
Quantifying Statistical Interdependence

by Message Passing on Graphs

PART I: One-Dimensional Point Processes

J. Dauwels a,b,∗,1F. Vialatte cT. Weber dA. Cichocki c

aLaboratory for Information and Decision Systems, Massachusetts Institute of

Technology, Cambridge, MA.

bAmari Research Unit, RIKEN Brain Science Institute, Saitama, Japan.

cLaboratory for Advanced Brain Signal Processing, RIKEN Brain Science

Institute, Saitama, Japan.

dOperations Research Center, Massachusetts Institute of Technology, Cambridge,

MA.

Abstract

We present a novel approach to quantify the statistical interdependence of two time

series, referred to as “stochastic event synchrony” (SES). As a first step, one extracts

“events” from the two given time series. Next, one tries to align events from one

time series with events from the other. The better the alignment, the more similar

the two time series are considered to be. More precisely, the similarity is quantified

by the following parameters: time delay, variance of the timing jitter, fraction of

“non-coincident” events, and average similarity of the aligned events.

The pairwise alignment and SES parameters are determined by statistical infer-

ence. In particular, the SES parameters are computed by maximum a posteriori

(MAP) estimation, and the pairwise alignment is obtained by applying the max-
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product algorithm. This paper (Part I) deals with one-dimensional point processes,

the extension to multi-dimensional point processes is considered in a companion

paper (Part II).

By analyzing surrogate data, it is demonstrated that SES is able quantify both

timing precision and event reliability more robustly than classical measures. As an

illustration, neuronal spike data generated by the Morris-Lecar neuron model is

considered.

Key words: timing precision, event reliability, stochastic event synchrony,

Victor-Purpura distance metric, van Rossum distance metric, Schreiber similarity

measure, Hunter-Milton similarity measure, event synchronization measure,

coincident event, maximum a posteriori estimation, spike train, Morris-Lecar

neuron model

1 Introduction

Quantifying the interdependence between time series is an important yet chal-

lenging problem. Although it is straightforward to quantify linear dependen-

cies, the extension to non-linear correlations is far from trivial. A variety of

approaches have been proposed, stemming from research fields as diverse as
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physics, statistics, signal processing, and information theory (see, e.g., (Stam,

2005; Quian Quiroga et al., 2002; Pereda et al., 2005; Kreuz et al., 2007;

Tiesinga et al., 2008)).

In this paper, we propose a novel measure to quantify the interdependence be-

tween two point processes, referred to as “stochastic event synchrony” (SES);

it consists of the following parameters: time delay, variance of the timing jit-

ter, fraction of “non-coincident” events, and average similarity of the events.

SES captures two different aspects of synchrony: timing precision and reliabil-

ity. Those concepts can be understood from the following analogy; when you

wait for a train in the station, the train may come at the station or it may

not come at all, for example, it may be out of service due to some mechan-

ical problem. If the train comes, it may or may not be on time. The former

uncertainty is related to reliability, whereas the latter is related to precision.

A similar distinction between timing precision and reliability has been made

in (Mainen and Sejnowski, 1995; Tiesinga et al., 2008). SES quantifies preci-

sion and reliability by the variance of the timing jitter and the fraction of the

non-coincident events respectively.

The pairwise alignment of point processes is cast as a statistical inference

problem, which is solved by applying the max-product algorithm on a graph-

ical model (Jordan, 1999; Loeliger, 2004; Loeliger et al., 2007). In the case

of one-dimensional point processes, the graphical model is cycle-free. The

max-product algorithm is then equivalent to dynamic programming, and is

guaranteed to find the optimal alignment. For multi-dimensional point pro-

cesses, the max-product algorithm is applied on a cyclic graphical model; this

algorithm yields the optimal alignment as long as the optimal alignment is

unique. This paper (Part I) deals with one-dimensional point processes, the
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companion paper (Part II) considers the extension to multi-dimensional point

processes.

Although the method may be applied to any kind of time series (e.g., from fi-

nance, oceanography, and seismology), in this paper and the companion paper,

we will solely consider time series that occur in the context of neuroscience.

Synchrony is indeed an important topic in neuroscience. For instance, it is

hotly debated whether the synchronous firing of neurons plays a role in cogni-

tion (Varela et al., 2001) and even in consciousness (Singer, 2001; Crick et al.,

2003). The synchronous firing paradigm has also attracted substantial atten-

tion in both the experimental (e.g., (Abeles et al., 1993)) and the theoretical

neuroscience literature (e.g., (von der Malsburg, 1981; Amari et al., 2003)).

Moreover, medical studies have reported that many neurophysiological dis-

eases (such as Alzheimer’s disease) are often associated with abnormalities in

neural synchrony (Matsuda et al., 2001; Jeong, 2004). Therefore, the proposed

method may be helpful to diagnose such mental disorders. In the companion

paper (Part II), we will present promising results on the early prediction of

Alzheimer’s disease based on electroencephalograms (EEG).

This paper considers the interdependence between two point processes. The

proposed methods, however, can be extended to a collection of point processes.

This extension is non-trivial: aligning a collection of point processes involves a

significantly more complex combinatorial optimization problem. Those issues

go beyond the scope of this paper and also the companion paper, they will be

addressed in a future report.

This paper is organized as follows. In the next section, we introduce SES for

the case of one-dimensional point processes. Then we describe the underlying
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statistical model (Section 3) and explain how one can perform inference in that

model (Section 4). In Section 5, we review several classical (dis)similarity mea-

sures for one-dimensional point process, since they will serve as benchmark for

SES; more precisely, we will consider the Victor-Purpura distance metric (Vic-

tor et al., 1997; Aronov, 2003; Victor et al., 2007), the van Rossum distance

metric (Van Rossum, 2001), the Schreiber et al. similarity measure (Schreiber

et al., 2003), the Hunter-Milton similarity measure (Hunter et al., 2003), and

the event synchronization measure proposed in (Quian Quiroga et al., 2002).

In Section 6 we investigate the robustness and reliability of those classical

(dis)similarity measures and SES by means of surrogate data. In Section 7 we

consider an application related to neuroscience: we quantify the firing relia-

bility of Morris-Lecar type I and type II neurons using classical methods and

SES. We offer some concluding remarks in Section 8.

2 Principle

Let us consider the one-dimensional point processes (“event strings”) x and

x′ in Fig. 1(a); ignore y and z for now. They could be point processes in

time, e.g., (x1 = 1.3s, x2 = 5.8s, . . . ) or space, e.g., (x1 = 1.3m, x2 = 5.8m,

. . . ), or any other dimension. We wish to quantify to which extent x and x′

are synchronized. Intuitively speaking, two event strings can be considered as

synchronous (or “locked”) if they are identical apart from: (i) a time shift δt;

(ii) small deviations in the event occurrence times (“event timing jitter”); (iii)

a few event insertions and/or deletions. More precisely, for two event strings to

be synchronous, the event timing jitter should be significantly smaller than the

average inter-event time, and the number of deletions and insertions should
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comprise only a small fraction of the total number of events. This intuitive

concept of synchrony is illustrated in Fig. 1(a). The event string x′ is obtained

from event string x by successively shifting x over δt (resulting in y), slightly

perturbing the event occurrence times (resulting in z), and eventually, by

adding (plus sign) and deleting (minus sign) events, resulting in x′. Adding and

deleting events in z leads to “non-coincident” events in x and x′ (see Fig. 1(a):

a non-coincident event in x is an event that cannot be paired with an event

in x′ and vice versa.

The above intuitive reasoning leads to a novel measure for synchrony be-

tween two event strings, i.e., “stochastic event synchrony” (SES); for the one-

dimensional case, it is defined as the triplet (δt, st, ρ), where st is the variance

of the (event) timing jitter, and ρ is the percentage of non-coincident events

ρ
△

=
nnon-co + n′

non-co

n + n′
, (1)

with n and n′ the total number of events in x and x′ respectively, and nnon-co

and n′

non-co the total number of non-coincident events in x and x′ respectively.

We will denote the standard deviation of the (event) timing jitter by σt, and

hence st = σ2
t . SES is related to the metrics (“distances” or “kernels”) pro-

posed in (Victor et al., 1997; Aronov, 2003; Victor et al., 2007; Shpigelman

et al., 2005; Eichhorn et al., 2003; Schrauwen et al., 2007), which are single

numbers that quantify the similarity of event strings. In contrast, we charac-

terize synchrony by means of three parameters; this allows us to distinguish

two fundamentally different types of synchrony, as we will demonstrate in Sec-

tion 7 (see Fig. 13). Moreover, our approach is rooted in statistical inference,

in contrast to the metrics of (Victor et al., 1997; Aronov, 2003; Victor et al.,

2007; Shpigelman et al., 2005; Eichhorn et al., 2003; Schrauwen et al., 2007),
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which are derived either from optimization theory (Victor et al., 1997; Aronov,

2003; Victor et al., 2007) or in the context of kernel machines (Shpigelman et

al., 2005; Eichhorn et al., 2003; Schrauwen et al., 2007).

3 Statistical Model

We compute the SES parameters by performing inference in a generative prob-

abilistic model for the sequences x and x′. In order to describe that model, we

consider a symmetric procedure to generate x and x′, depicted in Fig. 1(b).

Note that the procedure of Fig. 1(a) corresponds to a conditional distribution

p(x′|x; δt, st), which is asymmetric in x and x′. First, one generates an event

string v of length ℓ, where the events vk are mutually independent and uni-

formly distributed in [0, T0]. The strings z and z′ are generated by delaying

v over −δt/2 and δt/2 respectively and by (slightly) perturbing the result-

ing event occurrence times. We will model those perturbations as zero-mean

Gaussian random variables with variance st/2. Next some of the events in z

and z′ are removed, resulting in the sequences x and x′; each event of z and z′

is removed with probability pd (“deletion”), independently of the other events.

We denote by zrk
and z′rk

the events in z and z′ respectively that correspond

to vk. In the example of Fig. 1(b), r = (1, 2, . . . , 10) = r′. Occasionally, a pair

of events (zrk
, z′rk

) is removed (with probability p2
d), referred to as “event-pair

deletion”, but more often either zrk
or z′rk

is removed (“single-event deletion”).

If none of the events (zrk
, z′rk

) is removed, there is an event in x and in x′ that

corresponds to vk; we will denote this event pair by (xjk
, x′

jk
). In the example

of Fig. 1(b), j = (1, 2, 3, 5, 6, 7, 8), and j′ = (2, 3, 4, 5, 6, 7, 8). Note that if zrk

is deleted but not z′rk
, the corresponding event in x′ becomes a non-coincident
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event and vice versa. In the example of Fig. 1(b), the events z1 and z′5 are

deleted (single-event deletions), and as a result, x′

1 and x5 are non-coincident

events; also the pair (z10, z
′

10) is removed (event-pair deletion). It is easily ver-

ified that the expected length of the sequences x and x′ is (1− pd)ℓ, and that

the expected value of ρ (cf. (1)) is pd.

It is noteworthy that this procedure of generating the pair of point processes

x and x′ may easily be extended to a collection of point processes. However,

inference in the resulting probabilistic model is only tractable for pairs of

point processes. If one considers more than two point processes, one needs to

resort to approximate inference techniques; such methods will be presented in

a future report.

From now on, we will assume that the event pairs (xjk
, x′

j′
k

) are ordered, i.e.,

(xjk
, x′

j′
k

) occurs after the pair (xjk−1
, x′

j′
k−1

), or more precisely, xjk
≥ xjk−1

and x′

j′
k

≥ x′

j′
k−1

(for all k). This assumption is reasonable, since without it,

there would be an unwieldy number of possible ways to generate the same

point processes x and x′, and therefore, the problem of inferring the SES pa-

rameters would be ill posed. In fact, virtually all measures of event synchrony

make use of this assumption, either explicitly or implicitly (see Section 5 for

a brief review). However, this assumption has some important consequences,

as illustrated in Fig. 2; if st is large, with high probability events in x and x′

will not be ordered in time (see Fig. 2(a)). Ignoring this fact will result in es-

timates of st that are smaller than the true value st. Obviously, this issue not

only concerns SES but event synchrony in general. In addition, some event

deletions may be ignored: in Fig. 2(a) one of the last two events of x (and

likewise x′) is non-coincident, however, in the procedure of Fig. 2(b) they are

both coincident. The latter generative procedure is simpler in the sense that it
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involves less deletions and the perturbations are slightly smaller. As a result,

the parameter ρ (and hence also pd) is generally underestimated. Again, this

problem not only concerns SES but any measure that quantifies how reliably

events occur (see Section 6). Both issues may be resolved to some extent if one

incorporates additional information. For example, in the case of spike trains,

one may incorporate information about the spike shape; each spike is then

described by its occurrence time and some additional parameters, e.g., shape

parameters such as height and width. SES can be extended to incorporate

such additional information, as we describe in the companion paper (Part II).

When matching events of x and x′, we then no longer assume that those events

are ordered in time, i.e., we allow reversals as in Fig. 2(a).

In the following we discuss the statistical model that corresponds to the above

symmetric procedure of generating the pair of point processes x and x′. For the

sake of clarity, we listed in Table 1 the most relevant variables and parameters

associated with that model. We will now clarify each of those variables and

parameters. The statistical model takes the form:

p(x, x′, b, b′, v, δt, st, ℓ) = p(x|b, v, δt, st)p(x′|b′, v, δt, st)p(b, b′|ℓ)

· p(v|ℓ)p(ℓ)p(δt)p(st), (2)

where b and b′ are binary strings that indicate whether the events in x and

x′ are coincident. More specifically, bk = 1 if xk is non-coincident, bk = 0

otherwise, and likewise for b′k. For mathematical convenience, we choose a

geometric prior for the length ℓ:

p(ℓ) = (1 − λT0)(λT0)
ℓ, (3)

with λT0 ∈ (0, 1), as illustrated in Fig. 3(a). Since the events vk are assumed
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Symbol Explanation

x and x′ the two given point processes

v hidden sequence from which the observed sequences x and x′

are generated

z and z′ point processes obtained by shifting v over δt/2 and −δt/2 resp.

and perturbing the timing of the resulting sequences (variance st/2)

b and b′ binary sequences that indicate whether events in x and x′ resp.

are coincident or not

i and i′ indices of the events in v that generated x and x′ resp.

j and j′ indices of the coincident events in x and x′ resp.

n and n′ length of x and x′ resp.

ndel and n′

del number of deletions in z and z′ resp.

ntot
del total number of deletions in z and z′

ndel,single and n′

del,single number of single-event deletions in z and z′ resp.

ndel,pair and n′

del,pair number of event-pair deletions in z and z′ resp.

nnon-co and n′

non-co number of non-coincident events in x and x′ resp.

ntot
non-co total number of non-coincident events in x and x′

ℓ length of v

δt timing offset between x and x′

st timing jitter between x and x′

Table 1

List of variables and parameters associated with model p(x, x′, b, b′, v, δt, st, ℓ) (2).
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to be mutually independent and uniformly distributed in [0, T0], we have:

p(v|ℓ) =
ℓ
∏

k=1

p(vk|ℓ) =
ℓ
∏

k=1

T−1
0 = T−ℓ

0 . (4)

Therefore

p(v, ℓ) = p(v|ℓ)p(ℓ) = (1 − λT0)λ
ℓ. (5)

At first sight, it may seem more natural to model v as a Poisson process (Gal-

lager, 1996), which corresponds to a model p(v, ℓ) = p(v|ℓ)p(ℓ), where p(v|ℓ)

is also given by (4) but with different prior p(ℓ) for the number of events ℓ

(see Fig. 3(b)), i.e., a Poisson distribution with parameter κT0:

p(ℓ) = e−κT0
(κT0)

ℓ

ℓ!
. (6)

By comparing Fig. 3(a) and Fig. 3(b), it can be seen that a Poisson prior is

more informative than a geometric prior, especially if the parameter λT0 of

the geometric prior takes values close to 1. In fact, among all discrete proba-

bility distributions p(ℓ) supported on {1, 2, 3, . . .} with given expected value

E[ℓ] = L, the geometric distribution with parameter λT0 = 1− 1/L is the one

with the largest entropy. Therefore, if little prior knowledge about the length

ℓ is available, it makes sense to use a geometric prior. On the other hand,

if substantial prior knowledge about ℓ is available, it can in principle read-

ily be encoded by a Poisson prior. However, for our purposes, the prior (6) is

mathematically less convenient. We will come back to this issue later on, more

precisely, below (32) and in Section 4. Therefore, we will adopt a geometric

prior even if there is prior knowledge about ℓ. With that choice of prior, the

estimates of the parameters δt, st and ρ will in principle be less reliable than

with a Poisson prior, since the model does then not incorporate all available

information. However, the resulting loss in reliability is expected to be neg-
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ligible: for reasonable lengths ℓ (e.g., ℓ > 30) most information is typically

contained in the observed sequences x and x′ and not in the prior p(ℓ). The

posterior p(ℓ|x, x′) is then tightly concentrated around the true value of ℓ, and

the prior p(ℓ) only slightly vary over the support of p(ℓ|x, x′). Besides this

qualitative argument, we will show experimentally in Section 6 that with a

geometric prior p(ℓ) the obtained estimates of δt, st and ρ are reliable (apart

from biases due to the ambiguity inherent in event synchrony, see Fig. 2).

Interestingly, for both types of priors, the events in v occur to a large extent

independently of each other, since for given length ℓ they are assumed to be

mutually independent and uniformly distributed in [0, T0] (cf. (4)).

We will now continue our discussion of model (2). The prior on the binary

strings b and b′ is given by

p(b, b′|ℓ) = p(b|ℓ)p(b′|ℓ) = (1 − pd)
n+n′

p2ℓ−n−n′

d = (1 − pd)
n+n′

p
ntot

del
d , (7)

where ntot
del is the total number of deleted events in x and x′:

ntot
del = ndel + n′

del = 2ℓ − n − n′, (8)

with ndel the number of deleted events in x:

ndel = ℓ − n, (9)

and similarly, n′

del the number of deleted events in x′:

n′

del = ℓ − n′. (10)

For later convenience, we will now write ℓ as a function of b and b′. We first

expand ndel, the number of deleted events in z, as ndel = ndel,single + ndel,pair

where ndel,single is the number of single-event deletions in z and ndel,pair is

the number of event-pair deletions. Likewise, we can write n′

del = n′

del,single +
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ndel,pair, where n′

del,single is the number of single-event deletions in z′. Since a

single deletion in z results in a non-coincident event in x′, it follows:

ndel,single = n′

non-co =
n′

∑

k=1

b′k, (11)

and likewise

n′

del,single = nnon-co =
n
∑

k=1

bk. (12)

As a consequence, we have ndel = n′

non-co +ndel,pair and n′

del = nnon-co +ndel,pair,

and therefore:

ntot
del = nnon-co + n′

non-co + 2 ndel,pair = ntot
non-co + 2 ndel,pair, (13)

with ntot
non-co = nnon-co + n′

non-co. Combining (13) with (9) and (10), results

eventually in the following expression for ℓ:

ℓ =
ntot

del + n + n′

2
=

ntot
non-co

2
+ ndel,pair +

n + n′

2
. (14)

Note that only the first term in the RHS depends on b and b′. In the example

of Fig. 1(b), ℓ = 10, n = 8 = n′, ndel = 2 = n′

del, ntot
del = 4, ndel,single = 1 =

n′

del,single, ndel,pair = 1, and ntot
non-co = 2.

Let us now return to model (2); the conditional distributions in x and x′ are

equal to:

p(x|b, v, δt, st) =
n
∏

k=1

(

N
(

xk − vik ;−
δt

2
,
st

2

)

)

(15)

p(x′|b′, v, δt, st) =
n′

∏

k=1

(

N
(

x′

k − vi′
k
;
δt

2
,
st

2

)

)

, (16)

where vik is the event in v that corresponds to xk and likewise vi′
k
, and

N (x; m, s) is a univariate Gaussian distribution with mean m and variance s.

In the example of Fig. 1(b), i = (2, 3, 4, 5, 6, 7, 8, 9) and i′ = (1, 2, 3, 4, 6, 7, 8, 9).
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For the sake of simplicity, we adopt improper priors p(δt) = 1 = p(st).

Substituting (5), (7), (15), and (16) in (2) amounts to:

p(x, x′, b, b′, v, δt, st, ℓ) =
n
∏

k=1

(

N
(

xk − vik ;−
δt

2
,
st

2

)

)

·
n′

∏

k=1

(

N
(

x′

k − vi′
k
;
δt

2
,
st

2

)

)

· (1 − pd)
n+n′

p
ntot

del
d (1 − λT0)λ

ℓ. (17)

We will now marginalize (17) w.r.t. v, later we will marginalize that model

w.r.t. the length ℓ. For a given vk three cases are possible:

• The event was not deleted from neither x and x′, the corresponding events

in x and x′ are denoted by xjk
and x′

j′
k

; in (17) the following term appears:

(

N
(

x′

j′
k

− vk;
δt

2
,
st

2

)

)

.

(

N
(

xjk
− vk;−

δt

2
,
st

2

)

)

. (18)

Integrating this term over vk yields the term N
(

xjk
− xj′

k
; δt, st

)

. Note that

there are ntot
co such terms, where ntot

co is the total number of coincident event

pairs:

ntot
co = n − nnon-co = n′ − n′

non-co. (19)

• The event was deleted once (from either x or x′). In (17) there is only one

Gaussian term that corresponds to vk. Integrating that term over vk results

in the term 1.

• The event was deleted twice (from x and x′). There are no Gaussian terms

associated with vk in (17), therefore, the expression (17) may be considered

as constant w.r.t. vk. Integrating (17) over vk then leads to a term T0. There

are ndel,pair such terms.
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Eventually, we obtain:

p(x, x′, b, b′, δt, st, ℓ) =
∫

p(x, x′, b, b′, v, δt, st, ℓ)dv

=
ntot

co
∏

k=1

N (x′

j′
k

− xjk
; δt, st)(1 − pd)

n+n′

p
ntot

del
d

· (1 − λT0)λ
ℓT

ndel,pair

0 . (20)

Note that we can marginalize over v analytically (cf. (20)) because of two

reasons:

• We have chosen a uniform conditional distribution p(v|ℓ) (4),

• We model the offsets between an event vk and the corresponding events xℓ

and x′

ℓ′ in x and x′ respectively as Gaussian random variables. Therefore,

also the offset between the two events xℓ and x′

ℓ′ is Gaussian distributed.

We wish to point out that, more generally, the offset between xℓ and x′

ℓ′ may

be modeled by any infinite divisible distribution. A probability distribution f

on the real line is by definition infinitely divisible if the following holds: if X

is any random variable whose distribution is f , then for every positive integer

m there exist m independent identically distributed random variables X1, ...,

Xm whose sum is equal in distribution to X. Note that those m other random

variables do not usually have the same probability distribution as X. In our

setting, the offset between xℓ and x′

ℓ′ takes the role of X; we have m = 2, and

the variables X1 and X2 stand for the offset between vk and xℓ and the offset

between x′

ℓ′ and vk respectively. If the distribution f of the offset between xℓ

and x′

ℓ′ is infinite divisible, we can decompose that offset as the sum of the

offset between vk and xℓ and the offset between x′

ℓ′ and vk. Indeed, since f

is assumed to be infinite divisible, there exists a distribution f̃ such that the

offset between vk and xℓ and the offset between x′

ℓ′ and vk are independently
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distributed according to f̃ and their sum is distributed according to f .

Examples of infinitely divisible distributions are the Gaussian distribution

and the Cauchy distribution, and all other members of the stable distribu-

tion family; the latter is a four-parameter family of continuous probability

distributions that has the property of stability : If a number of independent

identically distributed random variables have a stable distribution, then a lin-

ear combination of these variables will have the same distribution, except for

possibly different shift and scale parameters (Zolotarev, 1986). We will not

further consider the extension to general infinite divisible distributions, since

Gaussian offsets suffice for our purposes.

We now return to model (20). Substituting (13) and (14) in (20) leads to:

p(x, x′, b, b′, δt, st, ℓ) =
ntot

co
∏

k=1

N (x′

j′
k

− xjk
; δt, st)

(√
λ (1 − pd)

)n+n′

·
(√

λ pd

)ntot
non-co

(1 − λT0)
(

p2
d λT0

)ndel,pair
. (21)

Now we marginalize over the length ℓ. The length can be decomposed accord-

ing to (14); the third term in (14) is fixed, since n and n′ are the length of

the given point processes x and x′ respectively. The first term in (14) is fixed

for given b and b′. Therefore, marginalizing p(x, x′, b, b′, δt, st, ℓ) (21) over ℓ is
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equivalent to marginalizing over ndel,pair:

p(x, x′, b, b′, δt, st) =
∞
∑

ℓ=0

p(x, x′, b, b′, δt, st, ℓ) (22)

=
∞
∑

ndel,pair=0

p(x, x′, b, b′, δt, st, ℓ) (23)

=
ntot

co
∏

k=1

N (x′

j′
k

− xjk
; δt, st)

(√
λ (1 − pd)

)n+n′

·
(√

λ pd

)ntot
non-co

(1 − λT0)
∞
∑

ndel,pair=0

(

p2
d λT0

)ndel,pair
(24)

=
ntot

co
∏

k=1

N (x′

j′
k

− xjk
; δt, st)

(√
λ (1 − pd)

)n+n′

·
(√

λ pd

)ntot
non-co

(1 − λT0)
1

1 − p2
d λT0

. (25)

We wish to point out that in (24) we have a sum of a geometric series; since

|p2
d λT0| < 1, we can apply the well-known formula for the sum of a geometric

series, resulting in (25). We can rewrite the latter expression as:

p(x, x′, b, b′, δt, st) = γ βntot
non-co

ntot
co
∏

k=1

N (x′

j′
k

− xjk
; δt, st), (26)

with β = pd

√
λ and

γ =
(√

λ (1 − pd)
)n+n′

(1 − λT0)
1

1 − p2
d λT0

. (27)

The constant γ does not depend on b and b′, and therefore, it is irrelevant

for estimating b, b′ and the SES parameters ρ, δt, and st; we will discard it

in the following. On the other hand, the exponent of β in (26) does clearly

depend on b and b′ (cf. (11) and (12)). Therefore, the parameter β affects the

inference of b, b′ and the SES parameters. In Section 7, we explain how the

parameter β may be determined from given sequences x and x′. Moreover, we

will interpret the parameter β in terms of cost functions (see below (28)); the

expression log β is part of the cost associated to each non-coincident event.
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After marginalizing w.r.t. v and ℓ, we obtain a model p(x, x′, b, b′, δt, st) (cf. (26))

that is symmetric in x and x′. In the following, we will denote model (26) by

p(x, x′, j, j′, δt, st) instead of p(x, x′, b, b′, δt, st), since it is more natural to de-

scribe that model in terms of j and j′ than in terms of b and b′ (cf. RHS

of (26)). The sequences b and b′ may directly be obtained from j and j′: the

variables bk (for all k) equals one if k appears in the sequence j and is zero

otherwise, the variables b′k (for all k) may be obtained along the same lines.

It is instructive to consider the negative logarithm of (26):

− log p(x, x′, j, j′, δt, st) = −ntot
non-co log β +

1

2st

ntot
co
∑

k=1

(x′

j′
k

− xjk
− δt)

2

+
ntot

co

2
log 2πst + ζ, (28)

where ζ is an irrelevant constant. As a consequence of (19), we have

ntot
co =

n + n′ − ntot
non-co

2
, (29)

and we can rewrite (28) as:

− log p(x, x′, j, j′, δt, st) = −ntot
non-co

(

log β +
1

4
log 2πst

)

+
1

2st

ntot
co
∑

k=1

(x′

j′
k

− xjk
− δt)

2 + ζ ′, (30)

with ζ ′ = ζ + n+n′

4
log 2πst. Note that ζ ′ does not depend on j and j′, in other

words, it is independent of the assignment of coincident and non-coincident

events. In the following, we investigate how (30) depends on the assignment j

and j′, and ζ ′ is then irrelevant.

The expression (30) may be considered as a cost function that associates

certain costs with coincident and non-coincident events; this viewpoint will

give us insight in how we can minimize (30) (equivalently, maximize (26))
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w.r.t. j and j′, for fixed δt and st. The unit cost d(st) associated to each

non-coincident event equals:

d(st) = − log β − 1

4
log 2πst. (31)

The unit cost d(xjk
, x′

j′
k

; δt, st) of each event pair (xjk
,x′

j′
k

) is the normalized

Euclidian distance:

d(xjk
, x′

j′
k

; δt, st) =
(x′

j′
k

− xjk
− δt)

2

2st

. (32)

Since the point processes x and x′ of Fig. 1(b) are defined on the real line, the

(normalized) Euclidean distance is indeed a natural metric. In some applica-

tions, the point process may be defined on more general curves (as illustrated

in Fig. 4); in such situations, one may adopt non-Euclidean distance measures.

We are currently exploring such applications; we refer to (Dauwels et al., 2008)

for preliminary results.

We would like to underline that the unit costs d(st) (31) and d(xjk
, x′

j′
k

; δt, st) (32)

are dimensionless. In other words, they do not depend on the unit (e.g., sec-

onds, milliseconds, meters, or millimeters) in which x and x′ are expressed;

this property is obvious for d(xjk
, x′

j′
k

; δt, st), and for d(st) it can be shown as

follows:

d(st) = − log β − 1

4
log 2πst (33)

= − log pd −
1

2
log λ

√
st −

1

4
log 2π. (34)

The parameter pd is dimensionless, the same holds for the product λ
√

st, and

hence also d(st) is dimensionless. Therefore minimizing the cost (30) w.r.t.

the sequences j and j′ (for fixed δt and st), or equivalently, performing MAP

estimation of j and j′ in p(x, x′, j, j′, δt, st, ℓ) (26), will yield the same solutions
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ĵ and ĵ′, independent of the units of x and x′. In Section 4 we will explain

how one may estimate j and j′.

By interpreting (30) as a cost function, we also established a connection be-

tween SES and the distance metric of (Victor et al., 1997; Aronov, 2003; Victor

et al., 2007). The latter is also formulated in terms of a cost function, more

precisely, it is determined as the minimum cost associated with transform-

ing one point process into the other. In this transformation, one is allowed

to delete and insert events, and move events over time (cf. Fig. 1(a)), and

there is a cost associated to each of those three basic operations. For the sake

of completeness, we will review the distance metric of (Victor et al., 1997;

Aronov, 2003; Victor et al., 2007) in Section 5.1.

Note also that the Poisson prior (6) leads to a cost that depends non-linearly

on the number of non-coincident events; the cost per non-coincident event is

then not constant but depends on the total number of non-coincident events.

Since a constant cost per non-coincident event is easier to interpret and leads to

a simpler inference algorithm (see Section 4), we decided to use the geometric

prior (3).

4 Statistical Inference

Given event strings x and x′, we wish to infer the parameters δt and st, and the

sequences j and j′ (cf. (26)). From decisions ĵ and ĵ′, one can easily determine

the corresponding decisions b̂ and b̂′; the decision b̂k (for all k) equals one if

k appears in the sequence ĵ and is zero otherwise, the decisions b̂′k (for all k)

may be obtained along the same lines. The decisions b̂ and b̂′ naturally amount
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to an estimate of ρ (cf. (1)):

ρ̂
△

=

∑n
k=1 b̂k +

∑n′

k=1 b̂′k
n + n′

. (35)

Moreover, the parameters T0, λ and pd are unknown and need to be chosen

appropriately. Interestingly, they do not need to be specified individually, since

they appear in (26) only through β. The latter serves in practice as a knob

to control the number of non-coincident events; we will address this issue in

Section 7.

There are various ways to jointly infer the SES parameters and sequences j and

j′, perhaps the most natural solution is coordinate descent. First one chooses

initial values δ̂
(0)
t and ŝ

(0)
t , then one alternates the following two update rules

until convergence or until the available time has elapsed:

(ĵ(i+1), ĵ′(i+1)) = argmax
j,j′

p(x, x′, j, j′, δ̂
(i)
t , ŝ

(i)
t ) (36)

(δ̂
(i+1)
t , ŝ

(i+1)
t ) = argmax

δt,st

p(x, x′, ĵ(i+1), ĵ′(i+1), δt, st). (37)

In Appendix A, we explain how the expressions (36) and (37) can be computed.

In particular, we derive a closed-form expression for (37); we show that (36)

may be obtained by considering paths on a (n+1)× (n′ +1) grid (see Fig. 5),

where each path corresponds to a pair (j, j′); one can associate a cost M to each

path, obtained by adding the costs d(st) of each corresponding non-coincident

event and the costs d(xjk
, x′

j′
k

; δt, st) associated to each pair of coincident events

(xjk
, x′

j′
k

). Finding the pair (ĵ(i+1), ĵ′(i+1)) (36) corresponds to the problem of

determining the minimum-cost path, which may be achieved by means of a

simple recursion. The resulting algorithm is summarized in Table 2.

Note that if one adopts a Poisson prior (6), the expression (36) may no longer

be obtained by determining the minimum-cost path on a grid. In fact, this
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expression becomes intractable, and one would need to resort to approximative

methods.

The algorithm is an instance of coordinate descent, which generally is guar-

anteed to converge if the iterated conditional maximizations have unique so-

lutions (cf. (36) (37)) (Bezdek et al., 2002, 1987). The conditional maximiza-

tion (37) has a unique solution (cf. (A.1) and (A.3)); the solution of (36) is in

most practical situations unique. In our experiments (cf. Section 6 and 7), the

algorithm always converged . We will provide numerical results on convergence

in Section 7.

In general, the fixed points of a coordinate descent algorithm are station-

ary points of the objective function at hand. In particular, alternating (36)

and (37) converges to stationary points of p(x, x′, j, j′, δt, st). Since this model

may have numerous stationary points, it may be necessary to run (36) and (37)

with several different initial values δ̂
(0)
t and ŝ

(0)
t , resulting in several fixed points

(ĵ, ĵ′, δ̂t, ŝt). Eventually, one selects the fixed point that has the largest value

p(x, x′, ĵ, ĵ′, δ̂t, ŝt). In practice, one often has prior knowledge about δt and

st. For example, in the case of neural spike trains (see Section 7), the lag

δt is usually not larger than 100ms, similarly, st is typically not larger than

(100ms)2. In most applications, it makes sense to start with the initial value

δ̂
(0)
t = 0. However, depending on the available computational resources, one

may run the algorithm with additional initial values δ̂
(0)
t . One may also run the

algorithm with several values of ŝ
(0)
t between 0 and the largest plausible value

(e.g., ŝ
(0)
t = (10ms)2, (20ms)2, . . . , (100ms)2). For the sake of completeness, we

will specify how we selected the initial values δ̂
(0)
t and ŝ

(0)
t in the applications

of Section 6 and 7.
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In principle, the computational complexity grows proportional to nn′, i.e., the

product of both sequence lengths. However, one may restrict the state space

to pairs of events that are close to each other, i.e., pairs of events (xjk
, x′

j′
k

)

that fulfill the constraint |xjk
− x′

j′
k

| < δmax
t (for some δmax

t > 0, e.g., δmax
t =

100ms). The paths on the grid of Fig. 5 then remain close to the diagonal, and

only the entries Mk,k′ around the diagonal of M are computed (cf. (A.4)). As

a result, the computational complexity becomes linear in the sequence length.
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INPUT:

One-dimensional point processes x and x′ and parameters β, δ̂
(0)
t , and ŝ

(0)
t .

ALGORITHM:

Iterate the following two steps until convergence or the available time has elapsed:

(1) Update the alignment (ĵ, ĵ′) by dynamic programming

Compute the matrix M:

Mk,0 = 0 = M0,k′ (for k = 0, 1, . . . , n and k′ = 0, 1, . . . , n′), the other elements

are computed recursively as:

Mk,k′ = min
[

Mk−1,k′ + d
(

ŝ
(i)
t

)

,Mk,k′
−1 + d

(

ŝ
(i)
t

)

,Mk−1,k′
−1 + d

(

xk, x
′

k′ ; δ̂
(i)
t , ŝ

(i)
t

)

]

.

Determine the min-cost sequence (ĵ, ĵ′) by tracing back the decisions in

the recursive updates Mk,k′.

(2) Update the SES parameters:

δ̂
(i+1)
t

△

=
1

n(i+1)

n(i+1)
∑

k=1

x̂
′(i+1)
k − x̂

(i+1)
k ,

ŝ
(i+1)
t

△

=
1

n(i+1)

n(i+1)
∑

k=1

(

x̂
′(i+1)
k − x̂

(i+1)
k − δ̂

(i+1)
t

)2
.

OUTPUT: Alignment (ĵ, ĵ′) and SES parameters ρ̂, δ̂t, and ŝt.

Table 2

Inference algorithm for one-dimensional SES. We refer to Appendix A for its deriva-

tion.
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δt

x

y

z

x′

(a) Transforming x into x′: first the events of x are

shifted over δt, resulting in y, then their occurrence

time is slightly perturbed (with variance st), result-

ing in z, and next some events of z are deleted and

some events are inserted (both with probability pd),

resulting in x′.

T0

x

v

z′

x′

1

1

1
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0000000

0000000
2
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3
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4 5
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6
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7

8

8

9

9i

i′

b

b′

δt

2

δt

2

z

(b) Symmetric procedure to generate x and x′: one first generates a process v, next

one makes two identical copies of v and shifts those over −δt/2 and δt/2 respectively;

the events of the resulting point process are slightly shifted (with variance st/2), and

some of those events are deleted (with probability pd), resulting in x and x′.

Fig. 1. One-dimensional stochastic event synchrony: an asymmetric (top) and sym-

metric (bottom) procedure relating x to x′.
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T0

x

v

z′

x′

0
δt

2

δt

2

z

(a) A first procedure to generate x and x′; the sequence x′ is not ordered, since two

events of x′ are reversed as indicated by the arrows; note that one of the two last

events in x (and likewise x′) is non-coincident.

T0

x

v

z′

x′

0
δt

2

δt

2

z

(b) A second procedure to generate the same point processes x and x′ without order

reversal; the two last events of x and x′ are now considered to be coincident.

Fig. 2. Inherent ambiguity in event synchrony: two equivalent procedures to generate

the point processes x and x′.
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(a) Geometric prior (3) with λT0 =

0.95, 0.96, . . . , 0.99.
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(b) Poisson prior (6) with κT0 =

10, 20, . . . , 50.

Fig. 3. Prior distributions p(ℓ) for ℓ: geometric distribution (left) and Poisson dis-

tribution (right).

(a) Two point processes defined on

a contour (black and gray).

(b) Non-Euclidean distance be-

tween two events.

Fig. 4. Point processes along a contour; the distance between two events is non-Eu-

clidean.
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Fig. 5. The (n + 1) × (n′ + 1) grid associated with the point processes x and x′

of Fig. 1; each path on that grid corresponds to a pair (j,j′). The path P shown in

this figure corresponds to the alignment of Fig. 1(b).
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5 Review of Classical Similarity Measures

In this Section, we review some of the most well-known classical (dis)similarity

measures for one-dimensional point processes, including the Victor-Purpura

distance metric (Victor et al., 1997; Aronov, 2003; Victor et al., 2007), the

van Rossum distance metric (Van Rossum, 2001), the Schreiber et al. sim-

ilarity measure (Schreiber et al., 2003), the Hunter-Milton similarity mea-

sure (Hunter et al., 2003), and the event synchronization measure proposed

in (Quian Quiroga et al., 2002). We have chosen the same selection of classical

measures as in (Kreuz et al., 2007). Note that this selection is not exhaustive:

various other (dis)similarity measures for one-dimensional point processes have

recently been proposed (e.g., the ISI-distance (Kreuz et al., 2007)). In order

to benchmark SES in a meaningful way, however, we have restricted ourselves

to existing measures that are the most related to SES.

We will in this Section closely follow the exposition in (Kreuz et al., 2007). For

the sake of definiteness, we will discuss the measures in the context of point

processes in time.

5.1 Victor-Purpura spike train metric

The distance metric DV of (Victor et al., 1997; Aronov, 2003; Victor et al.,

2007) is closely related to SES, as we pointed out earlier. It defines the dis-

tance between two point processes as the minimum cost of transforming one

point process into the other. This transformation is carried out by combining

three basic operations: event insertion, event deletion, and event movement

(cf. Fig. 1(a)). The cost of deleting or inserting of an event is set to one,
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whereas the cost of moving an event in time is proportional to the time shift;

the proportionality constant CV defines the time scale of the distance metric.

If CV = 0, the distance metric DV reduces to the difference in number of

events. On the other hand, if CV ≫ 1, the distance quantifies the number

of non-coincident events. Indeed, since for large CV it becomes less favorable

to move events, one transforms one point process into the other mostly by

inserting and deleting events. The cost DV associated to this transformation is

then (approximately) proportional to the number of non-coincident events. In

practice, most events do not perfectly coincide, therefore, in the limit CV ≫ 1

virtually all events are either inserted or deleted in the tranformation from one

point process to the other. In the intermediate regime CV ≈ 1, neighboring

events are treated as coincident, i.e., they no longer need to occur at precisely

the same time. In that regime, DV is similar to the SES parameter ρ.

It is important to realize that CV is not dimensionless. Since the cost CV ∆T

associated with moving an event over ∆T is supposed to be dimensionless,

the unit of CV is the inverse of the unit in which x and x′ are expressed.

For example, if x and x′ are expressed in milliseconds, the condition CV ≈ 1

stands for CV ≈ 10−3ms−1. Note that the metric DV is dimensionless.

If and only if the point processes x and x′ are identical, the distance metric

DV = 0. The time constant τV = 1/CV , which is the inverse of CV , defines

the time scale of distance metric DV .

It is noteworthy that in SES, the unit cost of moving an event in time is

quadratic in the time shift (with proportionality constant 1/2st; cf. (32)), in

contrast to the Victor-Purpura metric, where the cost is linear in the time

shift. Note that the proportionality constant CV in the Victor-Purpura metric
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is fixed, and needs to be chosen by the user. The proportionality constant

1/2st in SES is determined adaptively from the given point processes. In both

approaches, the minimum cost is computed by the Viterbi algorithm (Forney,

1973) (cf. Appendix A).

5.2 Van Rossum similarity measure

In the approach of (Van Rossum, 2001), the two point processes are converted

into continuous time series. In particular, each event of x is convolved with an

exponential function exp(t−xk/τR) (with t > xk), resulting in the time series

s(t). Likewise each event of x′ is convolved with this exponential function,

leading to the time series s′(t). From the time series s(t) and s′(t), the van

Rossum distance measure (Van Rossum, 2001) is computed as:

DR(σS) =
1

τR

∫

t
[s(t) − s′(t)]2 dt. (38)

Note that DR(σS) = 0 if and only if x and x′ are identical. The time scale of

this distance measure is determined by the time constant τR.

5.3 Schreiber et al. similarity measure

Also in the approach proposed in (Haas et al., 2002) and (Schreiber et al.,

2003), the two point processes x and x′ are first convolved with a filter, re-

sulting in time series s(t) and s′(t). The filter may for example be exponen-

tial (Haas et al., 2002) or Gaussian (Schreiber et al., 2003), and it has a certain

width τS. Next the pairwise correlation between the time series s(t) and s′(t)
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is computed:

SS(σS) =

∫

t s(t)s
′(t) dt

√

∫

t s
2(t) dt

√

∫

t s
′2(t) dt

. (39)

In (Haas et al., 2002), one adjusts the phase lag between the time series,

whereas in (Schreiber et al., 2003), no phase lag is allowed. In this paper (as

in (Kreuz et al., 2007)), we will consider the approach of (Schreiber et al.,

2003). Note that the width τS of the filter defines the time scale of interaction

between the two point processes. We also wish to point out that if and only if

x and x′ are identical, we have SS = 1.

5.4 Hunter-Milton similarity measure

An alternative similarity measure was proposed in (Hunter et al., 2003). For

each event xk, one identifies the nearest event x′

k′(k) in the point process x′.

The degree of coincidence between those two events is determined as d(xk) =

exp(−|xk − x′

k′(k)|/τH). Along the same lines, one identifies for each x′

k′ the

nearest event xk(k′) in the point process x, and determines the degree of coin-

cidence d(x′

k′). The similarity SH between x and x′ is then computed as:

SH =
1
N

∑N
k=1 d(xk) + 1

N ′

∑N ′

k′=1 d(x′

k)

2
. (40)

The parameter τH sets the time scale for event coincidence. If x and x′ are

identical, we have SH = 1.

5.5 Event synchronization

Event synchronization (Quian Quiroga et al., 2002) defines similarity in terms

of coincident events. Two events are considered to be coincident if their timing
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offset is smaller than a maximum lag τQ. This lag can be fixed by the user, or

it can be extracted automatically from the point processes x and x′:

τQ(k, k′) = min(xk+1 − xk, xk − xk−1, x
′

k′+1 − x′

k′, x′

k′ − x′

k′
−1)/2. (41)

One computes the number of times an event appears in x shortly after an

event appears in x′ :

d(x|x′) =
N
∑

k=1

N ′

∑

k′=1

Jkk′, (42)

where

Jkk′ =























































1 if 0 < xk − x′

k′ ≤ τQ

1/2 if xk = x′

k′

0 else,

(43)

where τQ may be fixed or may be computed according to (41).

Similarly one can define d(x′|x), and eventually, event synchronization is de-

termined as:

SQ =
d(x|x′) + d(x′|x)√

NN ′

. (44)

If and only if all events in x and x′ are coincident, we have SQ = 1.

5.6 Discussion

5.6.1 Binning

Interestingly, the above mentioned classical approaches and SES do not dis-

cretize the time (or space) axis, in contrast to other methods, e.g., (Johnson

et al., 2001; Christen et al., 2006). The latter divide the time (space) axis in

bins, and then convert the point processes into binary sequences: if an event
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occurred within a bin, then a one is associated with that bin, otherwise a zero.

A critical issue is the choice of bin width, since the results may depend on this

parameter. SES and the above mentioned classical measures avoid that issue,

since they do not rely on binning; this also holds for other measures, e.g., the

ISI-distance (Kreuz et al., 2007).

5.6.2 Time scale

Several of the above measures depend on a parameter that defines the time

scale of the interaction between the point processes, in particular, the Victor-

Purpura distance metric (Victor et al., 1997; Aronov, 2003; Victor et al., 2007),

the van Rossum similarity measure (Van Rossum, 2001), the Schreiber et al.

similarity measure (Schreiber et al., 2003), and the Hunter-Milton similarity

measure (Hunter et al., 2003). Event synchronization, however, adapts its time

scale automatically, the user does not need to specify it. The same holds for

SES: the time scale is determined by the parameter st, which is computed by

the algorithm, and does not need to be specified a priori. One just needs to

choose initial values ŝ
(0)
t within the range of plausible values, the SES inference

algorithm (cf. Table 2) then refines those initial estimates and selects the most

appropriate one. Besides event synchronization and SES, also other existing

measures do not rely on a fixed time scale, e.g., the ISI-distance (Kreuz et al.,

2007).

In some applications, the user may prefer to use an automatic procedure to

determine the time scale; in other applications, one may wish to investigate

how the similarity depends on the time scale. For instance, the timescale may

be chosen based on optimizing some desired quantity, e.g., classification fidelity
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(as in Victor et al. (1997)). In event synchronization, one can fix the time scale

instead of using the adaptive rule (41). Likewise, in SES one may fix st instead

of estimating it.

5.6.3 Delays

There might be a delay between the two point processes x and x′. Before the

above mentioned classical measures can be applied, one first needs to estimate

potential delays, and shift the point processes accordingly. On the other hand,

SES directly handles delays, and it does not require a separate procedure to

estimate delays. As a consequence, the estimates of st and ρ are robust against

lags between the point processes, as we will demonstrate in Section 6.

5.6.4 Matching

The van Rossum measure and Schreiber et al. measure allow for “matching”

between a single event in one train and multiple events in the other, since the

exponential kernel of an event in one train may overlap with the exponential

kernels of multiple events in the other train. Similarly in event synchroniza-

tion and the Hunter-Milton measure, an event may be matched with multiple

events. In SES and the Victor-Purpura metric on the other hand, each event

can be coincident with at most one other event.
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6 Analysis of Surrogate Data

Here we investigate the robustness and reliability of SES and the classical

(dis)similarity measures reviewed in Section 5. In order to benchmark the

different measures, we apply them to surrogate data. For this data, the true

values of event reliability and timing jitter are known and directly controllable.

As far as we know, such comparison using surrogate data has not been carried

out yet. In the investigation of (Tiesinga et al., 2008), the measures were

applied to spike trains generated by a Hodgkin-Huxley type model; for such

models, the true values of event reliability and timing jitter are unknown.

We randomly generated 10,000 pairs of one-dimensional point processes (x,

x′) according to the symmetric procedure depicted in Fig. 1(b). For the sake

of definiteness, we assume that x and x′ are point processes in time. We con-

sidered several values of the parameters ℓ, pd, δt and st (σt). More specifically,

the length ℓ was chosen as ℓ = ℓ0/(1− pd), where ℓ0 ∈ N0 is a constant. With

this choice, the expected length of x and x′ is ℓ0, which is independent of pd.

We considered the values ℓ0 = 40 and 100, pd = 0, 0.1, . . . , 0.4, δt = 0ms,

25ms, 50ms, and σt = 10ms, 30ms, and 50ms. The parameter T0 was chosen

as ℓ0 · 100ms. The average spiking rate therefore is about 10Hz, for all choices

of ℓ0 and pd.

In the SES approach, we used the initial values δ̂
(0)
t = 0, 30, and 70 and ŝ

(0)
t =

(30ms)2. The parameter β was identical for all settings of ℓ, pd, δt and st, i.e.,

β = 0.02; it was optimized to yield the best overall results. There are perhaps

ways to determine β from a single pair of point processes, which would allow

us to determine β for each setting of ℓ, pd, δt and st separately; we leave this
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issue as a topic for further research. In practice, however, one often considers

multiple point processes simultaneously. In Section 7 we determine the SES

parameters from multiple point process, and we will describe a method to

determine the “optimal” parameter β.

The constant CV of the Victor-Purpura metric was set to 0.001 and 0.1ms−1.

For the time constants τR, and τS, and τH (cf. Section 5), we considered the

values 10ms and 20ms. For the time constant τQ (cf. Section 5), we chose the

values 20ms and 40ms. Those values of the different time constants seemed to

yield the most reasonable results. Since we consider different lengths ℓ0, we

normalized the Victor-Purpura metric DV by the number of events in both

point processes, i.e., we consider the normalized metric D̄V defined as:

D̄V =
DV

n + n′
. (45)

In order to assess the (dis)similarity measures, we compute for each above

mentioned parameter setting and for each measure S the expectation E[S]

and normalized standard deviation σ[S] = σ[S]/E[S]. Those statistics are

computed by averaging over 10,000 pairs of point processes (x,x′), randomly

generated according to the symmetric procedure depicted in Fig. 1(b).

6.1 Results

Results for SES are summarized in Fig. 6. From this figure we can make the

following observations:

• The estimates of st and pd are biased, especially for small ℓ0, i.e., ℓ0 = 40,

and st ≥ (30ms)2 and pd > 0.2; more specifically, the expected value of
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those estimates is smaller than the true value, which is due to ambiguity

inherent in event synchrony (cf. Fig. 2). On the other hand, the estimates

of δt are unbiased for all considered values of δt, st and pd (not shown here).

• The estimates of st do only weakly depend on pd, and vice versa.

• The estimates of st and pd do not depend on δt, i.e., they are robust to

lags δt, since the latter can be estimated reliably.

• The normalized standard deviation of the estimates of δt, st and pd grows

with st and pd, but it remains below 30% (not shown here). Those estimates

are therefore reliable.

• The expected value of st and pd does hardly depend on the length ℓ0. On

the other hand, the estimates of st and pd are less biased for larger ℓ0.

The normalized standard deviation of the SES parameters decreases as the

length ℓ0 increases (not shown here), as expected.

In other words, the SES algorithm results in reliable estimates of the SES

parameters st and ρ.

Results for the classical measures reviewed in Section 5 are summarized in Fig. 7

to Fig. 9. For the sake of clarity, we only show the results for δt = 0 in those

figures. The influence of lags on classical measures will be investigated later

in this section (see Fig. 9(a)). Let us first consider the results for the Victor-

Purpura distance metric (Victor et al., 1997; Aronov, 2003; Victor et al., 2007),

which are summarized in Fig. 6. From that figure we can see the following:

• For CV = 0.001 ms−1, the distance metric D̄V grows with pd and is prac-

tically independent of st. (This is the “intermediate” regime mentioned in

Section 5.1.) In this regime, the metric D̄V is proportional to the number of

non-coincident events, and it behaves similarly as ρ; however, due to ambi-
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guity inherent in event synchrony (cf. Fig. 2), for pd > 0.2, it overestimates

the number of coincident events and underestimates pd.

For larger CV , in particular CV = 0.1 ms−1, the metric clearly depends on

both pd and st. It is noteworthy that the value CV = 0.1 ms−1 depends on

T0/ℓ0 (average distance between events in x and x′), which is 100 ms.

If CV = 0 ms−1 (not shown here), the metric D̄V is close to zero, since it is

equal to the difference in length of both point processes x and x′, and in our

experiments, both point processes have equal length on average. However,

note that the metric D̄V is not exactly equal to zero, since the length of

the sequences is not identical in every realization but only on average. The

difference in length fluctuates stronger as pd increases. Therefore, for CV = 0

ms−1, D̄V increases (weakly) with pd, independently of st, but remains close

to zero (D̄V < 0.1).

On the other hand, if CV ≫ 1 (not shown here), the metric D̄V is close

to one, independently of pd and st. In the transformation of one point pro-

cess into the other, (almost) every event is either deleted or inserted, and

therefore, a cost of 1 is associated to (almost) every event.

• The normalized standard deviation of D̄V decreases with pd and st, and

it remains below 30% (not shown here); the estimates of D̄V are therefore

reliable.

• The expected value of D̄V does not depend on the length ℓ0, however, its

normalized standard deviation decreases as the length ℓ0 increases (not

shown here).

The results for the van Rossum distance measure DR (Van Rossum, 2001) are

summarized in Fig. 8. From that figure one can see the following:
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• The distance metric DR grows with both pd and st, similarly as the distance

metric D̄V (for CV ≫ 0.001).

• The normalized standard deviation of DR is largely independent of pd and

decreases with st (not shown here). Since it remains below 15%, the esti-

mates of DR are reliable.

• Similarly as the metric D̄V , the expected value of DR does not depend on

the length ℓ0, however, its normalized standard deviation decreases as the

length ℓ0 increases (not shown here).

• As the time constant τR increases, the expected value of DR and its normal-

ized standard deviation decrease (not shown here). This can be explained

as follows: the larger τR, the more the time series s(t) and s′(t) overlap, and

hence the smaller DR. Since there are generally also more coincident events

for larger DR, the fluctuations of DR are smaller, as a result, its normalized

standard deviation becomes smaller.

We made similar observations can for the Schreiber et al. measure SS (Schreiber

et al., 2003), the Hunter-Milton measure SH (Hunter et al., 2003), and event

synchronization SQ (both with fixed and adaptive time constant τQ(k, k′) (41)).

In order to assess the robustness of the SES algorithm, we also analyzed surro-

gate data generated by an alternative procedure; in the symmetric procedure

depicted in Fig. 1(b), the timing perturbations are not drawn from a Gaussian

distribution but from a Laplacian distribution instead:

p(x; m, w) =
1

2w
exp

(

−|x − m|
w

)

, (46)

where w is a scale parameter. The variance s of the Laplacian distribution is

given by s = 2w2, and hence the parameter w is related to the variance s as

w =
√

s/2.
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More specifically, the generative process is as follows: First, one generates

an event string v of length ℓ, where the events vk are mutually independent

and uniformly distributed in [0, T0]. The strings z and z′ are generated by

delaying v over −δt/2 and δt/2 respectively and by (slightly) perturbing the

resulting event occurrence times. Those perturbations as zero-mean Laplacian

variables with variance st/2; the scale parameter w (cf. (46)) is chosen as

w =
√

st/4 = σt/2. Next some of the events in z and z′ are removed, resulting

in the sequences x and x′; each event of z and z′ is removed with probability

pd (“deletion”), independently of the other events.

We again considered the values ℓ0 = 40 and 100, pd = 0, 0.1, . . . , 0.4, δt =

0ms, 25ms, 50ms, and σt = 10ms, 30ms, and 50ms, and the parameter T0 was

again chosen as ℓ0 · 100ms.

The results are summarized in Fig. 10. By comparing Fig. 10 with Fig. 6, it

can be seen that the results for both generative processes are very similar. This

suggests that SES can robustly quantify timing precision and event reliability.

6.2 Discussion

From this study of surrogate data, we can conclude the following:

• SES and the classical measures considered in this paper are reliable in the

sense that their statistical fluctuations are relatively small; their normalized

standard deviation is typically below 30%, and often even below 20%.

• The longer the point process, the more reliable the measures become, as

expected.

• The classical measures are sensitive to lags, therefore, one needs to estimate
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potential lags before they can be applied. As an illustration, Fig. 9(a) shows

how the Schreiber et al. measure SS depends on δt; clearly, SS drops as the

delay δt increases. On the other hand, SES directly incorporates lags, and as

a result, the estimates pd and st are robust to lags (cf. Fig. 6). However, it

is critical to choose an appropriate set of initial values δ̂
(0)
t . For example, if

one only uses δ̂
(0)
t = 0 as initial value, the estimates pd and st become more

sensitive to lags (not shown here). In other words, one of the initial values

should be sufficiently close to the true lag. Therefore, prior information

about potential lags is crucial for the success of the SES algorithm. If no

such prior information is available, one needs to choose multiple initial

values in a wide range; if the true lag falls within that range, the SES

algorithm will most likely yield reliable estimates of pd and st. On the other

hand, if the true lag is far from the initial values δ̂
(0)
t , the estimates of pd

and st may not be reliable.

• Most classical measures depend on both pd and st, and therefore, they are

not able to separate the two key aspects of synchrony, i.e., timing preci-

sion and event reliability. There is one exception: the distance metric D̄V

grows with pd for small cost factors CV , independently of st (cf. Fig. 7(a)

and Fig. 7(c)). The same holds for the SES parameter ρ (cf. Fig. 6(c) and

Fig. 6(d)); both D̄V and ρ are measures of event reliability. Note that ρ

is robust to lags δt, in contrast to D̄V . The SES parameter st is largely

independent of pd (cf. Fig. 6(a) and Fig. 6(b)), it is a robust measure for

timing dispersion. Interestingly, the parameters pd and st seem to quantify

event reliability and timing precision respectively, even if the data at hand

is generated from a model that differs from the SES model (cf. Fig. 1(b)).

We wish to point out once more, however, that all (dis)similarity measures

for one-dimensional point processes underestimate the timing dispersion
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and the number of event deletions due to the ambiguity inherent in event

synchrony (cf. Fig. 2).

• There exists a classical procedure to estimate the timing dispersion based

on the Schreiber et al. measure SS (see, e.g., Tiesinga et al. (2008)). One

computes SS for a range of values of τS. The value of τS at which SS =

0.5 is considered as an estimate σS of the timing dispersion. Similarly one

may determine timing dispersion from other classical measures, e.g., the

Hunter-Milton similarity measure. It is important to realize, however, that

since the classical measures significantly depend on pd (with the exception

of the Victor-Purpura distance for sufficiently small CV ), also the resulting

estimates of timing dispersion will significantly depend on pd. This is illus-

trated in Fig. 9(b). From the figure it can be seen that both the similarity

measure SS and the timing dispersion estimate σS significantly depends on

pd. For example, σS is equal to 12ms for the parameter settings (σt = 30ms,

pd = 0.4) and (σt = 50ms, pd = 0.1); in other words, σS is not a reliable

measure for timing dispersion, and the same holds for similar estimates of

timing dispersion, for example derived from the Hunter-Milton similarity

measure. In contrast, the estimate ŝt of the SES parameter st does not suffer

from those shortcomings (see Fig. 6(a) and Fig. 6(b)).

• SES is significantly more computationally complex than some classical sim-

ilarity measures, e.g., the Hunter-Milton similarity measure. In principle,

the complexity of the SES inference algorithm scales quadratically with the

sequence length. Without further modifications, the SES algorithm is only

practical for sequences of length 100 and less. However, a very reasonable

approach to limit the computationally complexity is to only consider pairs

of events that are sufficiently close to each other. For example, in the ap-

plication at hand, it is not likely that two events with a lag of more than
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Fig. 6. Results for stochastic event synchrony: the figure shows the expected value

E[σ̂t] and E[ρ̂] and the normalized standard deviation σ̄[σ̂t] and σ̄[ρ̂] for the pa-

rameter settings ℓ0 = 40 and 100, δt = 0, 25, 50ms, σt = 10, 30, 50ms, and

pd = 0, 0.1, . . . , 0.4. The curves for different δt are practically coinciding.

500ms form an event pair. Therefore, such pairs can be discarded a priori

in the SES algorithm. The complexity then becomes linear in the sequence

length, and the SES algorithm remains practical for sequences of length

1000 and more.

• The SES algorithm only leads to reliable estimates of pd and st if the pa-

rameter β is appropriately chosen. In the application at hand, β was fixed

for all parameter settings, and we choose the value of β that resulted in the

most reliable estimates. In the application of Section 7, we will propose a

technique to determine β from multiple given point processes.
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Fig. 7. Results for (normalized) Victor-Purpura distance metric D̄V : the figure shows

the expected value E[D̄V ] and the normalized standard deviation σ̄[D̄V ] for the

parameter settings ℓ0 = 40 and 100, δt = 0ms σt = 10, 30, 50ms, pd = 0, 0.1, . . . , 0.4

and CV = 0.001, 0.1ms−1.
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(c) τR = 10ms, ℓ0 = 100.
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Fig. 8. Results for van Rossum distance metric DR: the figure shows the expected

value E[DR] and the normalized standard deviation σ̄[DR] for the parameter settings

ℓ0 = 40 and 100, δt = 0ms σt = 10, 30, 50ms, pd = 0, 0.1, . . . , 0.4 and τR= 10, 20ms.
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Fig. 9. Sensitivity of the Schreiber et al. measure SS to δt and pd, with ℓ0 = 100

and σt = 10, 30, 50. In the top figure, the parameter settings are pd = 0.2 and

δt = 0, 25, 50ms; note that the similarity SS decreases with δt. In the bottom figure,

the parameter settings are pd = 0, 0.1, . . . , 0.4 and δt = 0ms.
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Fig. 10. Results for stochastic event synchrony for the surrogate data with Laplacian

timing perturbations: the figure shows the expected value E[σ̂t] and E[ρ̂] and the

normalized standard deviation σ̄[σ̂t] and σ̄[ρ̂] for the parameter settings ℓ0 = 40

and 100, δt = 0, 25, 50ms, σt = 10, 30, 50ms, and pd = 0, 0.1, . . . , 0.4. The curves for

different δt are practically coinciding.
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7 Application: Firing Reliablity of a Neuron

In this section, we investigate an application related to neuroscience. In par-

ticular, we apply SES to quantify the firing reliability of neurons. We consider

the Morris-Lecar neuron model (Morris et al., 1981), which exhibits properties

of type I and II neurons (Gutkin et al., 1998; Tsumoto et al., 2007; Tateno

et al., 2004). The spiking behavior differs in both neuron types, as illustrated

in Fig. 12 and Fig. 13. In type II neurons, the timing jitter is small, but spikes

tend to drop out. In type I neurons, on the other hand, fewer spikes drop

out, but the dispersion of spike times is larger. In other words, type II neurons

prefer to stay coherent or to be silent, on the other hand, type I neurons follow

the middle course between those two extremes (Robinson, 2003).

This difference in spiking behavior is due to the way periodic firing is es-

tablished (Gutkin et al., 1998; Tsumoto et al., 2007; Tateno et al., 2004). In

type I neurons, periodic firing results from a saddle-node bifurcation of equi-

librium points. Such neurons show a continuous transition from zero frequency

to arbitrary low frequency of firing. Pyramidal cells are believed to be type I

neurons. On the other hand, in type II neurons, periodic firing occurs by a

sub-critical Hopf-bifurcation. Such neurons show an abrupt onset of repetitive

firing at a higher firing frequency, they cannot support regular low-frequency

firing. Squid giant axons and the Hodgkin-Huxley model are type II.

In the following section, we describe the Morris-Lecar neuron model in more

detail. In Section 7.2.1, we apply both SES and classical (dis)similarity to

quantify the firing reliability of both types of neurons, and will discuss how

the difference in spiking behavior is reflected in those (dis)similarity measures.
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Fig. 11. A realization of the input current Iext (52): it consists of a base line B, a

sinusoid with amplitude A and frequency f , and additive white Gaussian noise with

variance σ2
n.

7.1 Morris-Lecar Neuron Model

The Morris-Lecar neuron model is described by (Morris et al., 1981):

CM

dV

dt
= −gL(V − VL) − gCaM∞(V − VCa) − gKN(V − VK) + Iext (47)

dN

dt
= λN(N∞ − N), (48)

where M∞, N∞, and λN are the following functions:

M∞ = 0.5
(

1 + tanh
(

(V − V1)/V2

)

)

(49)

N∞ = 0.5
(

1 + tanh
(

(V − V3)/V4

)

)

(50)

λN = φ cosh
(

(V − V3)/2V4

)

. (51)
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(a) Membrane potential V of type I neuron.
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(b) Membrane potential V of type II neuron.

Fig. 12. Membrane potential V (47) for type I (top) and type II (bottom) neurons:

5 realizations are shown.
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(a) Spike trains from type I neuron.
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(b) Spike trains from type II neuron.

Fig. 13. Raster plots of spike trains from type I (top) and type II (bottom) neurons;

in each case 50 spike trains are shown.

52



Depending on the parameters of the system, the M-L neuron model behaves

as a type I or II neuron. Rinzel and Ermentrout (Gutkin et al., 1998) have

determined a setting of the system parameters for each type. Table 3 lists

parameter values that are different in the two classes, whereas Table 4 lists

common parameter values. The analysis of (Gutkin et al., 1998) was further re-

fined in (Tsumoto et al., 2007; Tateno et al., 2004), however, for our purposes,

the parameter setting of Table 3 and 4 suffices.

In our experiments the input current Iext is equal to:

Iext = A sin(2πft) + B + n(t), (52)

where n(t) is zero-mean white Gaussian noise with variance σ2
n. Fig. 11 shows

a realization of Iext. The sinusoidal component forces the neuron to spikes

regularly, however, the precise timing varies from trial to trial due to the noise

n(t). Our objective is to investigate how the noise affects the spike timing and

the tendency to drop spikes. We are especially interested in how the effect

of noise differs in both neuron types. The parameter settings for the input

current Iext are listed in Table 5. We have chosen the parameters such that

we obtain the typical spiking behavior of both types of neurons, as described

in (Robinson, 2003). Fig. 12 shows the membrane potential V (47) for 5 trials.

By thresholding V we obtain the raster plots of Fig. 13; we show 50 trials.

7.2 Results

We will first present the results for the SES approach (Section 7.2.1). In Sec-

tion 7.2.2 we discuss the results for classical methods.
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Parameter type I type II

gCa [µS/cm2F] 4.0 4.4

φ [s−1] 1/15 1/25

V3 [mV] 12 2

V4 [mV] 17.4 30

Table 3

Parameter setting for type I and II Morris-Lecar neurons.

7.2.1 Stochastic event synchrony

We computed the SES parameters for each pair of the 50 trials and for different

values of β. Next we averaged those parameters over all pairs; since there are

50 trials, we have 1225 such pairs in total. A similar approach was followed

in (Haas et al., 2002; Schreiber et al., 2003; Hunter et al., 2003). We set

δ̂(0) = 0, and in order to overcome local extrema, we use multiple initial values

ŝ
(0)
t = (1ms)2, (3ms)2, (5ms)2, (7ms)2 and (9ms)2. Each initialization of (δ̂(0),

ŝ
(0)
t ) may lead to a different solution (ĵ, ĵ′, δ̂t, ŝt); we choose the most probable

solution, i.e., the one that has the largest value p(x, x′, ĵ, ĵ′, δ̂t, ŝt).

Note that instead of considering all 1225 pairs of trials, an arguably more

elegant approach would be to consider all 50 trials jointly. As we pointed out

earlier, SES can indeed be extended to collections of point processes, but this

goes beyond the scope of this paper (Part I) and the companion paper (Part

II).

Fig. 14(a) and Fig. 14(b) shows how the average st (σt) and ρ respectively
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(c) The parameter σt as a function of ρ.

Fig. 14. The parameters σt and ρ estimated from spike trains of type I and type II

Morris-Lecar neurons (cf. Fig. 13): the top and middle figure show how σt and

ρ respectively depend on β. The bottom figure show how σt and ρ jointly evolve

with β. The arrows indicate the optimal settings (β, st, ρ) = (10−3, (15.2ms)2, 0.029)

and (β, st, ρ) = (0.03, (2.7ms)2, 0.27) for type I and type II neurons respectively.
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Parameter Value

CM 5 [µF/cm2]

gK 8 [µS/cm2]

gL 2 [µS/cm2]

VCa 120 [mV]

VK -80 [mV]

VL -60 [mV]

V1 -1.2 [mV]

V2 18 [mV]

Table 4

Fixed parameters for the Morris-Lecar neuron; this parameter setting is used in

both types of neurons.

depend on β for both neuron types. Fig. 14(c) shows st (σt) as a function

of ρ for several values of β. The “optimal” values of (β, st, ρ) are indicated

by arrows. Later we will explain how we determined those values. From those

three figures it becomes immediately clear that the parameter ρ is significantly

smaller in type I than in type II neurons (for β ∈ [10−10, 10−2]), in contrast, st

is vastly larger. This agrees with our intuition: since in type II neurons spikes

tend to drop out, ρ should be larger. On the other hand, since the timing

dispersion of the spikes in type I is larger, we expect st to be larger in those
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Parameter type I type II

A [nA/cm2] 40 72

B [nA/cm2] 0.67 6

f [Hz] 10 10

σ [nA/cm2] 9 5

Table 5

Parameters of input current Iext (52) for type I and II Morris-Lecar neurons.

neurons.

Fig. 14(a) to Fig. 14(c) show the pair (st, ρ) for various values of β. Of course,

we eventually want to describe the firing reliability by one pair (st, ρ), but how

should we select β? If we choose β too small, some non-coincident events will

be treated as coincident events, i.e., they will be matched with other events,

resulting in large offsets. As a consequence, the distribution of the offsets will

have a significant number of outliers, which leads to an inconsistency: in model

p(x, x′, b, b′, δt, st, ℓ) (26), this distribution is supposed to be Gaussian, which

cannot capture the large number of outliers. In addition, due to those outliers,

the parameter st will be unreasonably large. As can be seen from Fig. 14(a),

this occurs for type II neurons when β < 10−10. Fig. 14(c) shows this threshold

phenomenon more clearly: there are two distinct regimes in the st-ρ curve. This

is most obvious for the type II neuron, but it also occurs in type I neuron:

the slope of its st-ρ curve is larger in the region ρ < 0.03 than in the region

ρ > 0.03.
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On the other hand, if β too large, some coincident event pairs will no longer be

matched, those events will be treated as non-coincident events. As a result, the

distribution of the offsets will have lighter tails than the Gaussian distribution;

the parameter st will than be too small and ρ unreasonably large. This occurs

in both neuron types for β > 0.01 (cf. Fig. 14(a) and Fig. 14(b)).

From this intuitive reasoning, we expect there is an optimal value of β. This

is confirmed in Fig. 15 and Fig. 16: those figures show quantile-quantile plots

of the offset distribution for various values of β. If the offset distribution were

exactly Gaussian, the data quantiles would lie on the straight dashed lines.

One can clearly see deviations from the straight lines for small and large

values of β. Fig. 17 shows the average deviation from the straight line as a

function of β, which is a measure for how much the offset distribution differs

from a Gaussian distribution. The value of β with the smallest deviations is

10−3 and 0.03 for type I and type II neurons respectively, which corresponds

to (st, ρ) = ((15.2ms)2, 0.029) and (st, ρ) = ((2.7ms)2, 0.27) respectively. For

those values of β, the data quantiles practically coincide with the straight line,

and therefore, the offset distribution may be considered Gaussian and model

p(x, x′, b, b′, δt, st, ℓ) (26) is then self-consistent.

We also applied this technique for determining β to single pairs of point pro-

cesses (cf. Section 6) but did not obtain satisfactory results. The method needs

a sufficient number of (coincident) events in order to be reliable. Therefore,

we decided to fix the parameter β in the experiments of Section 6, and to

optimize over it.

We assessed the estimates of (st, ρ) by bootstrapping (Efron et al., 1993). More

precisely, for both types of neurons we generated 1,000 sets of 50 spike trains.
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Those sets of spike trains were generated along the lines of the symmetic

procedure of Fig. 1(b): first we generate a hidden process v with length ℓ =

40/(1 − pd) and equidistant events vk; then we generate 50 noisy copies of v,

by slightly perturbing the timing of the events vk (with noise variance st/2)

and deleting some of the events (with probability pd). The delay δt was set

equal to zero. We carried out this procedure for type I neurons with (st, ρ) =

((15.2ms)2, 0.029) and type II neurons with (st, ρ) = ((2.7ms)2, 0.27), which

are the estimates obtained by the SES inference procedure, as discussed in

the above. Next we applied the SES algorithm of Table 2 to those sets of

point processes; the parameter β was set equal to 10−3 and 0.03 for type I and

type II neurons respectively, and we chose the initial values δ
(0)
t = 0ms and

s
(0)
t = 30(ms)2. The results of this analysis are summarized in Table 6. Since

the expected values of st and ρ agree very well with the true values, and the

normalized standard deviations are small (<15%), it is reasonable to believe

that the estimates (st, ρ) = ((15.2ms)2, 0.029) and (st, ρ) = ((2.7ms)2, 0.27)

for type I and type II neurons respectively are accurate.

For completeness, we show in Fig. 18 a histogram of the number of iterations

required for the SES algorithm of Table 2 to converge. In each of those itera-

tions, one updates the sequences (j, j′) and the SES parameters (cf. Table 2).

The histogram of Fig. 18 was computed over all pairs of trials of both types of

neurons and for all values of β considered in Fig. 14(a). From the histogram,

we can see that the algorithm converged after at most 19 iterations, and on

the average, after about three iterations. We allowed a maximum number of

30 iterations, and therefore, from Fig. 18 we can conclude that the algorithm

always converged in our experiments.
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Statistics type I type II

E[st] 15.3 2.70

σ̄[st] 1.8% 1.8%

E[ρ] 0.0283 0.273

σ̄[ρ] 12% 3.1%

Table 6

Results from the bootstrapping analysis of the SES estimates (st, ρ) = ((15.2ms)2,

0.029) and (st, ρ) = ((2.7ms)2, 0.27) for type I and type II neurons respectively. The

table shows the expected values E[st] and E[ρ], besides the normalized standard

deviations σ̄[st] and σ̄[ρ]. The expected values practically coincide with the actual

estimates and the normalized standard deviations are small; therefore, the SES

estimates (st, ρ) may be considered reliable.
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(a) (β, σt, ρ) = (10−2, 14.4ms, 0.046)
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(b) (β, σt, ρ) = (10−3, 15.2ms, 0.029)
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(c) (β, σt, ρ) = (10−4, 15.3ms, 0.028)
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(d) (β, σt, ρ) = (10−5, 15.4ms, 0.028)

Fig. 15. Quantile-quantile plots for the offset between coincident spikes the type I

neuron. If the (solid) quantile-quantile curve coincides with the (dotted) straight

line, the distribution of the offset of coincident events is Gaussian. The deviation

between both curves is the smallest at (β, st, ρ) = (10−3, (15.2ms)2, 0.029), they

then practically coincide.
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(a) (β, σt, ρ) = (0.04, 2.3ms, 0.32)
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(b) (β, σt, ρ) = (0.03, 2.7ms, 0.27)
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(c) (β, σt, ρ) = (0.02, 3.2ms, 0.23)
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(d) (β, σt, ρ) = (0.01, 3.7ms, 0.19)

Fig. 16. Quantile-quantile plots for the offset between coincident spikes of the type II

neuron. If the (solid) quantile-quantile curve coincides with the (dotted) straight

line, the distribution of the offset of coincident events is Gaussian. The deviation

between both curves is the smallest at (β, st, ρ) = (0.03, (2.7ms)2, 0.27), they then

practically coincide.

62



10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

β

N
on

-G
au

ss
ia

n
it
y

(a) Non-Gaussianity of the offset between coincident

events in type I neurons.
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(b) Non-Gaussianity of the offset between coincident

events in type II neurons.

Fig. 17. Non-Gaussianity of the offset between coincident events; this is the deviation

of the offset distribution from a Gaussian distribution. This quantity is computed as

the average distance between the quantile-quantile curve and the straight line shown

in the quantile-quantile plots of Fig. 15 and Fig. 16. The minimum non-Gaussianity

is reached when the distance between both curves is the smallest; this occurs at β

= 10−3 and β = 0.03 in type I and type II neurons respectively.
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Fig. 18. Histogram of the number of iterations required for convergence of the SES

inference algorithm of Table 2; in each of those iterations, the sequences (j, j′) and

the SES parameters are updated (cf. Table 2). The histogram is computed over all

pairs of spike trains of both types of neurons (cf. Fig. 13) and for all values of β

considered in Fig. 14(a). The maximum number of iterations was set to 30. It can

be seen from this histogram that the algorithm converged in all experiments.
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7.2.2 Classical measures

Besides SES, we also applied the classical methods reviewed in Section 5. The

results are summarized in Fig. 19.

From those figures, it can be seen that the similarity measures SS, SH and

SQ are larger for type II neurons than for type I neurons if the time constants

τS, τH and τQ are small; for large time constants, the opposite holds. This

can be explained as follows. Since the timing dispersion in type I neurons is

fairly large, many spikes of type I neurons will be treated as non-coincident

(non-overlapping) if the time constants τS, τH and τQ are small. On the other

hand, if those time constants are large, most spikes of type I neurons will

be considered as coincident (overlapping). In contrast, type II neurons have

high timing precision, and therefore, the similarity measures SS, SH and SQ

grow quickly with the time constants τS, τH and τQ. However, the measures

converge to relatively small values: due to the large number of drop-outs in

spike trains of type II neurons, a substantial amount of spikes are treated as

non-coincident; therefore, as the time constants grow, the similarity measures

SS, SH and SQ attain smaller values than in type I neurons.

The results of the (normalized) Victor-Purpura distance metric D̄V and the

van Rossum distance metric DR can be understood along the same lines.

As we pointed out earlier, SES adjusts its time scale automatically. The same

holds for event synchronization Quian Quiroga et al. (2002): one may adapt

the time constant τQ according to (41). With this adaption rule for τQ, we

obtained SQ = 0.96 for type I neurons and SQ = 0.83 for type II neurons.

This can be understood as follows: since the adaptive time constant τQ is

typically about 50ms or larger, the value of SQ is the lowest in type II neurons
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due to the frequent drop-outs in their spike trains.

At last, we consider a classical similarity measure SISI for multiple point pro-

cesses, introduced in (Tiesinga et al., 2004) (see also (Tiesinga et al., 2008)); it

is based on inter-spike intervals (ISI). As a first step one merges the spike times

across all trials. Next the inter-spike intervals of this sequence are calculated

and the coefficient of variation of the aggregated response (CVP) is calculated

as the standard deviation of the interspike-intervals divided by their mean.

The similarity measure SISI is then eventually obtained by subtracting 1 from

the CVP and dividing by the square root of the number of trials. We obtained

SISI = 0.25 and SISI = 0.64 for type I and type II neurons respectively. Since

SISI captures mostly the timing precision and is less sensitive to drop-outs, we

indeed expect that it attains a larger value for type II neurons than for type I

neurons.

7.3 Discussion

This analysis underlines an important issue: most classical measures depend

on a time constant, and in some practical situations, it is not obvious how to

choose the “optimal” value of those time constants. Indeed, Fig. 19 suggests

that one should compute the measures for a range of values of the time con-

stants. As a result, one obtains not just one single measure of similarity, but

a similarity function S(τ). Such function may not always be easy to interpet,

compare, or manipulate in practice. Event synchronization and SES are able

to automatically determine the appropriate time scale.

However, as we pointed out earlier, in some applications, one may wish to
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Fig. 19. Classical (dis)similarity measures applied to the spike trains of type I and

type II Morris-Lecar neurons (cf. Fig. 13). The figures show the (normalized) Vic-

tor-Purpura distance metric D̄V , the van Rossum distance metric DR, the Schreiber

et al. similarity measure SS , the Hunter-Milton similarity measure SH , and the

event synchronization measure SQ as a function of their (inverse) time constants

τV = 1/CV , τR, τS, τH , and τQ respectively. For small values of those constants, the

measures indicate that type II neurons fire more synchronously than type I neurons;

for larger values of the time constants, the opposite holds.
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investigate how the similarity depends on the time scale. In event synchro-

nization and SES, the time scale can be fixed, therefore, event synchronization

and SES can be computed for a range of time scales.
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8 Conclusions

We have presented an alternative method to quantify the similarity of two

time series, referred to as stochastic event synchrony (SES). As a first step,

one extracts events from both time series, resulting in two point processes. The

events in those point processes are then aligned. The better the alignment, the

more similar the original time series are considered to be. In this paper (Part I),

we focussed on one-dimensional point processes.

Obviously, it is important to extract meaningful events from the given time

series. The proposed method may only be expected to produce useful results

if the events characterize the time series in a suitable manner. In the case of

spike trains, individual spikes can naturally be considered as events. Note that

for certain neurons, however, it may actually be more appropriate to define a

burst of spikes as a single event.

We compared SES to classical (dis)similarity measures for one-dimensional

point processes. Through the analysis of surrogate data, we observed that most

classical (dis)similarity measures are not able to distinguish timing dispersion

from event reliability, i.e., they depend on both quantities. In contrast, SES

allows to quantify both aspects of synchrony separately. We also wish to reit-

erate that all (dis)similarity measures, both the classical measures and SES,

typically underestimate the timing dispersion and overestimates event relia-

bility; this is due to the ambiguous nature of the synchrony of one-dimensional

point processes.

This ambiguity may be resolved by incorporating additional information about

the events. For example, in the case of spikes, one may take the shape of the
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spikes into account. The point processes then become multi-dimensional. In

our companion paper (Part II), we will describe how SES may be extended

to multi-dimensional point processes. In that setting, the events pairs are no

longer assumed to be ordered, in contrast to the present formulation of SES

(see Section 3).

At last, we would like to address an interesting topic for future reseach. The

SES parameters are determined by coordinate descent, which is guaranteed

to converge to stationary points of the posterior distribution of the SES pa-

rameters. However, it does not necessarily converge to the maximum of that

distribution, which corresponds to the maximum a posteriori (MAP) estimates

of the SES parameters. Instead of trying to obtain the MAP estimates (by co-

ordinate descent or other techniques), one may (approximately) compute the

posterior distribution of the SES parameters by means of Monte-Carlo algo-

rithms such as Gibbs sampling or Markov-chain Monte Carlo methods. From

that (approximate) posterior distribution, one may be able to obtain more

reliable estimates of the SES parameters. In addition, whereas the proposed

approach is mostly practical when the prior for the number of events is a ge-

ometric distribution, Monte Carlo methods can easily deal with other priors

such as Poisson distributions. However, such Monte-Carlo approaches would

be substantially slower than the proposed algorithm based on coordinate de-

scent.
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A Derivation of Inference Algorithm for One-Dimensional SES

Here we derive the algorithm of Table 2, more specifically, we clarify how to

carry out the updates (36) and (37).

We start with the update (37) since it is the most straightforward. The es-

timate δ̂
(i+1)
t is the average offset between the coincident events at iteration

i + 1:

δ̂
(i+1)
t

△

=
1

n(i+1)

n(i+1)
∑

k=1

(

x̂
′(i+1)
k − x̂

(i+1)
k

)

, (A.1)

where x̂
(i+1)
k

△

= x
ĵ
(i+1)
k

is the ĵ
(i+1)
k -th event of x, and ĵ(i+1) is the estimate of

j at iteration i + 1. Likewise x̂
′(i+1)
k

△

= x′

ĵ
′(i+1)
k

is the ĵ
′(i+1)
k -th event of x′, and

n(i+1) is the number of coincident pairs at iteration i + 1:

n(i+1) = n −
n
∑

k=1

b̂
(i+1)
k = n′ −

n
∑

k=1

b̂
′(i+1)
k . (A.2)

Similarly, the estimate is the variance ŝ
(i+1)
t of the offset between the coincident

events at iteration i + 1:

ŝ
(i+1)
t

△

=
1

n(i+1)

n(i+1)
∑

k=1

(

x̂
′(i+1)
k − x̂

(i+1)
k − δ̂

(i+1)
t

)2
. (A.3)

The update (36) can readily be carried out by applying the Viterbi algo-

rithm (Forney, 1973) (“dynamic programming”) on a trellis with the pairs of

coincident events (xjk
, x′

j′
k

) as states, or equivalently, by applying the max-

product algorithm on a cycle-free factor graph (Loeliger, 2004; Loeliger et al.,

2007) of p(x, x′, j, j′, δt, st). The procedure is equivalent to dynamic time warp-

ing (Myers et al., 1981); it is for example used in the context of bio-informatics

to compute the distance between genetic sequences (Sellers, 1974, 1979). It is

also applied in neuroscience to compute various spike metrics (Victor et al.,
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1997; Aronov, 2003; Victor et al., 2007).

As a first step in that procedure, one arranges the sequences x and x′ on the

sides of a (n+1)×(n′+1) grid (see Fig. 5). Note that we assume, without loss

of generality, that the sequences x and x′ are ordered, i.e., xk ≥ xk−1 and x′

k ≥

x′

k−1. An alignment (ĵ, ĵ′) corresponds to a path P = {(xq1, x
′

q′1
), (xq2, x

′

q′2
), . . . }

on the grid, in particular, the alignment (36) corresponds to the minimal-cost

path. Note that each path starts at (0,0) and ends at (n, n′). In addition, it

never turns back, in other words, the indices qk and q′k′ never decrease, since

the event sequences are assumed to be ordered (cf. Section 3). Moreover, those

indices increase by at most 1 at each step along the path. As a result, each

path contains three kinds of segments [(qk−1, q
′

k′
−1), (qk, q

′

k′)], all of length 1:

(1) horizontal: (qk, q
′

k′) = (qk−1 + 1, q′k′−1)

(2) vertical: (qk, q
′

k′) = (qk−1, q
′

k′
−1 + 1)

(3) diagonal: (qk, q
′

k′) = (qk−1 + 1, q′k′
−1 + 1).

The minimal-cost path is found by computing an (n+1)× (n′+1) cost matrix

M . The first row and column of M are filled with zeroes, i.e., the elements

Mk,0 = 0 = M0,k′ (for k = 0, 1, . . . , n and k′ = 0, 1, . . . , n′), the other elements

are computed recursively as:

Mk,k′ = min
[

Mk−1,k′ + d
(

ŝ
(i)
t

)

, Mk,k′
−1 + d

(

ŝ
(i)
t

)

,

Mk−1,k′
−1 + d

(

xk, x
′

k′; δ̂
(i)
t , ŝ

(i)
t

)

]

, (A.4)

for k = 1, . . . , n and k′ = 1, . . . , n′. Obviously, in order to compute the cost

Mk,k′, the costs Mk−1,k′, Mk,k′
−1, and Mk−1,k′

−1 need to have been computed

previously. To this end, one may first compute M1,1, then one may gradually

fill the rest of the matrix M . The minimal cost is eventually given by Mnn′ , the
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corresponding path P and alignment (ĵ, ĵ′) may be traced back from the op-

tions chosen at each stage in the recursion (A.4). The first choice corresponds

to treating xk as a non-coincident event (b̂k = 1; horizontal segment), the

second choice corresponds to treating x′

k′ as a non-coincident event (b̂′k′ = 1;

vertical segment), and the third choice corresponds to treating (xk, x
′

k′) as

an event pair (b̂k = 0 and b̂′k′ = 0; diagonal segment). Combining the up-

dates (A.1) and (A.3) with the recursion (A.4) leads to the algorithm of Ta-

ble 2.

Note that if the event sequences are not assumed to be ordered, the paths on

the grid may return and the minimal-cost path may no longer be found by

the above simple dynamic programming procedure.
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