(Z_L \)

- **Random-walk phase model**
 - \(X_1 \) \(\times \) \(S_1 \) \(g \) \(Z_1 \)
 - \(\Theta_1 \) \(p(\theta_2|\theta_1) \) \(Z_2 \)
 - \(\Theta_2 \) \(p(\theta_L|\theta_{L-1}) \) \(Z_L \)

Factor graphs

Factor graph of $p(x, y, \theta)$

- **Constant-phase model**
 - $X_1 \rightarrow S_1 \rightarrow Z_1$
 - $X_2 \rightarrow S_2 \rightarrow Z_2$
 - \cdots
 - $X_L \rightarrow S_L \rightarrow Z_L$

- **Random-walk phase model**
 - $X_1 \rightarrow S_1 \rightarrow Z_1$
 - $X_2 \rightarrow S_2 \rightarrow Z_2$
 - \cdots
 - $X_L \rightarrow S_L \rightarrow Z_L$

\[p(y_1|z_1) \triangleq (2\pi \sigma_N^2)^{-1} e^{-|y_1 - z_1|^2/2\sigma_N^2} \]

\[\delta_f (\cdot) \triangleq \delta \left[f \left(b_k^{(1)}, \ldots, b_k^{(\log_2 M)} \right) - x_k \right] \]
Factor graphs

Factor graph of $p(x, y, \theta)$

Constant-phase model

Random-walk phase model

\[
S_k \triangleq e^{j\Theta_k} \quad g(\theta_k, s_k) \triangleq \delta(s_k - e^{j\theta_k}) \quad Z_k \triangleq X_k S_k \quad f(x_k, s_k, z_k) \triangleq \delta(z_k - x_k s_k)
\]
Factor graphs

Factor graph of \(p(x, y, \theta) \)

Constant-phase model

Random-walk phase model

\[
p(\theta_k | \theta_{k-1}) \triangleq (2\pi \sigma_W^2)^{-1/2} \sum_{n \in \mathbb{Z}} e^{-((\theta_k - \theta_{k-1}) + n2\pi)^2 / 2\sigma_W^2}
\]
Sum-product rule
Example

Sum-product rule

\[\mu(x_k) \propto \int_0^{2\pi} \int_{z_k} \delta(z_k - x_k e^{j\theta_k}) \mu(\theta_k) \mu(z_k) \, d\theta_k \, dz_k, \]

\[\propto \int_0^{2\pi} \mu(\theta_k) \mu(x_k e^{j\theta_k}) \, d\theta_k, \]

\[\propto \int_0^{2\pi} \mu(\theta_k) e^{-|x_k e^{j\theta_k} - y_k|^2 / 2\sigma^2_{x_k}} \, d\theta_k \]

Intractable integral!
Message Types

\[\mu(x_k) \propto \int_0^{2\pi} \mu(\theta_k) e^{-|x_k e^{j\theta_k} - y_k|^2 / 2\sigma_W^2} d\theta_k \]

Numerical integration

\[\mu(x_k) \propto \sum_i \mu(\hat{\theta}_k^{(i)}) e^{-|x_k e^{j\hat{\theta}_k^{(i)}} - y_k|^2 / 2\sigma_W^2} \]

Particle method

\[\mu(x_k) \propto \sum_i e^{-|x_k e^{j\hat{\theta}_k^{(i)}} - y_k|^2 / 2\sigma_W^2} \]

Decision based

\[\mu(x_k) \approx e^{-|x_k e^{j\hat{\theta}_k} - y_k|^2 / 2\sigma_W^2} \]
Scheduling

Factor graph of \(p(x, y, \theta) \)

```
1⃝ 2⃝ 3⃝ 4⃝ 5⃝ 6⃝ 7⃝

Z_1 Z_2 Z_3 Z_4 Z_5 Z_6 Z_7

 X_1 X_2 X_3 X_4 X_5 X_6 X_7

Θ_1 Θ_2 Θ_3 Θ_4 Θ_5 Θ_6 Θ_7
```

Constant-phase model

```
X_1 X_2 ... X_L

Z_1 Z_2 Z_L

Θ_1 Θ_2 Θ_L
```

Random-walk phase model

```
X_1 X_2 ... X_L

Z_1 Z_2 Z_L

Θ_1 Θ_2 Θ_L
```
Unification

Particle methods
- Importance Sampling, Markov-Chain Monte Carlo,
- Metropolis-Hastings Algorithm, Gibbs Sampling, Simulated Annealing, Particle Filtering

Decision based
- Iterative Conditional Modes, Gradient Methods, Stochastic Approximation, Expectation maximization, SAGE, Gradient EM,
- Natural-Gradient Methods, Backpropagation Algorithm

Combinations
- Monte-Carlo EM, Stochastic EM

Interpretation as message passing on factor graphs
Identified generic local message-update rules for each approach.

Joint work with Sascha Korl
Why we care...

Divide and conquer

Global estimation/detection problem accomplished by **simple local** computations. Complicated mathematical derivations avoided.

Disciplined approach

Deriving novel algorithms **systematically** by listing possible message update rules at each node in the graph.

Mish mash

Straightforward to **combine** several approaches, e.g., decision-based, particle-based etc., in one single algorithm.

Plug and play

Deriving novel algorithms by combining **tabulated** message update rules. Efficient use of earlier work.
Contributions

Modeling
Which physical mechanisms are responsible for (phase) noise? How can (phase) noise be modeled?
Simple intuitive model for phase noise.

Algorithms
How can phase-estimation algorithms systematically be derived?
As message passing on factor graph of the system a hand.

Performance limits
How well can the (noisy) carrier phase be estimated? How much does the information rate decrease due to phase noise?
Computation of Cramér-Rao bounds/information rates/capacities.
Cramér-Rao-type bounds

What?

Lower bounds on the mean-squared estimation error (MSE)
e.g., \(\text{MSE} = E_{Y\theta} \left[(\theta - \hat{\theta}(Y))^2 \right] \).

Motivation

Assessment of practical estimators
e.g., phase-estimation algorithms
Cramér-Rao-type bounds

Three different types

- **Standard** Cramér-Rao bounds: parameters
- **Bayesian** Cramér-Rao bounds: random variables
- **Hybrid** Cramér-Rao bounds: parameters and random variables
Bayesian Cramér-Rao bound: scalar case

Theorem (Bayesian Cramér-Rao bound)

Let \(p(x, y) \) be the joint pdf of \(x \in \mathbb{R} \) and \(y \triangleq (y_1, \ldots, y_N) \). If \(p(x) \) is zero at boundary of its support, then for any regular \(\hat{x}(y) \):

\[
E_{XY} [(x - \hat{x}(y))^2] \geq J^{-1},
\]

where the Bayesian information matrix \(J \) is defined as:

\[
J \triangleq E_{XY} \left[\left(\frac{\partial}{\partial x} \log p(x, y) \right)^2 \right].
\]

Properties

- **MAP-estimator** achieves bound as \(SNR \) or \(N \to \infty \).
- **BCRB** holds for any regular \(\hat{x}(y) \) as \(SNR \) or \(N \to \infty \).
Bayesian Cramér-Rao bound: simple example

Example (Mean of a Gaussian random variable)

\[Y = X + Z \text{ with } Z \sim \mathcal{N}(0, \sigma^2) \text{ with } \sigma^2 \text{ known and } X \in \mathbb{R} \text{ unknown.} \]

Estimate \(X \) from observations \(y_1, y_2, \ldots, y_N \) with prior \(p(X) \) for \(X \).

\[
p(x, y_1, y_2, \ldots, y_N) = p(x) \prod_{k=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-y_k)^2/2\sigma^2}.
\]

\[
J = -E_{XY} \left[\frac{d^2}{dx^2} \log p(X, Y) \right]
= \frac{N}{\sigma^2} - E_X \left[\frac{d^2}{dx^2} \log p(X) \right].
\]

\[
E_{XY}[(\hat{x}(X) - X)^2] \geq J^{-1} = \left(\frac{N}{\sigma^2} - E_X \left[\frac{d^2}{dx^2} \log p(X) \right] \right)^{-1}
\]

If \(p(x) \) is Gaussian, then BCRB = \text{minimum achievable MSE!}
Vector case

Bayesian Cramér-Rao bound for component X_k

Given: joint pdf $p(x, y)$ of $x \triangleq (x_1, \ldots, x_M)$ and $y \triangleq (y_1, \ldots, y_N)$.

Lower bound for the MSE $E_{X_k Y} [(X_k - \hat{x}_k(Y))^2]$?

From marginal

$$E_{X_k Y} [(X_k - \hat{x}_k(Y))^2] \geq J_k^{-1},$$

with $J_k \triangleq E_{X_k Y} \left[\left(\frac{\partial}{\partial x_k} \log p(x_k, y) \right)^2 \right].$

From joint pdf

$$E_{X_k Y} [(X_k - \hat{x}_k(Y))^2] \geq [J^{-1}]_{kk},$$

with $J_{ij} \triangleq E_{XY} \left[\frac{\partial}{\partial x_i} \log p(x, y) \left(\frac{\partial}{\partial x_j} \log p(x, y) \right)^T \right].$

BCRB from marginal is tighter than from joint pdf, but more difficult to compute.
Algorithms

From joint pdf

- J is often **sparse**.
- Only **diagonal** elements of inverse required.
- **Local** computation of “small” matrices (message passing).

From marginal

- J_k is usually **dense**.
- Key to J_k: $\frac{\partial}{\partial x_k} \log p(x_k, y) = E_{X \sim X_k | X_k Y} \left[\frac{\partial}{\partial x_k} \log p(X, Y) \right]$
- **Expectation** computed by sum-product algorithm (or “belief propagation” or “probability propagation”).
Algorithms

Overview
We propose efficient and simple message-passing algorithms:

- for computing standard, Bayesian, hybrid Cramér-Rao bounds
- following both strategies.

Two examples
1. Random-walk phase model: Bayesian CRB from joint pdf
2. AR model: standard CRB from marginal.
Example 1: phase estimation; Bayesian CRB from joint pdf

Infer $X = X_1, \ldots, X_L$ and $\Theta = \Theta_1, \ldots, \Theta_L$ from $Y = Y_1, \ldots, Y_L$

Random-walk phase model with $\sigma^2_W = 10^{-4}\text{rad}^2$ with $L = 100$

MSE/BCRB for Θ_k (SNR = 4dB)
Example 2: AR model; standard CRB from marginal

Example (AR model)

Let X_1, X_2, \ldots be a real random process defined by:

$$X_k = a_1 X_{k-1} + a_2 X_{k-2} + \cdots + a_M X_{k-M} + U_k, \quad U_k \sim \mathcal{N}(0, \sigma^2_U)$$

and let the process $Y = Y_1, Y_2, \ldots$ be defined as:

$$Y_k = X_k + W_k, \quad U_k \sim \mathcal{N}(0, \sigma^2_W).$$

Task

Estimate $a_1, \ldots, a_M, \sigma^2_U, \sigma^2_W$, and X from observation Y.
Example (AR model)

Let X_1, X_2, \ldots be a real random process defined by:

$$X_k = a_1 X_{k-1} + a_2 X_{k-2} + \cdots + a_M X_{k-M} + U_k, \quad U_k \sim \mathcal{N}(0, \sigma_U^2)$$

and let the process $Y = Y_1, Y_2, \ldots$ be defined as:

$$Y_k = X_k + W_k, \quad U_k \sim \mathcal{N}(0, \sigma_W^2).$$

Task

Estimate $a_1, \ldots, a_M, \sigma_U^2, \sigma_W^2$, and X from observation Y.

Observation

ML/MAP/MMSE-estimators are infeasible! Neither can their MSE be determined \Rightarrow lower bounds on MMSE.
Theorem (Standard Cramér-Rao bound)

Let \(p(y; \theta) \) be the pdf of \(y \triangleq (y_1, \ldots, y_N) \) parameterized by \(\theta \triangleq (\theta_1, \ldots, \theta_N) \). If \(\hat{\theta}(y) \) is regular and unbiased estimator, then

\[
E_{Y;\theta} \left[(\theta - \hat{\theta}(y))(\theta - \hat{\theta}(y))^T \right] \geq F^{-1}(\theta),
\]

where the Fisher information matrix \(F(\theta) \) is defined as

\[
F(\theta) \triangleq E_{Y;\theta} \left[\nabla_{\theta} \log p(y; \theta) \nabla_{\theta}^T \log p(y; \theta) \right].
\]

Properties

- **ML-estimator** achieves bound as SNR or \(N \to \infty \).
- Standard CRB holds for any regular \(\hat{\theta}(y) \) as SNR or \(N \to \infty \).
Standard Cramér-Rao bound for the AR model

Example (AR model)

Let \(X_1, X_2, \ldots \) be a real random process defined by:

\[
X_k = a_1 X_{k-1} + a_2 X_{k-2} + \cdots + a_M X_{k-M} + U_k,
\]

\(U_k \) i.i.d. \(\sim \mathcal{N}(0, \sigma_U^2) \)

and let the process \(Y = Y_1, Y_2, \ldots \) be defined as:

\[
Y_k = X_k + W_k,
\]

\(U_k \) i.i.d. \(\sim \mathcal{N}(0, \sigma_W^2) \).

Ingredients for the Cramér-Rao bound

\(\theta = (a, \sigma_U^2, \sigma_W^2) \)

\[
F(\theta) \triangleq E_{Y;\theta} \left[\nabla_{\theta} \log p(Y; \theta) \nabla_{\theta}^T \log p(Y; \theta) \right]
\]

\[
p(y; \theta) \triangleq \int_x p(x, y; \theta)
\]

\[
\nabla_{\theta} \log p(y; \theta) = E_{X|\theta, y} \left[\nabla_{\theta} \log p(X, y; \theta) \right].
\]
Expectations $\nabla_\theta \log p(y; \theta) = E_{X|\theta,y} [\nabla_\theta \log p(X, y; \theta)]$

$$p(x, y|a, \sigma^2_W, \sigma^2_U) = \prod_k \mathcal{N}(x_k - \sum_{n=1}^{M} a_n x_{k-n} | 0, \sigma^2_U) \mathcal{N}(y_k - x_k | 0, \sigma^2_W).$$

As a consequence:

$$\nabla_\theta \log p(x, y|a, \sigma^2_W, \sigma^2_U) = \sum_k \nabla_\theta \log f_1(x_k, \ldots, x_{k-M}, a, \sigma^2_U) + \sum_k \nabla_\theta \log f_2(x_k, \sigma^2_W, y_k).$$
Expectations $\nabla_{\theta} \log p(y; \theta) = E_{X|\theta y} [\nabla_{\theta} \log p(X, y; \theta)]$ (2)

\[E_{X|a} \sigma_{W}^{2} \sigma_{U}^{2} \nabla a_{i} \log f_{1}(X_{k}, \ldots, X_{k-M}, a, \sigma_{U}^{2}) \]

\[= \frac{1}{\sigma_{U}^{2}} \left(E_{X|a} \sigma_{W}^{2} \sigma_{U}^{2} \nabla X_{k-i} X_{k} - \sum_{\ell=1}^{M} a_{\ell} E_{X|a} \sigma_{W}^{2} \sigma_{U}^{2} \nabla X_{k-i} X_{k-\ell} \right) \]

\[E_{X|a} \sigma_{W}^{2} \sigma_{U}^{2} \nabla \sigma_{U}^{2} \log f_{1}(X_{k}, \ldots, X_{k-M}, a, \sigma_{U}^{2}) \]

\[= -\frac{1}{2\sigma_{U}^{2}} + \frac{1}{2\sigma_{U}^{4}} \left(E_{X|a} \sigma_{W}^{2} \sigma_{U}^{2} \nabla X_{k}^{2} - 2 \sum_{\ell=1}^{M} a_{\ell} E_{X|a} \sigma_{W}^{2} \sigma_{U}^{2} \nabla X_{k} X_{k-\ell} \right) \]

\[+ \sum_{\ell=1}^{M} \sum_{m=1}^{M} a_{\ell} a_{m} E_{X|a} \sigma_{W}^{2} \sigma_{U}^{2} \nabla X_{k-\ell} X_{k-m} \right) \]

\[E_{X|a} \sigma_{W}^{2} \sigma_{U}^{2} \nabla \sigma_{W}^{2} \log f_{2}(X_{k}, \sigma_{W}^{2}, y_{k}) \]

\[= -\frac{1}{2\sigma_{W}^{2}} + \frac{1}{2\sigma_{W}^{4}} \left(y_{k}^{2} - 2y_{k} E_{X|a} \sigma_{W}^{2} \sigma_{U}^{2} \nabla X_{k} + E_{X|a} \sigma_{W}^{2} \sigma_{U}^{2} \nabla X_{k}^{2} \right). \]
Expectations $\nabla_\theta \log p(y; \theta) = \mathbb{E}_{X|\theta y} \left[\nabla_\theta \log p(X, y; \theta) \right]$ (3)

Computation of means/variances/correlations

$E_{X|a}\sigma^2_W\sigma^2_U y$ computed by forward/backward Kalman recursions.

($=\text{sum-product rule with Gaussian messages}$)
Computing the Fisher information matrix of AR model

1. Generate a list of samples \(\{ \hat{y}(j) \}_{j=1}^{N} \) from \(p(y|\theta) \).

2. For \(j = 1, \ldots, N \):
 - Forward and backward Kalman recursion with \(y = \hat{y}(j) \).
 - Evaluate the expression:
 \[
 E_{X|\theta,\hat{y}(j)} \left[\nabla_{\theta} \log p(X, \hat{y}(j); \theta) \right].
 \]

3. Compute the estimate \(\hat{F}(\theta) \) for \(F(\theta) \):
 \[
 \hat{F}(\theta) \triangleq \frac{1}{N} \sum_{j=1}^{N} \left[E_{X|\theta,\hat{y}(j)} \left[\nabla_{\theta} \log p(X, \hat{y}(j); \theta) \right] \right.
 \]
 \[
 \left. E_{X|\theta,\hat{y}(j)}^{T} \left[\nabla_{\theta} \log p(X, \hat{y}(j); \theta) \right] \right].
 \]
Results for σ_{W}^{2} ($\sigma_{U}^{2} = 0.1; \sigma_{W}^{2} = 0.001, 0.01, 0.1$)

Estimation algorithm by Sascha Korl.
Summary: Cramér-Rao-type bounds

What?
Lower bounds on the mean-squared estimation error (MSE)

Three different types
- **Standard** Cramér-Rao bounds: parameters
- **Bayesian** Cramér-Rao bounds: random variables
- **Hybrid** Cramér-Rao bounds: parameters and random variables.

Two strategies
Inverse of information matrix of joint pdf or marginal.

Algorithms
We propose message-passing algorithms for computing the three types of CRBs following both strategies.
Other applications

- Other types of bounds, e.g., Weiss-Weinstein (discrete variables), Bhattacharyya, etc.
- Information geometry: natural-gradient-based algorithms
Contributions

Modeling
Which physical mechanisms are responsible for (phase) noise?
How can (phase) noise be modeled?

Simple intuitive model for phase noise.

Algorithms
How can phase-estimation algorithms systematically be derived?
As message passing on factor graph of the system a hand.

Performance limits
How well can the (noisy) carrier phase be estimated?
How much does the information rate decrease due to phase noise?

Computation of Cramér-Rao bounds/information rates/capacities.
Information rate: introduction

Objective

Information rate $I(X; Y) \triangleq \lim_{n \to \infty} \frac{1}{n} I(X_1, \ldots, X_n; Y_1, \ldots, Y_n)$ between input process $X = (X_1, X_2, \ldots)$ and output process $Y = (Y_1, Y_2, \ldots)$ of time-invariant discrete-time channel with memory.

State-space representation

An ergodic stochastic process $S = (S_0, S_1, S_2, \ldots)$ such that

$$p(x^n, y^n, s^n_0) = p(s_0) \prod_{k=1}^{n} p(x_k, y_k, s_k | s_{k-1})$$

for all $n > 0$ and with $p(x_k, y_k, s_k | s_{k-1})$ not depending on k.

![State-space diagram](image_url)
Basic principle

Reminder

\[I(X; Y) = h(Y) - h(Y|X). \]

Shannon-McMillan-Breiman theorem

\begin{itemize}
\item \(-\frac{1}{n} \log p(X^n) \rightarrow H(X) \text{ w.p.} 1\)
\item \(-\frac{1}{n} \log p(Y^n) \rightarrow h(Y) \text{ w.p.} 1\)
\item \(-\frac{1}{n} \log p(X^n, Y^n) \rightarrow H(X) + h(Y|X) \text{ w.p.} 1.\)
\end{itemize}

Notation: \(X^n \triangleq (X_1, \ldots, X_n)\) and \(Y^n \triangleq (Y_1, \ldots, Y_n)\)

Algorithm

1. Sample two “very long” sequences \(x^n\) and \(y^n\).
2. Compute \(\log p(x^n), \log p(y^n),\) and \(\log p(x^n, y^n).\)
3. \(\hat{I}(X; Y) \triangleq \frac{1}{n} \log p(x^n, y^n) - \frac{1}{n} \log p(x^n) - \frac{1}{n} \log p(y^n).\)

[Arnold et al., Pfister et al., Sharma et al.]
Basic principle

Compute \(\log p(x^n), \log p(y^n), \) and \(\log p(x^n, y^n) \).

Discrete input space \(\mathcal{X} \) and state-space \(S \) [e.g., Arnold et al.]
Forward sum-product sweep = forward BCJR-recursion

Continuous input space \(\mathcal{X} \) and state-space \(S \)
Forward sum-product sweep by particle filtering. Expression \(p(x_k, s_k|s_{k-1}) \) not required!
E.g., stochastic differential/difference equation.
Forward sum-product sweep

Computation of \(p(y^n) \triangleq \int_{x^n} \int_{s_0^n} p(x^n, y^n, s_0^n) \).

Recursion

\[
\mu_k(s_k) = \int_{x_k} \int_{s_{k-1}} \mu_{k-1}(s_{k-1}) p(x_k, y_k, s_k | s_{k-1}) \, dx_k \, ds_{k-1}
\]

\[
= \int_{x_k} \int_{s_{k-1}} p(x^k, y^k, s^k) \, dx^k \, ds_{k-1}^{k-1}
\]

Marginal computed from message

\[
p(y^n) = \int_{s_n} \mu_n(s_n).
\]
Forward sum-product sweep

Computation of $p(y^n) \triangleq \int_{x^n} \int_{s_0^n} p(x^n, y^n, s_0^n)$.

Recursion with normalization

\[\mu_k(s_k) = \lambda_k \int_{x_k} \int_{s_k-1} \mu_{k-1}(s_{k-1}) p(x_k, y_k, s_k | s_{k-1}) dx_k ds_{k-1}. \]

\[\int_{s_k} \mu_k(s_k) = 1 \text{ for all } k. \]

Marginal computed from normalization factors

\[\frac{1}{n} \sum_{k=1}^{n} \log \lambda_k = -\frac{1}{n} \log p(y^n). \]
Computation of normalization factors

Discrete input space \mathcal{X} and state-space \mathcal{S}

Forward sum-product recursion $=$ forward BCJR recursion

$$
\lambda_k^{-1} = \sum_{s_k} \sum_{x_k} \sum_{s_{k-1}} \mu_{k-1}(s_{k-1}) \ p(x_k, s_k | s_{k-1}) \ p(y_k | x_k, s_k, s_{k-1}).
$$

Continuous input space \mathcal{X} and state-space \mathcal{S}

Forward sum-product recursion $=$ particle filtering

$$
\lambda_k^{-1} = \int_{s_k} \int_{x_k} \int_{s_{k-1}} \mu_{k-1}(s_{k-1}) \ p(x_k, s_k | s_{k-1}) \ p(y_k | x_k, s_k, s_{k-1}) \ ds_k \ dx_k \ ds_{k-1}
$$

$$
= E_{s_{k-1} s_k x_k} [p(y_k | x_k, s_k, s_{k-1})]
$$

$$
\approx \frac{1}{N} \sum_{\ell=1}^{N} p_{Y_k | X_k, S_k, S_{k-1}}(y_k | \hat{x}_k, \ell, \hat{s}_k, \ell, \hat{s}_{k-1}, \ell).
$$
Particle method

Algorithm

1. Begin with list \(\{ \hat{s}_{k-1, \ell} \} \) that represents \(\mu_{k-1} \).
2. Extend each particle \(\hat{s}_{k-1, \ell} \) to three-tuple \((\hat{s}_{k-1, \ell}, \hat{x}_{k, \ell}, \hat{s}_{k, \ell})\) by sampling from \(p(x_k, s_k | \hat{s}_{k-1, \ell}) \).
3. Compute an estimate of \(\lambda_k \).
4. **Resampling**: draw \(N \) samples from list \(\{ (\hat{s}_{k-1, \ell}, \hat{x}_{k, \ell}, \hat{s}_k, \ell) \} \) by choosing each three-tuple with probability proportional to \(p_{Y_k | x_k, s_k, s_{k-1}}(y_k | \hat{x}_k, \ell, \hat{s}_k, \ell, \hat{s}_{k-1, \ell}) \).
5. Drop \(\hat{s}_{k-1, \ell} \) and \(\hat{x}_{k, \ell} \) of each new three-tuple and obtain the new list \(\{ \hat{s}_k, \ell \} \).
Particle method

Algorithm

1. Begin with list \(\{\hat{s}_{k-1, \ell}\}^{N}_{\ell=1} \) that represents \(\mu_{k-1} \).
2. Extend each particle \(\hat{s}_{k-1, \ell} \) to three-tuple \((\hat{s}_{k-1, \ell}, \hat{x}_{k, \ell}, \hat{s}_{k, \ell}) \) by sampling from \(p(x_{k, s_{k} | \hat{s}_{k-1, \ell}}) \).
3. Compute an estimate of \(\lambda_{k} \).
4. Resampling: draw \(N \) samples from list \(\{(\hat{s}_{k-1, \ell}, \hat{x}_{k, \ell}, \hat{s}_{k, \ell})\}^{N}_{\ell=1} \) by choosing each three-tuple with probability proportional to \(p(y_{k} | x_{k, s_{k}, s_{k-1}}(y_{k} | \hat{x}_{k, \ell}, \hat{s}_{k, \ell}, \hat{s}_{k-1, \ell})) \).
5. Drop \(\hat{s}_{k-1, \ell} \) and \(\hat{x}_{k, \ell} \) of each new three-tuple and obtain the new list \(\{\hat{s}_{k, \ell}\}^{N}_{\ell=1} \).
Observation

Sampling from $p(x_k, s_k | \hat{s}_{k-1,\ell})$

Closed-form expression for $p(x_k, s_k | \hat{s}_{k-1,\ell})$ not required!

State transitions may be modeled by

- Stochastic finite difference equations
- Stochastic ordinary differential equations
- Stochastic partial differential equations.

Allows detailed physical modeling of communications channel e.g., optical fibers, wave guides, hard drives etc.
Random-walk phase model with i.u.d. 4-PSK input symbols X
Contributions

Modeling
Which physical mechanisms are responsible for (phase) noise?
How can (phase) noise be modeled?
Simple intuitive model for phase noise.

Algorithms
How can phase-estimation algorithms systematically be derived?
As message passing on factor graph of the system a hand.

Performance limits
How well can the (noisy) carrier phase be estimated?
How much does the information rate decrease due to phase noise?
Computation of Cramér-Rao bounds/information rates/capacities.
Capacity of continuous memoryless channel

Definition

Given: memoryless channel with law $p(y|x)$

$$C(X; Y) \triangleq \sup_{p(x)} \int_x \int_y p(x)p(y|x) \log \frac{p(y|x)}{p(y)} dxdy \triangleq \sup_{p(x)} I(X; Y)$$

Discrete input alphabet \mathcal{X}

Blahut-Arimoto algorithm.

Continuous input alphabet \mathcal{X}

Particle-based approach: $p(x) \approx \{(\hat{x}_1, w_1), (\hat{x}_2, w_2), \ldots, (\hat{x}_N, w_N)\}$.

Method for channels with memory currently in development.
Blahut-Arimoto algorithm

1. **START** with some $p^{(0)}(x)$.

2. **ITERATE**

\[
p^{(k)}(x) = \frac{1}{Z^{(k)}} p^{(k-1)}(x) \exp \left(D \left(p(y|x) \parallel p^{(k-1)}(y) \right) \right)
\]

\[
p^{(k)}(y) \triangleq \int_{x \in \mathcal{X}} p^{(k)}(x) p(y|x) dx.
\]

\[
Z^{(k)} \triangleq \int_{x \in \mathcal{X}} p^{(k-1)}(x) \exp \left(D \left(p(y|x) \parallel p^{(k-1)}(y) \right) \right) dx.
\]

UNTIL

\[
\max_{x \in \mathcal{X}} D \left(p(y|x) \parallel p^{(n)}(y) \right) - I^{(n)} < \varepsilon
\]

\[
I^{(n)} \triangleq \int_{x \in \mathcal{X}} p^{(n)}(x) D \left(p(y|x) \parallel p^{(n)}(y) \right) dx.
\]
Continuous channels

Blahut-Arimoto algorithm and continuous channels

- Blahut-Arimoto algorithms only **practical** for **discrete** channels.
- **Continuous** channels

\[p(x) = \mathcal{L} \triangleq \{(\hat{x}_1, w_1), (\hat{x}_2, w_2), \ldots, (\hat{x}_N, w_N)\} \]

with \(\hat{x}_k \in \mathcal{X} \) and \(0 \leq w_k \leq 1 \).
Algorithm

Non-convex finite-dimensional optimization problem

\[\mathcal{L}^* \triangleq \arg\max_{\hat{x}, w} I(\hat{x}, w) \]

Solved by alternating maximization

\[w^{(k)} \triangleq \arg\max_w I(\hat{x}^{(k-1)}, w) \quad \text{(Blahut-Arimoto)} \]

\[\hat{x}^{(k)} \triangleq \arg\max_{\hat{x}} I(\hat{x}, w^{(k)}) \quad \text{(gradient method)} \]

Method for channels with memory currently in development.
Results: Gaussian channel

\[Y_k = X_k + N_k \text{ with } N_k \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_N^2) \text{ and } \Pr[0 \leq X_k \leq 1] = 1 \]
Evolution of the mass points

\[\text{SNR} = 13 \text{dB} \]
Objectives

Analog circuit that locks unto pseudo-random sequences (GPS, UWB, CDMA).

SNR = 0dB

Objective

Analog circuit that locks unto pseudo-random sequences (GPS, UWB, CDMA).

Method

Discrete-time message-passing algorithm for synchronization to LFSR-sequences converted into continuous-time.

Practical result

Practical circuit built and tested: it works!

Theoretical result

Connection between entrainment and ideas from estimation theory (“message passing”).

Based on the noisy observation Y of the LFSR-sequence X, infer the actual state of the source.
Discrete-time synchronization task

\[X = [\ldots, X_{k-1}, X_k, X_{k+1}, \ldots] \text{ with } X_k = X_{k-1} \oplus X_{k-3} \]

State diagram
Discrete-time synchronization task

\[X = [\ldots, X_{k-1}, X_k, X_{k+1}, \ldots] \] with \(X_k = X_{k-1} \oplus X_{k-3} \)
Reminder: SP for EQU and XOR-node

\[L \triangleq \log \frac{\mu(0)}{\mu(1)} \quad \Delta = \frac{\mu(0) - \mu(1)}{\mu(0) + \mu(1)} \]

\[\delta[x - y] \delta[x - z] \]

\[X \quad Z \]
\[Y \]

\[\begin{pmatrix} \mu_Z(0) \\ \mu_Z(1) \end{pmatrix} = \begin{pmatrix} \mu_X(0) \mu_Y(0) \\ \mu_X(0) \mu_X(1) \end{pmatrix} \]

\[L_Z = L_X + L_Y \]
\[\Delta Z = \frac{\Delta_X + \Delta_Y}{1 + \Delta_X \Delta_Y} \]

\[\delta[x \oplus y \oplus z] \]

\[X \quad Z \]
\[Y \]

\[\begin{pmatrix} \mu_Z(0) \\ \mu_Z(1) \end{pmatrix} = \begin{pmatrix} \mu_X(0) \mu_Y(0) + \mu_X(1) \mu_Y(1) \\ \mu_X(0) \mu_X(1) + \mu_X(1) \mu_X(0) \end{pmatrix} \]

\[\tanh(L_Z/2) = \tanh(L_X/2) \cdot \tanh(L_Y/2) \]
\[\Delta Z = \Delta_X \Delta_Y \]
Forward-only message passing on the factor graph
Forward-only message passing on the factor graph

Interpretation:
Filtering of the sequence Y with a soft version of the LFSR.
Signal Source

- Delay elements replaced by linear filters.
- Output of the filters $X'_1(t)$ and $X'_2(t) \in \mathbb{R}$.
- Introduction of threshold functions $(X_1(t), X_2(t)$ and $X(t) \in \{-1, +1\})$.
- Multiplication corresponds to addition modulo 2.
From Discrete-Time to Continuous-Time

Synchronizing Circuit

A soft version of the signal source.
From Discrete-Time to Continuous-Time (2)

Overview

<table>
<thead>
<tr>
<th>Transmitter + Channel</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_{k-3} D X_{k-2} D X_{k-1} D X_k memoryless channel Y_k</td>
<td>μ_{k-3} D μ_{k-2} D μ_{k-1} D μ_k memoryless channel Y_k</td>
</tr>
<tr>
<td>$X_2(t)$ \times $X_1(t)$ $\mu_{X_2}(t)$ \times $\mu_{X_1}(t)$ $\mu_B(t)$</td>
<td>$\mu_B(t)$</td>
</tr>
<tr>
<td>$X_2(t)$ $H_2(s)$ $X_1(t)$ $H_1(s)$ $X(t)$ memoryless channel $Y(t)$</td>
<td>$\mu_{X_2}(t)$ $H_2(s)$ $\mu_{X_1}(t)$ $H_1(s)$ memoryless channel $Y(t)$</td>
</tr>
</tbody>
</table>
Results

Photograph and measurements by M. Frey and P. Merkli.
Hardware built by T. Schaerer.

\[\text{SNR} = 0 \text{dB} \]
Summary

- Framework for deriving inference algorithms:
 - Factor graph = graphical representation of system
 - Algorithm = updating messages on factor graph.

- Message-passing algorithms for computing:
 - information rates
 - channel capacities
 - Cramér-Rao-type bounds.

- Analog circuit for PN-synchronization
 = message-passing algorithm as dynamical system.
Outlook

- Lower bounds on the MSE for discrete variables.
- Extension of the particle-based BA-algorithm to continuous channels with memory/feedback/side information.
- Analog electronic circuits for estimation.
- Novel applications of message-passing methods
 - Information geometry
 - Kernel methods.
On various applications of message passing on factor graphs

Justin Dauwels

www.dauwels.com

Signal and Information Processing Laboratory
ETH Zurich

December 13
Noise Sources

Shot noise

Fluctuations of electrical currents due to **discreteness of charges**:

\[l(t) = \sum_{k} q\delta(t - t_k), \quad t_k \sim \text{Poisson process} \]

Zero-mean **white noise** \(\tilde{l}(t) \triangleq l(t) - \mathbb{E}[l(t)] \) with spectral density:

\[S_{\text{shot}}(f) = 2q\mathbb{E}[l(t)]. \]

Thermal noise

Fluctuations of open-circuit voltage and closed-circuit current of conductor. Is nothing but **shot noise**! [Sarpeshkar et al., 1993]

Flicker noise (or “1/f noise”)

Fluctuations of **inter-event time** \(\tau_k \triangleq t_k - t_{k-1} \) modeled by AR(1) model. [Kaulakys, 2004]
Phase Noise in Free-Running Clocks

Perturbed autonomous system

\[
\frac{dx}{dt} = f(x) + N(t), \quad x \in \mathbb{R}^n, \quad N(t) \text{ is "noise".}
\]

Phase offset due to "small" perturbation at \(t = t_0 \)

\[
\theta(t_0, n_0) \approx \gamma(x_s(t_0)) \cdot n_0.
\]
Phase Noise in Free-Running Clocks

Perturbed autonomous system

\[\frac{dx}{dt} = f(x) + N(t), \quad x \in \mathbb{R}^n, \quad N(t) \text{ is "noise".} \]

\[x(t_{t1^-}) = x_s(t_1 + \theta(t_0, n_0)) \]

Phase offset due to “small” perturbation at \(t = t_1 \gg t_0 \)

\[\theta(t_0, n_0, t_1, n_1) \approx \gamma(x_s(t_0)) \cdot n_0 + \gamma(x_s(t_1 + \theta(x_s(0), n_0))) \cdot n_1. \]
Phase Noise in Free-Running Oscillator

Continuous-time phase-noise model

\[\Theta(t) = \left[\int_{-\infty}^{t} \gamma(t' + \Theta(t')) \cdot N(t') dt' \right] \mod 2\pi. \]

Discrete-time phase-noise model

\[\Theta_k = (\Theta_{k-1} + N_k) \mod 2\pi, \quad \Theta_k \triangleq \Theta(kT_s) \]

with

\[N_k \triangleq \int_{(k-1)T_s}^{kT_s} \gamma(t' + \Theta(t'))N(t')dt'. \]

Discrete-time phase-noise model: white-noise sources

\[\Theta_k = (\Theta_{k-1} + N_k) \mod 2\pi, \quad N_k \sim \mathcal{N}_0,\sigma_N^2. \]
Numerical integration

Integral-product rule evaluated by numerical integration

\[\mu_{f \rightarrow Y}(y) \propto \sum_{i_1, \ldots, i_N} f(y, \hat{x}_1^{(i_1)}, \ldots, \hat{x}_N^{(i_N)}) \cdot \mu_{X_1 \rightarrow f}(\hat{x}_1^{(i_1)}) \cdots \mu_{X_N \rightarrow f}(\hat{x}_N^{(i_N)}) , \]

where \(\hat{x}_k^{(i_k)} \) is the \(i_k \)-th quantization level of \(X_k \).
Phase estimation: results
EM: initial estimate vs. final estimate
Convergence

Random-walk phase model

EM

Quantization
FER as a function of number of quantization levels

(SNR = 0dB, 1dB, 2dB, and 3dB)
Particle methods

Integral-product rule evaluated by particle methods

\[\mu_{f \rightarrow Y}(y) \propto \sum_{i_1, \ldots, i_N} f(y, \hat{x}^{(i_1)}_1, \ldots, \hat{x}^{(i_N)}_N) \cdot w^{(i_1)}_1 \cdots w^{(i_N)}_N, \]

where \(\hat{x}^{(i_k)}_k \) is the \(i_k \)-th particle of the particle list that represents \(\mu_{X_k \rightarrow f} \), and \(w^{(i_k)}_k \) is the weight of that particle.
Gibbs sampling

Algorithm

1. Choose an initial value $(\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_N)$.
2. Choose an index k.
3. Draw a sample \hat{x}_k from
 \[
 f(x_k) \triangleq \frac{f(\hat{x}_1, \ldots, \hat{x}_{k-1}, x_k, \hat{x}_{k+1}, \ldots, \hat{x}_N)}{\sum_{x_k} f(\hat{x}_1, \ldots, \hat{x}_{k-1}, x_k, \hat{x}_{k+1}, \ldots, \hat{x}_N)}.
 \]
4. Iterate 2–3 a “large” number of times.
Gibbs sampling

Message passing view

1. Select variable (EQU constraint node) \(Y \) in FG of \(f \).
2. EQU node \(Y \) generates message \(\hat{y} \) by sampling from:

\[
 f(y) \triangleq \frac{\mu_1(y) \cdots \mu_N(y)}{\sum_y \mu_1(y) \cdots \mu_N(y)},
\]

and broadcasts \(\hat{y} \) to its neighboring nodes \(f_k \) \((k = 1, \ldots, M)\).
3. Nodes \(f_k \) update messages \(\tilde{\mu} \) by applying sum-product rule with as incoming messages the samples \(\hat{y} \) and \(\hat{x}_\ell \) \((\ell = 1, \ldots, M)\).
Importance sampling

Suppose we wish to compute:

\[E_f[g] \triangleq \int_x f(x)g(x), \quad (1) \]

but naive computation is intractable.

Generate a list samples \(\{\hat{x}^{(i)}\}_{i=1}^N \) from \(f \) and evaluate (1) as

\[E_f[g] \triangleq \frac{1}{N} \sum_{i=1}^N g(\hat{x}^{(i)}). \quad (2) \]

Suppose that sampling from \(f \) is “hard”, hence (2) is infeasible.

Draw samples \(\{\hat{x}^{(i)}\}_{i=1}^N \) from a different function \(h \) with \(\text{supp}(f) \subseteq \text{supp}(h) \), compute (1) as

\[E_f[g] \triangleq \frac{1}{N} \sum_{i=1}^N w^{(i)} g(\hat{x}^{(i)}) \quad \text{with} \quad w^{(i)} \triangleq \frac{f(\hat{x}^{(i)})}{h(\hat{x}^{(i)})}. \quad (3) \]
Importance sampling (2)

Suppose

\[f(x) \triangleq f_1(x)f_2(x). \]

Draw samples \(\{\hat{x}^{(i)}\}_{i=1}^{N} \) from \(f_1 \) and weight those samples by the function \(f_2 \):

\[w^{(i)} \triangleq f_2(\hat{x}^{(i)}). \]
Particle filtering

Particle filtering (or “sequential Monte-Carlo integration”) = forward-only message passing in a state-space model:

\[f(s_0, s_2, \ldots, s_N, y_1, y_2, \ldots, y_N) \equiv f_A(s_0) \prod_{k=1}^{N} f_A(s_{k-1}, s_k)f_B(s_k, y_k), \]

where messages are represented by lists of samples.

\[\tilde{\mu}_k \text{ is obtained from } \mu_{k-1} \text{ by weighted or unweighted sampling.} \]
\[\mu_k \text{ is generated from } \tilde{\mu}_k \text{ by importance sampling.} \]
Smoothing

\[f_A(s_{k-1}, s_k) = \mu_F^{k-1} \tilde{\mu}_k^F \]

\[f_B(s_k, y_k) = \mu_B^k - 1 \tilde{\mu}_B^k \mu_U^k \]

\[\cdots \]

\[\text{particle list} \quad \text{closed-form} \]

\[\cdots \quad \text{closed-form} \]

\[\cdots \quad \text{closed-form} \]

\[\text{particle list} \quad \text{closed-form} \]

\[\cdots \quad \text{closed-form} \]
MCMC

Algorithm

1. Choose an initial value \hat{x}.
2. Sample \hat{y} from $q(y|\hat{x})$.
3. Set
 $$\hat{x} \triangleq \hat{y} \text{ with probability } p$$
 where
 $$p \triangleq \min \left\{ \frac{f(\hat{y})}{f(\hat{x})}, 1 \right\}$$
4. Iterate 2–3 a sufficient number of times.
MCMC

Message passing view

1. Select variable (equality constraint node) Y in FG of f.
2. Edge Y generates the message \hat{y}^{new} by sampling from $q(y|\hat{y})$.
3. Set $\hat{y} \triangleq \hat{y}^{\text{new}}$ with probability p where
 \[p \triangleq \min \left\{ \frac{f(\hat{y}^{\text{new}})}{f(\hat{y})}, 1 \right\} \text{ with } f(y) \triangleq \frac{\mu_1(y) \cdots \mu_N(y)}{\sum_y \mu_1(y) \cdots \mu_N(y)}. \]
 The message \hat{y} is broadcast to the neighboring nodes f_k.
4. Nodes f_k update outgoing messages $\tilde{\mu}$ by applying the SP rule with as incoming messages the samples \hat{y} and \hat{x}_ℓ.

\[
\mu_1 \cdots \mu_N
\]

\[
\tilde{\mu}_1 \cdots \tilde{\mu}_M
\]

\[
\hat{y} \quad \hat{y}
\]

\[
Y
\]

\[
X_1 \cdots X_M
\]

\[
\hat{y} \quad \hat{y}
\]
Simulated Annealing

Objective

- to sample from a multivariate function $f(x_1, \ldots, x_N)$,
- to find the mode of the function f.

Algorithm

1. Choose an initial value $(\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_N)$.
2. Choose an initial value α (e.g., $\alpha = 0.1$).
3. Sample a new value \hat{y} from $q(y|\hat{x})$.
4. Set $\hat{x} \triangleq \hat{y}$ with probability p, where

 $$p \triangleq \min \left\{ \left(\frac{f(\hat{y})}{f(\hat{x})} \right)^\alpha, 1 \right\}$$

5. Iterate 3–4 a “large” number of times.
6. Increase α according to some schedule.
7. Iterate 5–6 until convergence or until available time is over.
Single value approximation

Integral-product rule evaluated by means of hard decision

\[\mu_{f \rightarrow Y}(y) \propto f(y, \hat{x}_1, \ldots, \hat{x}_N), \]

where \(\hat{x}_k \) is a hard estimate of \(X_k \), representing the message \(\mu_{X_k \rightarrow f} \).

Gradient descent / sum-product

\[\nabla_\Theta f_A(\theta) \propto \sum_{x_1, \ldots, x_n} \nabla_\theta g(x_1, \ldots, x_n, \theta) \cdot \prod_{\ell=1}^{n} \mu_{X_\ell \rightarrow g}(x_\ell). \]
Expectation Maximization: General problem

\[
\theta_{\text{max}} \triangleq \arg\max_{\theta} f(\theta)
\]

\(\theta\) takes values in \(\mathbb{R}\) or \(\mathbb{R}^n\)

\[
f(\theta) \triangleq \int_x f(x, \theta)dx
\]

\(\int_x g(x)dx\) stands for summation or integration.

In principle

1. Determine \(f(\theta)\) by sum-product message passing
2. \(\theta_{\text{max}} \triangleq \arg\max_{\theta} f(\theta)\) by max-product message-passing

Often infeasible, since

- Sum-product rule may lead to intractable integrals
- Maximization step may be infeasible.
Parameter estimation in state-space model

\[f(x, \theta) = f_A(\theta_1) \prod_{k=1}^{n-1} f_A(\theta_k, \theta_{k+1}) \cdot f_B(x_0) \prod_{k=1}^{n} f_B(x_{k-1}, x_k, \theta_k, y_k) \]
Expectation Maximization

1. Make initial guess $\theta^{(0)}$
2. **Expectation** step
 \[f^{(\ell)}(\theta) \triangleq \int_x f(x, \hat{\theta}^{(\ell)}) \log f(x, \theta) dx \]
3. **Maximization** step
 \[\theta^{(\ell+1)} \triangleq \arg\max_{\theta} f^{(\ell)}(\theta) \]
4. Repeat 2–3 until convergence.
EM as message passing

\[f(x, \theta) \triangleq f_A(\theta)f_B(x, \theta) \]
EM as message passing (2)

Expectation step

\[f^{(\ell)}(\theta) \triangleq \int_x f(x, \hat{\theta}^{(\ell)}) \log f(x, \theta) dx \]

Maximization step

\[\theta^{(\ell+1)} \triangleq \arg\max_{\theta} f^{(\ell)}(\theta) \]

\[\hat{\theta}^{(\ell+1)} = \arg\max_{\theta} \int_x f(x, \hat{\theta}^{(\ell)}) \log f(x, \theta) dx \]

\[= \arg\max_{\theta} \int_x f_A(\hat{\theta}^{(\ell)}) f_B(x, \hat{\theta}^{(\ell)}) \log (f_A(\theta) f_B(x, \theta)) dx \]

\[= \arg\max_{\theta} \int_x f_B(x, \hat{\theta}^{(\ell)}) \left(\log f_A(\theta) + \log f_B(x, \theta) \right) dx \]

\[= \arg\max_{\theta} \left(\log f_A(\theta) + \frac{\int_x f_B(x, \hat{\theta}^{(\ell)}) \log f_B(x, \theta) dx}{\int_x f_B(x, \hat{\theta}^{(\ell)}) dx} \right) \]

\[= \arg\max_{\theta} \left(\log f_A(\theta) + h(\theta) \right) \]
EM as message passing (3)

\[f(x, \theta) \triangleq f_A(\theta)f_B(x, \theta) \]

Upwards message \(h(\theta) \)

\[
h(\theta) = \frac{\int_x f_B(x, \hat{\theta}(\ell)) \log f_B(x, \theta) dx}{\int_x f_B(x, \hat{\theta}(\ell)) dx} = E_{p_B}[\log f_B(x, \theta)]
\]

Downwards message \(\hat{\theta}(\ell+1) \)

\[
\hat{\theta}(\ell+1) = \arg\max_\theta \left(\log f_A(\theta) + h(\theta) \right)
\]
EM as message passing (4)

Remarks

- If $f_A(\theta)$ is constant, then normalization may be omitted.
- Message $h(\theta)$ is not sum-product message!
- f_A and f_B often have a “nice” structure.
EM as message passing (5)

Trellis and state space models

\[f_A(\theta) \triangleq f_{A_1}(\theta_1)f_{A_2}(\theta_1, \theta_2) \ldots f_{A_n}(\theta_{n-1}, \theta_n) \]
\[f_B(x, \theta) \triangleq f_{B_0}(x_0)f_{B_1}(x_0, x_1, y_1, \theta_1)f_{B_2}(x_1, x_2, y_2, \theta_2) \ldots f_{B_n}(x_{n-1}, x_n, y_n, \theta_n) \]
EM as message passing (6)

\[h(\theta) = \sum_{\ell=1}^{n} h_\ell(\theta_\ell) = \sum_{\ell=1}^{n} \int_{x_{\ell-1}} \int_{x_\ell} p_B(x_{\ell-1}, x_\ell, |y, \hat{\theta}) \log f_{B_\ell}(x_{\ell-1}, x_\ell, y, \theta_\ell) \, dx_{\ell-1} \, dx_\ell \]

\[p_B(x_{\ell-1}, x_\ell, |y, \hat{\theta}) = \frac{f_{B_\ell}(x_{\ell-1}, x_k, y, \theta_\ell) \mu_x \rightarrow f_{B_\ell}(x_\ell) \mu_x \rightarrow f_{B_\ell}(x_{\ell-1})}{\int_{x_{\ell-1}} \int_{x_\ell} f_{B_\ell}(x_{\ell-1}, x_\ell, y, \theta_k) \mu_x \rightarrow f_{B_\ell}(x_\ell) \mu_x \rightarrow f_{B_\ell}(x_{\ell-1}) \, dx_{\ell-1} \, dx_\ell} \]

\[(\hat{\theta}_1, \hat{\theta}_2, \ldots, \hat{\theta}_n)^T = \arg\max_{\theta_1, \theta_2, \ldots, \theta_n} \left[\log f_{A_1}(\theta_1) + \sum_{\ell=2}^{n} \log f_{A_\ell}(\theta_{\ell-1}, \theta_\ell) + \sum_{\ell=1}^{n} h_\ell(\theta_\ell) \right] \]
EM as message passing (7)

h-messages

\[h(\theta_k) = \gamma^{-1} \int_z g(z_1, \ldots, z_m, \hat{\theta}_k) \mu(z_1) \cdots \mu(z_m) \log g(z_1, \ldots, z_m, \theta_k) \, dz \]

\[= \int_z p(z_1, \ldots, z_m|\hat{\theta}_k) \log g(z_1, \ldots, z_m, \theta_k) \, dz \]

\[= E_{p(z_1, \ldots, z_m|\hat{\theta}_k)}[\log g(z_1, \ldots, z_m, \theta_k)] \]

\[p(z_1, \ldots, z_m|\hat{\theta}_k) = \gamma^{-1} g(z_1, \ldots, z_m, \hat{\theta}_k) \mu(z_1) \cdots \mu(z_m) \]

\[\gamma = \int_z g(z_1, \ldots, z_m, \hat{\theta}_k) \mu(z_1) \cdots \mu(z_m) \, dz \]

\[\mu(z_k) \text{ are sum-product messages} \]
Expectation Maximization: Properties

Theorem (Main property)

\[f(\hat{\theta}^{(k+1)}) \geq f(\hat{\theta}^{(k)}). \]

Corollary

The global maximum \(\theta^{\text{max}} \) *of* \(f(\theta) \) *is a fixed point of EM.*

Theorem

The fixed points of EM are stationary points of \(f(\theta) \).

Theorem

A stationary point \(\hat{\theta}^{\text{stat}} \) *of* \(f \) *is a fixed point of EM, if* \(\bar{f}(\theta, \hat{\theta}^{\text{stat}}) \) *with*

\[\bar{f}(\theta, \theta') \triangleq \sum_x f(x, \theta') \log f(x, \theta), \]

is concave in \(\theta \).
EM and compound nodes
Hybrid EM

\[h(\theta_k) = \sum_{z_1} \cdots \sum_{z_n} p(z_1, \ldots, z_n | \hat{\theta}_k) \log f(z_1, \ldots, z_n, \theta_k), \]

\[= \gamma^{-1} \sum_{z_1} \cdots \sum_{z_n} f(z_1, \ldots, z_n, \hat{\theta}_k) \mu(z_1) \cdots \mu(z_n) \cdot \log f(z_1, \ldots, z_n, \theta_k), \]

with

\[\gamma \triangleq \sum_{z_1} \cdots \sum_{z_n} f(z_1, \ldots, z_n, \hat{\theta}_k) \mu(z_1) \cdots \mu(z_n), \]

and

\[f(z_1, \ldots, z_n, \theta_k) \propto \sum_{z_1'} \cdots \sum_{z_m'} g(z_1, \ldots, z_n, z_1', \ldots, z_m', \theta_k) \]

\[\cdot \mu(z_1') \cdots \mu(z_m'), \]

where \(\mu(z_1), \ldots, \mu(z_n), \mu(z_1'), \ldots, \mu(z_m') \) are standard sum-product messages.
Example
(Hybrid) EM: properties

Theorem (Cycle-free $f_B(x, \theta)$)

Assume that a factor graph of a global function $f(x, \theta) \triangleq f_A(\theta)f_B(x, \theta)$ is available whose subgraph $f_B(x, \theta)$ is cycle-free. The fixed points of a hybrid EM algorithm applied on that factor graph are stationary points of the marginal $f(\theta)$.

Theorem (Cyclic $f_B(x, \theta)$)

Assume that a factor graph of a global function $f(x, \theta) \triangleq f_A(\theta)f_B(x, \theta)$ is available (whose subgraph $f_B(x, \theta)$ may be cycle-free or cyclic). The fixed points of a (hybrid) EM algorithm applied on that factor graph are stationary points of the function $\hat{f}(\theta)$, defined as:

$$
\log \hat{f}(\theta) \triangleq \log f_A(\theta) + \int_{-\infty}^{\theta} E_{b(x|\tilde{\theta})} \left[\nabla_{\theta} \log f_B(x, \tilde{\theta}) \right] d\tilde{\theta},
$$

where the beliefs $b(\cdot|\theta)$ are computed by means of the sum-product messages available at convergence of the sum-product algorithm.
Steepest descent

Tries to solve

\[\hat{\theta} = \arg\max_{\theta} f(\theta) \]

as follows

1. **Choose some initial guess** \(\hat{\theta}^{(0)} \)
2. **ITERATE**

\[
\hat{\theta}^{(\ell+1)} = \hat{\theta}^{(\ell)} + \lambda \left. \frac{df(\theta)}{d\theta} \right|_{\theta = \hat{\theta}^{(\ell)}}
\]

3. **UNTIL** convergence or available time is over

\(\lambda \) is a real positive number referred to as “step size” or “learning rate”
Gradient EM

\[
\frac{dh(\theta_k)}{d\theta_k} = \gamma^{-1} \sum_z g(z_1, \ldots, z_m, \hat{\theta}_k) \mu(z_1) \cdots \mu(z_m) \frac{d\log g(z_1, \ldots, z_m, \theta_k)}{d\theta_k} \, dz,
\]

\[
= \sum_z p(z_1, \ldots, z_m | \hat{\theta}_k) \frac{d\log g(z_1, \ldots, z_m, \theta_k)}{d\theta_k},
\]

\[
= E_p(z_1, \ldots, z_m | \hat{\theta}_k) \left[\frac{d\log g(z_1, \ldots, z_m, \theta_k)}{d\theta_k} \right].
\]
Gradient EM: Properties

Theorem (Cycle-free $f_B(x, \theta)$)

Assume that a factor graph of a global function $f(x, \theta) \triangleq f_A(\theta)f_B(x, \theta)$ is available whose subgraph $f_B(x, \theta)$ is cycle-free. The fixed points of gradient EM applied on the graph of $f(x, \theta)$ are the stationary points of $f(\theta)$.

Theorem (Cyclic $f_B(x, \theta)$)

Assume that a factor graph of a global function $f(x, \theta) \triangleq f_A(\theta)f_B(x, \theta)$ is available (whose subgraph $f_B(x, \theta)$ may be cycle-free or cyclic). The fixed points of a gradient EM algorithm applied on that factor graph are the stationary points of the function $\hat{f}(\theta)$, defined as:

$$\log \hat{f}(\theta) \triangleq \log f_A(\theta) + \int_{-\infty}^{\theta} E_{b(x|\tilde{\theta})} \left[\nabla_\theta \log f_B(x, \tilde{\theta}) \right] d\tilde{\theta},$$

where the beliefs $b(\cdot|\theta)$ are computed by means of the sum-product messages available at convergence of the sum-product algorithm.
Problem statement

• Pseudo-noise signal X is transmitted over noisy channel, resulting in the noisy signal Y.

• The analog circuit estimates the signal X from the noisy signal Y.

Applications

• Spread spectrum communication systems (CDMA, UWB)

• Positioning systems (GPS)
Pseudo-random sequence X generated by LFSR

$$X = \ldots, X_{k-1}, X_k, X_{k+1}, \ldots$$ with $X_k = X_{k-1} \oplus X_{k-3}$

State diagram
Pseudo-random sequence X generated by LFSR

$X = [\ldots, X_{k-1}, X_k, X_{k+1}, \ldots]$ with $X_k = X_{k-1} \oplus X_{k-3}$

Representation as factor graph.
Synchronization task

Based on the noisy observation Y of the sequence X, estimate the actual state of the source.

Approach:
Use the factor graph to define a message-passing algorithm.
Forward-only message passing on the factor graph

Interpretation:
Filtering of the sequence Y with a soft version of the LFSR.
Reminder: SP for EQU and XOR-node

\[L \triangleq \log \frac{\mu(0)}{\mu(1)} \quad \Delta = \frac{\mu(0) - \mu(1)}{\mu(0) + \mu(1)} \]

\[
\begin{array}{c}
\begin{array}{c}
\text{X} \quad \text{Z} \\
\text{Y}
\end{array}
\text{\delta}[x - y] \text{\delta}[x - z]
\end{array}
\begin{array}{c}
\begin{array}{c}
\left(\begin{array}{c}
\mu_Z(0) \\
\mu_Z(1)
\end{array} \right) = \left(\begin{array}{c}
\mu_X(0) \mu_Y(0) \\
\mu_X(0) \mu_X(1)
\end{array} \right) \\
L_Z = L_X + L_Y \\
\Delta_Z = \frac{\Delta_X + \Delta_Y}{1 + \Delta_X \Delta_Y}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\text{X} \quad \text{Z} \\
\text{Y}
\end{array}
\text{\delta}[x \oplus y \oplus z]
\end{array}
\begin{array}{c}
\begin{array}{c}
\left(\begin{array}{c}
\mu_Z(0) \\
\mu_Z(1)
\end{array} \right) = \left(\begin{array}{c}
\mu_X(0) \mu_Y(0) + \mu_X(1) \mu_Y(1) \\
\mu_X(0) \mu_X(1) + \mu_X(1) \mu_Y(0)
\end{array} \right) \\
\tanh(L_Z/2) = \tanh(L_X/2) \cdot \tanh(L_Y/2) \\
\Delta_Z = \Delta_X \Delta_Y
\end{array}
\end{array}
\]
Reminder: SP for EQU and XOR-node

Signal Source

- Delay elements replaced by linear filters.
- Output of the filters \(X'_1(t) \) and \(X'_2(t) \in \mathbb{R} \).
- Introduction of threshold functions \((X_1(t), X_2(t) \text{ and } X(t) \in \{-1, +1\})\).
- Multiplication corresponds to addition modulo 2.
From Discrete-Time to Continuous-Time (2)

Synchronizing Circuit

A soft version of the signal source.
From Discrete-Time to Continuous-Time (3)

Overview

<table>
<thead>
<tr>
<th>Transmitter + Channel</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_{k-3}</td>
<td>D</td>
</tr>
<tr>
<td>$X_2(t)$</td>
<td>$H_2(s)$</td>
</tr>
</tbody>
</table>

X_{k-3} | D | X_{k-2} | D | X_{k-1} | D | X_k | Y_k |

$X_2(t)$ | $H_2(s)$ | $X_1(t)$ | $H_1(s)$ | $X(t)$ | $Y(t)$ |

X_{k-3} | D | X_{k-2} | D | X_{k-1} | D | X_k | Y_k |

$X_2(t)$ | $H_2(s)$ | $X_1(t)$ | $H_1(s)$ | $X(t)$ | $Y(t)$ |

$\mu_{B,k}$ | μ_{k-3} | μ_{k-2} | μ_{k-1} | μ_{k} | $\mu_{A,k}$ | Y_k |

$\mu_{B}(t)$ | $\mu_{X_2}(t)$ | $\mu_{X_1}(t)$ | $\mu(t)$ | $\mu_{A}(t)$ | $Y(t)$ |

$\mu_{X_2}(t)$ | $H_2(s)$ | $\mu_{X_1}(t)$ | $H_1(s)$ | $\mu(t)$ | $\mu_{A}(t)$ | $Y(t)$ |
Demonstration System

Signals in the receiver are pseudo probability functions of the corresponding signals in the source

- **Discrete** variables represented as “pseudo-means” (Δ-representation)

e.g., \(\hat{E}[X(t)] = \mu_X(t) = \text{Pr}[X(t) = +1] - \text{Pr}[X(t) = -1] \)

- **Continuous** variables \((X'_1, X'_2)\)

The pdf for \(X'_1, X'_2(t)\) is assumed to be Gaussian \(\mathcal{N}(\mu_{X'_1, X'_2}(t), \sigma^2_{1,2})\).

 - Means \(\mu_{X'_1, X'_2}\) are computed
 - Variances \(\sigma^2_{1,2}\) are fixed and set manually
Demonstration System (2)

Filters

- The means μ_X and $\mu_{X_1'}$ are filtered by $H_1(s)$ and $H_2(s)$. Indeed, let $y(t) = [h \ast x](t)$, then $E[y(t)] = [h \ast E[x]](t)$.

- Remark: for computing the mean, the variance is not needed!

Soft-Thresholds:

$$
Pr[X_{1,2}(t) = +1] = Pr[X_{1,2}'(t) \geq 0]
$$

$$
Pr[X_{1,2}(t) = -1] = Pr[X_{1,2}'(t) < 0]
$$

$$
\mu_{X_{1,2}}(t) = Pr[X_{1,2}(t) = +1] - Pr[X_{1,2}(t) = -1] = \text{erf}\left(\frac{\mu_{X_{1,2}}'(t)}{\sqrt{2}\sigma_{1,2}}\right)
$$

$$
\mu_{X_{1,2}}(t) \approx \tanh\left(C\mu_{X_{1,2}}'(t)\right)
$$
Demonstration System (3)

PC with a PCI-card running Labview

\[
H_2(s) \xrightarrow{\times} H_1(s) \xrightarrow{\times} \text{AWGN} \xrightarrow{X(t)} Y(t)
\]

\[
\hat{X}(t) \xrightarrow{\times} \mu_B(t) \xrightarrow{\hat{X}(t)} \mu_A(t) \xrightarrow{Y(t)}
\]

Analog Discrete Hardware
Demonstration System (4)

The Filters

- $H_1(s)$: Butterworth Lowpass Filter, 5th order, $f_c = 1.6$ kHz
- $H_2(s)$: $4 \times H_1(s)$ in series (or $6 \times H_1(s)$ in series)
Demonstration System (5)

The Soft-Threshold Function, AWGN-Channel Estimation

Differential pair with the gain A as an adjustable parameter

$$\log \frac{\mu_A(0)(t)}{\mu_A(1)(t)} = \log \frac{e^{-\frac{(Y(t)-1)^2}{2\sigma^2}}}{e^{-\frac{(Y(t)+1)^2}{2\sigma^2}}} = \frac{2Y(t)}{\sigma^2}$$
Demonstration System (6)

The Equality Constraint Gate

Forward-only EQU-Softgate

\[
\begin{align*}
I_{in1} &+ I_{in2} - H_1(s) \mu(t) &\quad \text{H1(s)} \\
I_{in1} &- I_{in2} - H_2(s) \mu_B(t) &\quad \text{H2(s)}
\end{align*}
\]

\[
\hat{X}(t) \quad \mu_B(t) \quad \mu_A(t) \quad Y(t)
\]
Demonstration System (7)

The Soft-XOR Gate

Forward-only XOR-Softgate corresponds to a “Gilbert multiplier”
Demonstration System (8)
Example of a sequence at SNR = 0 dB

Sampling rate: 50 kHz, 500 samples shown

\[H_2(s): 4 \times H_1(s) \]
sequence-length: 361 samples

\[H_2(s): 6 \times H_1(s) \]
1'707 samples
Measurement results

MSE vs. SNR
Results

Results for σ^2_W ($\sigma^2_U = 0.1; \sigma^2_W = 0.001, 0.01, 0.1$)

Estimation algorithm by Sascha Korl.

Does the algorithm perform well?
Results for σ_w^2 ($\sigma_u^2 = 0.1$; $\sigma_w^2 = 0.001, 0.01, 0.1$)

Estimation algorithm by Sascha Korl.
Results for a ($\sigma^2_U = 0.1$);

Standard CRB with unknown σ^2_U and σ^2_W (solid) for $\sigma^2_W = 0.1/0.01/0.001$;
MSE of algorithm by S. Korl (dashed);
Standard CRB for a with known $\sigma^2_W = 0$.
BCRB from information matrix of joint pdf

- The BCRBs of estimation in cycle-free graphical models can be computed efficiently by message passing.
- Messages are matrices.
- Messages are updated at each node according to specific update rules.
- The BCRBs are computed by combining those messages.
BCRB from information matrix of joint pdf (2)

Differentiable node function

\[
J_{f \mapsto y}(\mathbf{Y}) = \begin{pmatrix}
J_{x_1 \mapsto f}(X_1) + E[-\Delta_{x_1} \log f] & \ldots & E[-\Delta_{x_1} \log f] & \ldots & E[-\Delta_{x_1} \log f] \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
E[-\Delta_{x_N} \log f] & \ldots & J_{x_N \mapsto f}(X_N) + E[-\Delta_{x_N} \log f] & \ldots & E[-\Delta_{x_N} \log f] \\
E[-\Delta_{y_1} \log f] & \ldots & E[-\Delta_{y_1} \log f] & \ldots & E[-\Delta_{y_N} \log f] \\
\end{pmatrix}^{-1}
\]

with \(\Delta_{x_i} \triangleq \nabla_{x_i} \nabla_{x_j}^T \)

Remarks

- Expectations \(E[\Delta_{x_i} \log f] \) supposed to be well-defined.
- They can easily be computed numerically.
- Rows and corresponding columns can be exchanged.
BCRB from information matrix of joint pdf (3)

Equality constraint node

\[J_{f \rightarrow y} = \sum_{i=1}^{N} J_{x_i \rightarrow f} \]

Terminal node

\[J_{f \rightarrow x} = -E[\Delta_x^x \log f] \]

PCRB

\[J_{\text{tot}} = J_{f \rightarrow x} + J_{g \rightarrow x}. \]
Kernels from probability measures (2)

Probabilistic kernel

\[\kappa(\hat{y}_i, \hat{y}_j) \triangleq \sum_x p(\hat{y}_i, x|\hat{\theta}) p(\hat{y}_j, x|\hat{\theta}), \]

with the parameters \(\hat{\theta} \) are obtained from the whole data set \(\mathcal{D} \), e.g., by ML-estimation:

\[\hat{\theta}^{\text{ML, tot}} \triangleq \arg\max_\theta \prod_{i=1}^{N} p(\hat{y}_i|\theta) \]
\[= \arg\max_\theta \prod_{i=1}^{N} \sum_x p(\hat{y}_i, x|\theta). \]
Kernels from probability measures (3)

Product kernel [Jebara et al., 2004]

The product-kernel is computed as follows:

\[\kappa(\hat{y}_i, \hat{y}_j) \triangleq \sum_y p(y|\hat{y}_i)p(y|\hat{y}_j), \]

with

\[p(y|\hat{y}_i) \triangleq \sum_x p(y|x, \hat{\theta})p(x|\hat{\theta}, \hat{y}_i), \]

where the parameters \(\hat{\theta} \) is estimated by means of the sample \(\hat{y}_i \), e.g., by ML estimation:

\[\hat{\theta}^{ML} \triangleq \arg\max_{\theta} p(\hat{y}_i|\theta) = \arg\max_{\theta} \sum_x p(\hat{y}_i, x|\theta). \]
Feed-forward neural network
Feed-forward neural network
Feed-forward neural network (2)

\[
p(x, \xi | y, w) \triangleq \prod_{\ell=1}^{N} f(\xi^{(\ell)}, y^{(\ell)}, w) \prod_{k=1}^{m} \tilde{p}(x_k^{(\ell)} | \xi_k^{(\ell)}) \\
= \prod_{\ell=1}^{N} \delta(\xi^{(\ell)} - \xi(y^{(\ell)}, w)) \prod_{k=1}^{m} \tilde{p}(x_k^{(\ell)} | \xi_k^{(\ell)}).
\]
Feed-forward neural network: additional nodes

\[
p(x, \xi, z, y, w) \supseteq p_z(z)p_w(w) \prod_{i=1}^{N} \left[\delta(\xi^{(i)} - \xi(z^{(i)}, w)) \right. \\
\left. \cdot \left(\prod_{j=1}^{m} \tilde{p}(x_j^{(i)}|x_j^{(i)})p(x_j^{(i)}|\xi_j^{(i)}) \right) \left(\prod_{j=1}^{n} p(y_j^{(i)}|z_j^{(i)}) \right) \right].
\]
Feed-forward neural network: pre-processing

\[
p(x, \xi, z, y, w) \triangleq p_z(z) p_w(w) \prod_{i=1}^{N} \left[\delta(\xi^{(i)} - \xi(z^{(i)}, w)) \right. \\
\left. \cdot \left(\prod_{j=1}^{m} \tilde{p}(x_j^{(i)}|x_j^{(i)}) p(x_j^{(i)}|\xi_j^{(i)}) \right) \left(\prod_{j=1}^{n} p(y_j^{(i)}|z_j^{(i)}) \right) \right].
\]
Numerical results

Random-walk phase model with i.u.d. 4-PSK input symbols X

SNR = 10dB and $\sigma_W = 0.5$
Capacity of memoryless channel

Definition

\[
C \triangleq \sup_{p(x)} \int_x \int_y p(x)p(y|x) \log \frac{p(y|x)}{p(y)} \, dx \, dy \triangleq \sup_{p(x)} I(X; Y)
\]

with \(p(y) \triangleq \int_x p(x)p(y|x) \, dx \).

Channel Coding Theorem

\(C = \text{highest rate} \) at which information can be sent over the channel \(p(y|x) \) with \(\text{arbitrarily low } P_e \).
Two Blahut-Arimoto-type algorithms

Accelerated Blahut-Arimoto algorithm

\[p^{(k)}(x) = \frac{1}{Z^{(k)}} p^{(k-1)}(x) \exp \left(\mu^{(k)} D \left(p(y|x) \parallel p^{(k-1)}(y) \right) \right) \]

Natural-gradient based algorithm

\[p^{(k)}(x) = p^{(k-1)}(x) \left[1 + \mu^{(k)} \left(D \left(p(y|x) \parallel p^{(k-1)}(y) \right) - I^{(k-1)} \right) \right] \]
Results: Gaussian channel with $E[X^2] \leq P = 1$

$$C = \frac{1}{2} \log_2 \left(1 + \frac{P}{\sigma_0^2} \right)$$
Results: Gaussian channel with $0 \leq X \leq 1$

Model for **free-space optical** communications channel

- Transmitter: light emitting diode (LED) or laser diode (LD)
- Signal modulated on optical intensity (ON/OFF keying)
- Direct line-of-sight path is dominant
- Noise source = ambient light
- Peak power constraint due to eye safety and potential thermal skin damage
Verification

Theorem (Karush-Kuhn-Tucker condition)

For memoryless channel with average-power constraint \(E[X^2] \leq P \), \(p(x) \) achieves capacity \(C \) iff there exists \(\gamma \geq 0 \) such that

\[
\gamma(x^2 - P) + C - D(p(y|x)\|p(y)) \geq 0,
\]

for all \(x \), with equality for all \(x \in \text{supp}[p(x)] \).

If no average-power constraint: \(\gamma = 0 \).