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Abstract

We present a novel approach to quantify the statistical interdependence of two time
series, referred to as “stochastic event synchrony” (SES). As a first step, one extracts
“events” from the two given time series. Next, one tries to align events from one
time series with events from the other. The better the alignment, the more similar
the two time series are considered to be. More precisely, the similarity is quantified
by the following parameters: time delay, variance of the timing jitter, fraction of

“non-coincident” events, and average similarity of the aligned events.

The pairwise alignment and SES parameters are determined by statistical infer-
ence. In particular, the SES parameters are computed by maximum a posteriori

(MAP) estimation, and the pairwise alignment is obtained by applying the max-
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product algorithm. This paper (Part I) deals with one-dimensional point processes,
the extension to multi-dimensional point processes is considered in a companion

paper (Part II).

By analyzing surrogate data, it is demonstrated that SES is able quantify both
timing precision and event reliability more robustly than classical measures. As an
illustration, neuronal spike data generated by the Morris-Lecar neuron model is

considered.

Key words: timing precision, event reliability, stochastic event synchrony,
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measure, Hunter-Milton similarity measure, event synchronization measure,
coincident event, maximum a posteriori estimation, spike train, Morris-Lecar

neuron model

1 Introduction

Quantifying the interdependence between time series is an important yet chal-
lenging problem. Although it is straightforward to quantify linear dependen-
cies, the extension to non-linear correlations is far from trivial. A variety of

approaches have been proposed, stemming from research fields as diverse as
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physics, statistics, signal processing, and information theory (see, e.g., (Stam,
2005; Quian Quiroga et al., 2002; Pereda et al., 2005; Kreuz et al., 2007;
Tiesinga et al., 2008)).

In this paper, we propose a novel measure to quantify the interdependence be-
tween two point processes, referred to as “stochastic event synchrony” (SES);
it consists of the following parameters: time delay, variance of the timing jit-
ter, fraction of “non-coincident” events, and average similarity of the events.
SES captures two different aspects of synchrony: timing precision and reliabil-
ity. Those concepts can be understood from the following analogy; when you
wait for a train in the station, the train may come at the station or it may
not come at all, for example, it may be out of service due to some mechan-
ical problem. If the train comes, it may or may not be on time. The former
uncertainty is related to reliability, whereas the latter is related to precision.
A similar distinction between timing precision and reliability has been made
in (Mainen and Sejnowski, 1995; Tiesinga et al., 2008). SES quantifies preci-
sion and reliability by the variance of the timing jitter and the fraction of the

non-coincident events respectively.

The pairwise alignment of point processes is cast as a statistical inference
problem, which is solved by applying the max-product algorithm on a graph-
ical model (Jordan, 1999; Loeliger, 2004; Loeliger et al., 2007). In the case
of one-dimensional point processes, the graphical model is cycle-free. The
max-product algorithm is then equivalent to dynamic programming, and is
guaranteed to find the optimal alignment. For multi-dimensional point pro-
cesses, the max-product algorithm is applied on a cyclic graphical model; this
algorithm yields the optimal alignment as long as the optimal alignment is

unique. This paper (Part I) deals with one-dimensional point processes, the



companion paper (Part IT) considers the extension to multi-dimensional point

processes.

Although the method may be applied to any kind of time series (e.g., from fi-
nance, oceanography, and seismology), in this paper and the companion paper,
we will solely consider time series that occur in the context of neuroscience.
Synchrony is indeed an important topic in neuroscience. For instance, it is
hotly debated whether the synchronous firing of neurons plays a role in cogni-
tion (Varela et al., 2001) and even in consciousness (Singer, 2001; Crick et al.,
2003). The synchronous firing paradigm has also attracted substantial atten-
tion in both the experimental (e.g., (Abeles et al., 1993)) and the theoretical
neuroscience literature (e.g., (von der Malsburg, 1981; Amari et al., 2003)).
Moreover, medical studies have reported that many neurophysiological dis-
eases (such as Alzheimer’s disease) are often associated with abnormalities in
neural synchrony (Matsuda et al., 2001; Jeong, 2004). Therefore, the proposed
method may be helpful to diagnose such mental disorders. In the companion
paper (Part II), we will present promising results on the early prediction of

Alzheimer’s disease based on electroencephalograms (EEG).

This paper considers the interdependence between two point processes. The
proposed methods, however, can be extended to a collection of point processes.
This extension is non-trivial: aligning a collection of point processes involves a
significantly more complex combinatorial optimization problem. Those issues
go beyond the scope of this paper and also the companion paper, they will be

addressed in a future report.

This paper is organized as follows. In the next section, we introduce SES for

the case of one-dimensional point processes. Then we describe the underlying



statistical model (Section 3) and explain how one can perform inference in that
model (Section 4). In Section 5, we review several classical (dis)similarity mea-
sures for one-dimensional point process, since they will serve as benchmark for
SES; more precisely, we will consider the Victor-Purpura distance metric (Vic-
tor et al., 1997; Aronov, 2003; Victor et al., 2007), the van Rossum distance
metric (Van Rossum, 2001), the Schreiber et al. similarity measure (Schreiber
et al., 2003), the Hunter-Milton similarity measure (Hunter et al., 2003), and
the event synchronization measure proposed in (Quian Quiroga et al., 2002).
In Section 6 we investigate the robustness and reliability of those classical
(dis)similarity measures and SES by means of surrogate data. In Section 7 we
consider an application related to neuroscience: we quantify the firing relia-
bility of Morris-Lecar type I and type II neurons using classical methods and

SES. We offer some concluding remarks in Section 8.

2 Principle

Let us consider the one-dimensional point processes (“event strings”) x and
2’ in Fig. 1(a); ignore y and z for now. They could be point processes in
time, e.g., (r; = 1.3s, o = 5.8s, ...) or space, e.g., (r; = 1.3m, x5 = 5.8m,

..), or any other dimension. We wish to quantify to which extent x and z’
are synchronized. Intuitively speaking, two event strings can be considered as
synchronous (or “locked”) if they are identical apart from: (i) a time shift J;;
(ii) small deviations in the event occurrence times (“event timing jitter”); (iii)
a few event insertions and/or deletions. More precisely, for two event strings to
be synchronous, the event timing jitter should be significantly smaller than the

average inter-event time, and the number of deletions and insertions should



comprise only a small fraction of the total number of events. This intuitive
concept of synchrony is illustrated in Fig. 1(a). The event string 2’ is obtained
from event string x by successively shifting = over §; (resulting in y), slightly
perturbing the event occurrence times (resulting in z), and eventually, by
adding (plus sign) and deleting (minus sign) events, resulting in 2’. Adding and
deleting events in z leads to “non-coincident” events in x and z’ (see Fig. 1(a):
a non-coincident event in z is an event that cannot be paired with an event

in 2’ and vice versa.

The above intuitive reasoning leads to a novel measure for synchrony be-
tween two event strings, i.e., “stochastic event synchrony” (SES); for the one-
dimensional case, it is defined as the triplet (&;, s;, p), where s; is the variance

of the (event) timing jitter, and p is the percentage of non-coincident events

£ Tmon-co + Nonco (1)

P ntn )

with n and n’ the total number of events in x and 2’ respectively, and n,on-co
and n! ., the total number of non-coincident events in x and ' respectively.
We will denote the standard deviation of the (event) timing jitter by o, and
hence s; = o2. SES is related to the metrics (“distances” or “kernels”) pro-
posed in (Victor et al., 1997; Aronov, 2003; Victor et al., 2007; Shpigelman
et al., 2005; Eichhorn et al., 2003; Schrauwen et al., 2007), which are single
numbers that quantify the similarity of event strings. In contrast, we charac-
terize synchrony by means of three parameters; this allows us to distinguish
two fundamentally different types of synchrony, as we will demonstrate in Sec-
tion 7 (see Fig. 13). Moreover, our approach is rooted in statistical inference,

in contrast to the metrics of (Victor et al., 1997; Aronov, 2003; Victor et al.,

2007; Shpigelman et al., 2005; Eichhorn et al., 2003; Schrauwen et al., 2007),



which are derived either from optimization theory (Victor et al., 1997; Aronov,
2003; Victor et al., 2007) or in the context of kernel machines (Shpigelman et
al., 2005; Eichhorn et al., 2003; Schrauwen et al., 2007).

3 Statistical Model

We compute the SES parameters by performing inference in a generative prob-
abilistic model for the sequences x and z’. In order to describe that model, we
consider a symmetric procedure to generate z and 2/, depicted in Fig. 1(b).
Note that the procedure of Fig. 1(a) corresponds to a conditional distribution
p(2'|x; &, s¢), which is asymmetric in  and z’. First, one generates an event
string v of length ¢, where the events v, are mutually independent and uni-
formly distributed in [0, 7p]. The strings z and 2’ are generated by delaying
v over —d&;/2 and 0;/2 respectively and by (slightly) perturbing the result-
ing event occurrence times. We will model those perturbations as zero-mean
Gaussian random variables with variance s;/2. Next some of the events in z
and 2’ are removed, resulting in the sequences x and 2’; each event of z and 2’
is removed with probability py (“deletion”), independently of the other events.
We denote by z,, and 2 the events in z and 2’ respectively that correspond
to vg. In the example of Fig. 1(b), r = (1,2,...,10) = 7’. Occasionally, a pair
of events (z,,, 2z, ) is removed (with probability p3), referred to as “event-pair
deletion”, but more often either z,, or 2. is removed (“single-event deletion”).
If none of the events (2,,, z,, ) is removed, there is an event in  and in 2’ that
corresponds to vg; we will denote this event pair by (z;,, 7 ). In the example
of Fig. 1(b), j = (1,2,3,5,6,7,8), and j' = (2,3,4,5,6,7,8). Note that if z,,

is deleted but not z;. , the corresponding event in 2’ becomes a non-coincident



event and vice versa. In the example of Fig. 1(b), the events z; and z{ are
deleted (single-event deletions), and as a result, ] and x5 are non-coincident
events; also the pair (219, 2},) is removed (event-pair deletion). It is easily ver-
ified that the expected length of the sequences x and 2’ is (1 — py)¢, and that

the expected value of p (cf. (1)) is py.

It is noteworthy that this procedure of generating the pair of point processes
2 and 2’ may easily be extended to a collection of point processes. However,
inference in the resulting probabilistic model is only tractable for pairs of
point processes. If one considers more than two point processes, one needs to
resort to approximate inference techniques; such methods will be presented in

a future report.

From now on, we will assume that the event pairs (z;, , x;;ﬂ) are ordered, i.e.,
(x,, :E;L) occurs after the pair (z;,_,, :E;]Ll), or more precisely, z; > z;,_,
and x;],e > :c;.;ﬁl (for all k). This assumption is reasonable, since without it,
there would be an unwieldy number of possible ways to generate the same
point processes x and z’, and therefore, the problem of inferring the SES pa-
rameters would be ill posed. In fact, virtually all measures of event synchrony
make use of this assumption, either explicitly or implicitly (see Section 5 for
a brief review). However, this assumption has some important consequences,
as illustrated in Fig. 2; if s, is large, with high probability events in z and 2’
will not be ordered in time (see Fig. 2(a)). Ignoring this fact will result in es-
timates of s; that are smaller than the true value s;. Obviously, this issue not
only concerns SES but event synchrony in general. In addition, some event
deletions may be ignored: in Fig. 2(a) one of the last two events of x (and

likewise z’) is non-coincident, however, in the procedure of Fig. 2(b) they are

both coincident. The latter generative procedure is simpler in the sense that it



involves less deletions and the perturbations are slightly smaller. As a result,
the parameter p (and hence also py) is generally underestimated. Again, this
problem not only concerns SES but any measure that quantifies how reliably
events occur (see Section 6). Both issues may be resolved to some extent if one
incorporates additional information. For example, in the case of spike trains,
one may incorporate information about the spike shape; each spike is then
described by its occurrence time and some additional parameters, e.g., shape
parameters such as height and width. SES can be extended to incorporate
such additional information, as we describe in the companion paper (Part II).
When matching events of x and 2/, we then no longer assume that those events

are ordered in time, i.e., we allow reversals as in Fig. 2(a).

In the following we discuss the statistical model that corresponds to the above
symmetric procedure of generating the pair of point processes x and z’. For the
sake of clarity, we listed in Table 1 the most relevant variables and parameters
associated with that model. We will now clarify each of those variables and

parameters. The statistical model takes the form:

p(xv LU/, b7 b/v v, 5157 St, g) = p(flf|b, v, 5t7 8t>p(x/|b/7 v, 5157 St)p(bv b/w)

- p(]O)p(€)p(d:)p(si), (2)

where b and b are binary strings that indicate whether the events in z and
2’ are coincident. More specifically, b, = 1 if z; is non-coincident, by = 0
otherwise, and likewise for ). For mathematical convenience, we choose a

geometric prior for the length ¢:
p(0) = (1 = ATp) (A Ty)", (3)

with ATy € (0, 1), as illustrated in Fig. 3(a). Since the events v, are assumed



Symbol Explanation

z and 2/ the two given point processes

v hidden sequence from which the observed sequences x and z’

are generated

z and 2/ point processes obtained by shifting v over d;/2 and —d;/2 resp.

and perturbing the timing of the resulting sequences (variance s;/2)

b and v binary sequences that indicate whether events in x and z’ resp.

are coincident or not

i and 7 indices of the events in v that generated x and x’ resp.
j and j' indices of the coincident events in z and 2’ resp.
n and n/ length of z and 2’ resp.
ngel and 1/, number of deletions in z and 2’ resp.
niol total number of deletions in z and 2’

Ndelsingle and 1) G010 | Number of single-event deletions in 2 and 2’ resp.

Ndel,pair and niiel,pair number of event-pair deletions in z and 2’ resp.

!/

hon-co number of non-coincident events in x and z’ resp.

Ton-co and n/

ntot total number of non-coincident events in z and x’
l length of v
Oy timing offset between x and 2’
St timing jitter between z and 2’

Table 1

List of variables and parameters associated with model p(x,x’,b,0,v,d¢, s¢,£) (2).
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to be mutually independent and uniformly distributed in [0, 7], we have:

p(vll) = kU p(ogll) = kU ' =Ty " (4)
Therefore
p(v,€) = p(v|O)p(€) = (1 = ATp) A" (5)

At first sight, it may seem more natural to model v as a Poisson process (Gal-
lager, 1996), which corresponds to a model p(v,¢) = p(v|¢)p(¢), where p(v|l)
is also given by (4) but with different prior p(¢) for the number of events ¢

(see Fig. 3(b)), i.e., a Poisson distribution with parameter ~7j:

KRlg ¢
pty = e T ()

By comparing Fig. 3(a) and Fig. 3(b), it can be seen that a Poisson prior is
more informative than a geometric prior, especially if the parameter AT of
the geometric prior takes values close to 1. In fact, among all discrete proba-
bility distributions p(¢) supported on {1,2,3,...} with given expected value
E[f] = L, the geometric distribution with parameter ATy = 1 —1/L is the one
with the largest entropy. Therefore, if little prior knowledge about the length
¢ is available, it makes sense to use a geometric prior. On the other hand,
if substantial prior knowledge about ¢ is available, it can in principle read-
ily be encoded by a Poisson prior. However, for our purposes, the prior (6) is
mathematically less convenient. We will come back to this issue later on, more
precisely, below (32) and in Section 4. Therefore, we will adopt a geometric
prior even if there is prior knowledge about /. With that choice of prior, the
estimates of the parameters d;, s; and p will in principle be less reliable than
with a Poisson prior, since the model does then not incorporate all available

information. However, the resulting loss in reliability is expected to be neg-
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ligible: for reasonable lengths ¢ (e.g., ¢ > 30) most information is typically
contained in the observed sequences x and 2z’ and not in the prior p(¢). The
posterior p(¢|x, ') is then tightly concentrated around the true value of ¢, and
the prior p(¢) only slightly vary over the support of p(¢|z,z’). Besides this
qualitative argument, we will show experimentally in Section 6 that with a
geometric prior p(¢) the obtained estimates of d;, s, and p are reliable (apart
from biases due to the ambiguity inherent in event synchrony, see Fig. 2).
Interestingly, for both types of priors, the events in v occur to a large extent
independently of each other, since for given length ¢ they are assumed to be

mutually independent and uniformly distributed in [0, Tp] (cf. (4)).

We will now continue our discussion of model (2). The prior on the binary
strings b and b’ is given by

ntot

p(b,0'1€) = p(b|O)p(b'|0) = (1 — pa)" ™ p3 "™ = (1 — pa)" ™ py,  (7)

where n2} is the total number of deleted events in z and z':

Ny = Ngel + Mgy = 20 —n —n', (8)
with nqe the number of deleted events in z:
Ngal = L —n, 9)
and similarly, n)j,; the number of deleted events in z’:

For later convenience, we will now write ¢ as a function of b and ¢'. We first
expand nge, the number of deleted events in z, as nge = Ndelsingle T Mdel,pair
where 74l single 15 the number of single-event deletions in z and ngel pair 1S

the number of event-pair deletions. Likewise, we can write njy = 1 gingle

12



Ndel,pairs Where 1 ;. is the number of single-event deletions in z’. Since a

single deletion in z results in a non-coincident event in 2/, it follows:

n/
4 /

Ndel,single = Mnon-co — Z bk’ (11)

k=1
and likewise
n
! — J—

Mdel,single — Mnon-co = Z by. (12)

k=1

— 0/ / i
As a consequence, we have nge = 1,1 oo + Ndelpair A0A Ny = NMnon-co + Ndel pair

and therefore:

tot __ / ___tot
Ngel = TMnon-co + Mhon-co +2 Ndel,pair =~ Mnon-co +2 Tldel,pair (13>

with nf = Nponco + Nhonco- Combining (13) with (9) and (10), results

non-co

eventually in the following expression for /:

! !
0 nt+n+n ntot n+n
2

(14)

9 - 9 + Ndel,pair +

Note that only the first term in the RHS depends on b and ¢'. In the example

of Flg 1(b), (= 10, n=8= n’, Ndel = 2 = n&ol, nffétl = 4, Ndel,single = 1=

/ _ tot —
Mdel singles Tldel,pair = 1, and Mpon-co — 2.

Let us now return to model (2); the conditional distributions in z and z’ are
equal to:
(x|b,v, by, s N(:E — O ﬁ) (15)
p y Uy Uty ot k i) 9 9 9
N (@ v o ) (16)
k [ 27 92 )

where v;, is the event in v that corresponds to z; and likewise vy, and

p(l’l|b/, v, 5ta St

=11
k=1
=11
k=1

N (x;m, s) is a univariate Gaussian distribution with mean m and variance s.

In the example of Fig. 1(b), i = (2,3,4,5,6,7,8,9) and ' = (1,2,3,4,6,7,8,9).

13



For the sake of simplicity, we adopt improper priors p(d;) = 1 = p(s;).

Substituting (5), (7), (15), and (16) in (2) amounts to:

p(:c,x/,b, b, v, o, st, () = H <N(xk = Uiy s _é ﬂ)>

(17)

We will now marginalize (17) w.r.t. v, later we will marginalize that model

w.r.t. the length /. For a given vy three cases are possible:

e The event was not deleted from neither x and 2/, the corresponding events

in x and 2’ are denoted by x;, and :1:3;; in (17) the following term appears:

<N(l’;k — U %, %)) . (/\/'(9:ch — Ug; —%, %)) : (18)

Integrating this term over vy, yields the term N (SL’jk — xjr; 0, st). Note that

tot
co

tot

wov is the total number of coincident event

there are n2" such terms, where n

pairs:

' =n — Nponco =N — 1l (19)

CcOo non-co*

The event was deleted once (from either x or 2’). In (17) there is only one
Gaussian term that corresponds to v,. Integrating that term over vy, results
in the term 1.

The event was deleted twice (from x and ). There are no Gaussian terms
associated with vy in (17), therefore, the expression (17) may be considered
as constant w.r.t. vg. Integrating (17) over vy then leads to a term Ty. There

are Ndel pair Such terms.

14



Eventually, we obtain:

p(x,x/,b, blu(stvshg) :/p(x,x/,b, blvvuétustvg)dv

o , ntn’ ntot
= [T NV (=} — 5,300 8)(1 = pa)™ ™" py™
k=1

(1 = ATp) NI aeteeie, (20)

Note that we can marginalize over v analytically (cf. (20)) because of two

reasons:

e We have chosen a uniform conditional distribution p(v|¢) (4),
e We model the offsets between an event v, and the corresponding events x,
and zj, in z and 2’ respectively as Gaussian random variables. Therefore,

also the offset between the two events x, and ), is Gaussian distributed.

We wish to point out that, more generally, the offset between z, and zj, may
be modeled by any infinite divisible distribution. A probability distribution f
on the real line is by definition infinitely divisible if the following holds: if X
is any random variable whose distribution is f, then for every positive integer
m there exist m independent identically distributed random variables Xj, ...,
X,, whose sum is equal in distribution to X. Note that those m other random
variables do not usually have the same probability distribution as X. In our
setting, the offset between x, and ), takes the role of X; we have m = 2, and
the variables X; and X5 stand for the offset between v, and z, and the offset
between x}, and vy respectively. If the distribution f of the offset between x,
and z}, is infinite divisible, we can decompose that offset as the sum of the
offset between v, and x, and the offset between zj, and vy. Indeed, since f
is assumed to be infinite divisible, there exists a distribution f such that the

offset between v, and x, and the offset between z, and v; are independently

15



distributed according to f and their sum is distributed according to f.

Examples of infinitely divisible distributions are the Gaussian distribution
and the Cauchy distribution, and all other members of the stable distribu-
tion family; the latter is a four-parameter family of continuous probability
distributions that has the property of stability: If a number of independent
identically distributed random variables have a stable distribution, then a lin-
ear combination of these variables will have the same distribution, except for
possibly different shift and scale parameters (Zolotarev, 1986). We will not
further consider the extension to general infinite divisible distributions, since

Gaussian offsets suffice for our purposes.

We now return to model (20). Substituting (13) and (14) in (20) leads to:

tot
Nco

, n+n’
p(x, 2, 0,0, 6,5, 0) =] /\f(:cj;c — Tj,; Op, St) (\/X (1-— pd))
k=1

(VD)= M) (p3ATH) L (21)

Now we marginalize over the length ¢. The length can be decomposed accord-
ing to (14); the third term in (14) is fixed, since n and n’ are the length of
the given point processes = and 2’ respectively. The first term in (14) is fixed

for given b and b'. Therefore, marginalizing p(z, 2, b, 0, d;, s¢, ¢) (21) over £ is

16



equivalent to marginalizing over ngel pair:

p(!lﬁ', I/> bv b/> 6ta St) = Z p(!lﬁ', I/a b> b/a 5ta St, E) (22)
£=0
= Z p({l}',ﬂf/,b, b/,5t,8t,€) (23)

77/de1,pauir:0
tot
Neo

B kl:[ Ny = i3 00 50) (VAL = pa)

n+n’

tot 0

: (\/Xpd)nnonico(l - o) > (p?z )\To)ndd’pair (24)
Ndel,pair=0

=11 /\f(:c;;c — Tj,.; Ot St) (\/X (1 pd))"”/
k=1

tot 1

AV Apg) (1 = N ———— 9
(VApa) ™ (= M) T (2)

We wish to point out that in (24) we have a sum of a geometric series; since
|p2 \Ty| < 1, we can apply the well-known formula for the sum of a geometric

series, resulting in (25). We can rewrite the latter expression as:

tot

(.2 b,V 6, 50) = B [T Ny — 364, 50), (26)
k=1

with 3 = pg VA and

1

y=(Vaa- Pd))nw(l —ATo) 1—piNTy

(27)

The constant v does not depend on b and b, and therefore, it is irrelevant
for estimating b, b’ and the SES parameters p, d;, and s;; we will discard it
in the following. On the other hand, the exponent of 3 in (26) does clearly
depend on b and b (cf. (11) and (12)). Therefore, the parameter [ affects the
inference of b, b’ and the SES parameters. In Section 7, we explain how the
parameter J may be determined from given sequences x and z’. Moreover, we
will interpret the parameter 3 in terms of cost functions (see below (28)); the

expression log (3 is part of the cost associated to each non-coincident event.
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After marginalizing w.r.t. v and ¢, we obtain a model p(x, z’, b, V', 0;, s;) (cf. (26))
that is symmetric in x and 2. In the following, we will denote model (26) by
p(z, 2, 7,7, 04, 8¢) instead of p(z,a’, bV, d;,s;), since it is more natural to de-
scribe that model in terms of j and j’ than in terms of b and & (cf. RHS
of (26)). The sequences b and V' may directly be obtained from j and j": the
variables by, (for all k) equals one if k appears in the sequence j and is zero

otherwise, the variables b, (for all k) may be obtained along the same lines.

It is instructive to consider the negative logarithm of (26):

tot
co

o o 1
- lng(.fC, x/ujuj/v 5t7 St) = _ngotn—co lOgﬂ + Z Z(I;]; - Ly, — 5t)2
t k=1

n

tot

+ % log 27s; + C, (28)

where ( is an irrelevant constant. As a consequence of (19), we have

/ tot
tot n+n —n

— non-co 2 9
nCO 2 ? ( )

and we can rewrite (28) as:

1
—logp(z,2', 7,7, 0, 8:) = —nfl‘(’fn_co(logﬂ + 1 log 27r5t>

1 négt

+ — Z(SL’;/ — ZL’jk — 615)2 + CI, (30)
=
with (' = (+ %", log 27s;. Note that ¢’ does not depend on j and j’, in other
words, it is independent of the assignment of coincident and non-coincident

events. In the following, we investigate how (30) depends on the assignment j

and j’, and (’ is then irrelevant.

The expression (30) may be considered as a cost function that associates
certain costs with coincident and non-coincident events; this viewpoint will

give us insight in how we can minimize (30) (equivalently, maximize (26))
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w.r.t. 7 and 7', for fixed ¢, and s;. The unit cost d(s;) associated to each

non-coincident event equals:
1
d(s;) = —logf — 1 log 27s;. (31)

The unit cost d(xjk,x;.;c; ¢, 8¢) of each event pair <xjk’x;';'c) is the normalized

Euclidian distance:

Ay 2538 1) = g (32

Since the point processes x and 2’ of Fig. 1(b) are defined on the real line, the
(normalized) Euclidean distance is indeed a natural metric. In some applica-
tions, the point process may be defined on more general curves (as illustrated
in Fig. 4); in such situations, one may adopt non-Euclidean distance measures.
We are currently exploring such applications; we refer to (Dauwels et al., 2008)

for preliminary results.

We would like to underline that the unit costs d(s;) (31) and d(z;, , :1:;-2; 0ty 8¢) (32)
are dimensionless. In other words, they do not depend on the unit (e.g., sec-
onds, milliseconds, meters, or millimeters) in which x and 2z’ are expressed;

this property is obvious for d(z;,, :1:;-2; ¢, 8¢), and for d(s;) it can be shown as

follows:
1
d(s;) = —logp — 1 log 2ms, (33)
1 1
= —logpg — 5 log A\\/sy — 1 log 2. (34)

The parameter py is dimensionless, the same holds for the product A/s;, and
hence also d(s;) is dimensionless. Therefore minimizing the cost (30) w.r.t.
the sequences j and j’ (for fixed ¢; and s;), or equivalently, performing MAP

estimation of j and 7’ in p(x, 2, 7, 7', &, ¢, ) (26), will yield the same solutions
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7 and j', independent of the units of z and z’. In Section 4 we will explain

how one may estimate j and j'.

By interpreting (30) as a cost function, we also established a connection be-
tween SES and the distance metric of (Victor et al., 1997; Aronov, 2003; Victor
et al., 2007). The latter is also formulated in terms of a cost function, more
precisely, it is determined as the minimum cost associated with transform-
ing one point process into the other. In this transformation, one is allowed
to delete and insert events, and move events over time (cf. Fig. 1(a)), and
there is a cost associated to each of those three basic operations. For the sake
of completeness, we will review the distance metric of (Victor et al., 1997;

Aronov, 2003; Victor et al., 2007) in Section 5.1.

Note also that the Poisson prior (6) leads to a cost that depends non-linearly
on the number of non-coincident events; the cost per non-coincident event is
then not constant but depends on the total number of non-coincident events.
Since a constant cost per non-coincident event is easier to interpret and leads to
a simpler inference algorithm (see Section 4), we decided to use the geometric

prior (3).

4 Statistical Inference

Given event strings x and 2/, we wish to infer the parameters d; and s;, and the
sequences j and j' (cf. (26)). From decisions j and j’, one can easily determine
the corresponding decisions b and ¥'; the decision by (for all k) equals one if
k appears in the sequence j and is zero otherwise, the decisions ZA)ﬁc (for all k)

may be obtained along the same lines. The decisions band O/ naturally amount
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to an estimate of p (cf. (1)):

o Tho b+ b
n+n' '

p (35)

Moreover, the parameters Ty, A and p,; are unknown and need to be chosen
appropriately. Interestingly, they do not need to be specified individually, since
they appear in (26) only through . The latter serves in practice as a knob

to control the number of non-coincident events; we will address this issue in

Section 7.

There are various ways to jointly infer the SES parameters and sequences 7 and

j’, perhaps the most natural solution is coordinate descent. First one chooses

initial values 5150) and §£0), then one alternates the following two update rules

until convergence or until the available time has elapsed:

(D, J0D) = argmaxp(e, 2’ 5. ', 6", 3" (36)
73"

(65D 5y = argmax p(x, o/, JO | J0HD 5, s,). (37)
Ot,St

In Appendix A, we explain how the expressions (36) and (37) can be computed.
In particular, we derive a closed-form expression for (37); we show that (36)
may be obtained by considering paths on a (n+1) x (n’+ 1) grid (see Fig. 5),
where each path corresponds to a pair (j, j); one can associate a cost M to each
path, obtained by adding the costs d(s;) of each corresponding non-coincident
event and the costs d(x;,, :1:3;; ¢, $¢) associated to each pair of coincident events
(2, ). Finding the pair (7041, 770+1)) (36) corresponds to the problem of
determining the minimum-cost path, which may be achieved by means of a

simple recursion. The resulting algorithm is summarized in Table 2.

Note that if one adopts a Poisson prior (6), the expression (36) may no longer

be obtained by determining the minimum-cost path on a grid. In fact, this
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expression becomes intractable, and one would need to resort to approximative

methods.

The algorithm is an instance of coordinate descent, which generally is guar-
anteed to converge if the iterated conditional maximizations have unique so-
lutions (cf. (36) (37)) (Bezdek et al., 2002, 1987). The conditional maximiza-
tion (37) has a unique solution (cf. (A.1) and (A.3)); the solution of (36) is in
most practical situations unique. In our experiments (cf. Section 6 and 7), the
algorithm always converged . We will provide numerical results on convergence

in Section 7.

In general, the fixed points of a coordinate descent algorithm are station-
ary points of the objective function at hand. In particular, alternating (36)
and (37) converges to stationary points of p(z, 2’, j, 7, &, s;). Since this model
may have numerous stationary points, it may be necessary to run (36) and (37)
with several different initial values 5,50) and §,§0), resulting in several fixed points
(7,7, o, ;). Eventually, one selects the fixed point that has the largest value
p(z, 2, 7,7 ,St,ét). In practice, one often has prior knowledge about §;, and
s;. For example, in the case of neural spike trains (see Section 7), the lag
0; is usually not larger than 100ms, similarly, s; is typically not larger than
(100ms)?. In most applications, it makes sense to start with the initial value
(%0) = 0. However, depending on the available computational resources, one
may run the algorithm with additional initial values 5150). One may also run the
algorithm with several values of §§0) between 0 and the largest plausible value
(e.g., 8% = (10ms)?, (20ms)?, ..., (100ms)?). For the sake of completeness, we

will specify how we selected the initial values 5,50) and §§0) in the applications

of Section 6 and 7.
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In principle, the computational complexity grows proportional to nn/, i.e., the
product of both sequence lengths. However, one may restrict the state space
to pairs of events that are close to each other, i.e., pairs of events (xjk,x;];)
that fulfill the constraint |z; — x;;c| < 0" (for some 9" > 0, e.g., 0;"* =
100ms). The paths on the grid of Fig. 5 then remain close to the diagonal, and
only the entries M}, around the diagonal of M are computed (cf. (A.4)). As

a result, the computational complexity becomes linear in the sequence length.
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INPUT:

) 5(0)
P

. . . (0
One-dimensional point processes z and z’ and parameters (3, 512 ,and §

ALGORITHM:

Iterate the following two steps until convergence or the available time has elapsed:

(1) Update the alignment (J, ') by dynamic programming

Compute the matrix M:

Mo =0= My (for k=0,1,...,n and ¥’ = 0,1,...,n), the other elements

are computed recursively as:

Mk,k’ = min [Mk—l,k’ + d(§£i))7Mk7k/_1 + d(§§i)),Mk—1,k’—1 + d($k,$;€/; S(Z), §£Z))] .

Determine the min-cost sequence (j

A~
)

7 ) by tracing back the decisions in

the recursive updates My, ;.

(2) Update the SES parameters:

1) o 1 1) (i1
0 2 LIS e e
k=1
, ne
(i+1) & J41) (1) R(+1)\2
5t T G (& =2y =)

OUTPUT: Alignment (}, i

j') and SES parameters p, &, and 3.

Table 2
Inference algorithm for one-dimensional SES. We refer to Appendix A for its deriva-

tion.
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N — QL — R

8 —

(a) Transforming x into z’: first the events of x are
shifted over §;, resulting in y, then their occurrence
time is slightly perturbed (with variance s;), result-
ing in z, and next some events of z are deleted and
some events are inserted (both with probability pg),

resulting in z’.

1 2 34 5 6 789

b 0 00 1 0 000

. - _

f

z

! 0 | 1o
/l) 4 1
|

Z/ - .
|

x! — -
v 1 0 00 0 000

i 1 2 34 6 789

(b) Symmetric procedure to generate z and 2': one first generates a process v, next
one makes two identical copies of v and shifts those over —d;/2 and d; /2 respectively;
the events of the resulting point process are slightly shifted (with variance s;/2), and
some of those events are deleted (with probability pg), resulting in x and '

Fig. 1. One-dimensional stochastic event synchrony: an asymmetric (top) and sym-

metric (bottom) procedure relating x to .
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(a) A first procedure to generate x and z’; the sequence 2’ is not ordered, since two
events of 2’ are reversed as indicated by the arrows; note that one of the two last

events in z (and likewise z’) is non-coincident.

S— 0 — 8
1l
I
i
i
il

NS

~

~

R — N —

(b) A second procedure to generate the same point processes x and 2z’ without order
reversal; the two last events of x and x’ are now considered to be coincident.
Fig. 2. Inherent ambiguity in event synchrony: two equivalent procedures to generate

the point processes x and .
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% 100
(a) Geometric prior (3) with AT = (b) Poisson prior (6) with xTp =

0.95,0.96, . . . , 0.99. 10,20, .. ., 50.
Fig. 3. Prior distributions p(¢) for ¢: geometric distribution (left) and Poisson dis-

tribution (right).

N XD

(a) Two point processes defined on (b) Non-Euclidean distance be-
a contour (black and gray). tween two events.

Fig. 4. Point processes along a contour; the distance between two events is non-Eu-

clidean.

27



0 T1 X2 T3 Tyg4 T5 Te T7 Ty

Fig. 5. The (n + 1) x (n’ + 1) grid associated with the point processes = and a’
of Fig. 1; each path on that grid corresponds to a pair (j,j’). The path P shown in

this figure corresponds to the alignment of Fig. 1(b).
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5 Review of Classical Similarity Measures

In this Section, we review some of the most well-known classical (dis)similarity
measures for one-dimensional point processes, including the Victor-Purpura
distance metric (Victor et al., 1997; Aronov, 2003; Victor et al., 2007), the
van Rossum distance metric (Van Rossum, 2001), the Schreiber et al. sim-
ilarity measure (Schreiber et al., 2003), the Hunter-Milton similarity mea-
sure (Hunter et al., 2003), and the event synchronization measure proposed
in (Quian Quiroga et al., 2002). We have chosen the same selection of classical
measures as in (Kreuz et al., 2007). Note that this selection is not exhaustive:
various other (dis)similarity measures for one-dimensional point processes have
recently been proposed (e.g., the ISI-distance (Kreuz et al., 2007)). In order
to benchmark SES in a meaningful way, however, we have restricted ourselves

to existing measures that are the most related to SES.

We will in this Section closely follow the exposition in (Kreuz et al., 2007). For
the sake of definiteness, we will discuss the measures in the context of point

processes in time.

5.1  Victor-Purpura spike train metric

The distance metric Dy of (Victor et al., 1997; Aronov, 2003; Victor et al.,
2007) is closely related to SES, as we pointed out earlier. It defines the dis-
tance between two point processes as the minimum cost of transforming one
point process into the other. This transformation is carried out by combining
three basic operations: event insertion, event deletion, and event movement

(cf. Fig. 1(a)). The cost of deleting or inserting of an event is set to one,
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whereas the cost of moving an event in time is proportional to the time shift;

the proportionality constant Cy, defines the time scale of the distance metric.

If Cy = 0, the distance metric Dy reduces to the difference in number of
events. On the other hand, if Cy > 1, the distance quantifies the number
of non-coincident events. Indeed, since for large C'y it becomes less favorable
to move events, one transforms one point process into the other mostly by
inserting and deleting events. The cost Dy associated to this transformation is
then (approximately) proportional to the number of non-coincident events. In
practice, most events do not perfectly coincide, therefore, in the limit Cy > 1
virtually all events are either inserted or deleted in the tranformation from one
point process to the other. In the intermediate regime Cy = 1, neighboring
events are treated as coincident, i.e., they no longer need to occur at precisely

the same time. In that regime, Dy is similar to the SES parameter p.

It is important to realize that Cy is not dimensionless. Since the cost Cyy AT
associated with moving an event over AT is supposed to be dimensionless,
the unit of Cy is the inverse of the unit in which x and 2’/ are expressed.
For example, if z and 2’ are expressed in milliseconds, the condition Cy &~ 1

stands for Oy ~ 107®>ms~!. Note that the metric Dy is dimensionless.

If and only if the point processes x and x’ are identical, the distance metric
Dy = 0. The time constant 7y = 1/Cy,, which is the inverse of Cy,, defines

the time scale of distance metric Dy, .

It is noteworthy that in SES, the unit cost of moving an event in time is
quadratic in the time shift (with proportionality constant 1/2s;; cf. (32)), in
contrast to the Victor-Purpura metric, where the cost is linear in the time

shift. Note that the proportionality constant C'y, in the Victor-Purpura metric
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is fixed, and needs to be chosen by the user. The proportionality constant
1/2s, in SES is determined adaptively from the given point processes. In both
approaches, the minimum cost is computed by the Viterbi algorithm (Forney,

1973) (cf. Appendix A).

5.2 Van Rossum similarity measure

In the approach of (Van Rossum, 2001), the two point processes are converted
into continuous time series. In particular, each event of x is convolved with an
exponential function exp(t — xy/7r) (with ¢t > xy), resulting in the time series
s(t). Likewise each event of z’ is convolved with this exponential function,
leading to the time series s'(¢). From the time series s(¢) and s'(¢), the van

Rossum distance measure (Van Rossum, 2001) is computed as:
Drlos) = — / [s(t) — /()] dt. (38)
t

Note that Dg(os) = 0 if and only if x and 2’ are identical. The time scale of

this distance measure is determined by the time constant 7.

5.3  Schreiber et al. similarity measure

Also in the approach proposed in (Haas et al., 2002) and (Schreiber et al.,
2003), the two point processes x and z’ are first convolved with a filter, re-
sulting in time series s(¢) and s'(t). The filter may for example be exponen-
tial (Haas et al., 2002) or Gaussian (Schreiber et al., 2003), and it has a certain

width 75. Next the pairwise correlation between the time series s(¢) and §'(¢)
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is computed:
_ Jys(t)s'(t) dt
VI s2 () dt\[f, s2(t) dt

In (Haas et al., 2002), one adjusts the phase lag between the time series,

55(0'5)

(39)

whereas in (Schreiber et al., 2003), no phase lag is allowed. In this paper (as
in (Kreuz et al., 2007)), we will consider the approach of (Schreiber et al.,
2003). Note that the width 75 of the filter defines the time scale of interaction
between the two point processes. We also wish to point out that if and only if

x and 2’ are identical, we have Sg = 1.

5.4 Hunter-Milton similarity measure

An alternative similarity measure was proposed in (Hunter et al., 2003). For
each event zy, one identifies the nearest event xﬁc,(k) in the point process z’.
The degree of coincidence between those two events is determined as d(xy) =
exp(—|zy — @)l /7a). Along the same lines, one identifies for each zj, the
nearest event xy in the point process z, and determines the degree of coin-

cidence d(z},). The similarity Sy between x and 2’ is then computed as:

LY, d 7 Yoy d(
Sy = N 2k=1 (xk)W;N Dok=1 (5519) (40)

The parameter 7y sets the time scale for event coincidence. If x and 2’ are

identical, we have Sy = 1.

5.5  FEvent synchronization

Event synchronization (Quian Quiroga et al., 2002) defines similarity in terms

of coincident events. Two events are considered to be coincident if their timing
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offset is smaller than a maximum lag 7¢. This lag can be fixed by the user, or

it can be extracted automatically from the point processes x and x’:
To(k, k') = min(xy1 — @k, Tp — Tp—1, Tpyyq — Tpry Ty — Tpy_q) /2. (41)

One computes the number of times an event appears in z shortly after an

event appears in 2’ :
N N

l’|£L’ Z Z Jkk’ (42)

k=1k/=1
where

1 f0<ap—ap <79
Jew =9 1/2 if @ = (43)

0 else,

where 79 may be fixed or may be computed according to (41).

Similarly one can define d(2'|z), and eventually, event synchronization is de-

termined as:
So = d(I|$)—|—d(£E|ZL’) (14)
NN’

If and only if all events in x and 2’ are coincident, we have Sp = 1.

5.6 Discussion

5.6.1 Binning

Interestingly, the above mentioned classical approaches and SES do not dis-
cretize the time (or space) axis, in contrast to other methods, e.g., (Johnson
et al., 2001; Christen et al., 2006). The latter divide the time (space) axis in

bins, and then convert the point processes into binary sequences: if an event
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occurred within a bin, then a one is associated with that bin, otherwise a zero.
A critical issue is the choice of bin width, since the results may depend on this
parameter. SES and the above mentioned classical measures avoid that issue,
since they do not rely on binning; this also holds for other measures, e.g., the

ISI-distance (Kreuz et al., 2007).

5.6.2 Time scale

Several of the above measures depend on a parameter that defines the time
scale of the interaction between the point processes, in particular, the Victor-
Purpura distance metric (Victor et al., 1997; Aronov, 2003; Victor et al., 2007),
the van Rossum similarity measure (Van Rossum, 2001), the Schreiber et al.
similarity measure (Schreiber et al., 2003), and the Hunter-Milton similarity
measure (Hunter et al., 2003). Event synchronization, however, adapts its time
scale automatically, the user does not need to specify it. The same holds for
SES: the time scale is determined by the parameter s;, which is computed by
the algorithm, and does not need to be specified a priori. One just needs to
choose initial values §§0) within the range of plausible values, the SES inference
algorithm (cf. Table 2) then refines those initial estimates and selects the most
appropriate one. Besides event synchronization and SES, also other existing

measures do not rely on a fixed time scale, e.g., the ISI-distance (Kreuz et al.,

2007).

In some applications, the user may prefer to use an automatic procedure to
determine the time scale; in other applications, one may wish to investigate
how the similarity depends on the time scale. For instance, the timescale may

be chosen based on optimizing some desired quantity, e.g., classification fidelity
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(as in Victor et al. (1997)). In event synchronization, one can fix the time scale
instead of using the adaptive rule (41). Likewise, in SES one may fix s, instead

of estimating it.

5.6.3 Delays

There might be a delay between the two point processes = and z’. Before the
above mentioned classical measures can be applied, one first needs to estimate
potential delays, and shift the point processes accordingly. On the other hand,
SES directly handles delays, and it does not require a separate procedure to
estimate delays. As a consequence, the estimates of s; and p are robust against

lags between the point processes, as we will demonstrate in Section 6.

5.6.4 Matching

The van Rossum measure and Schreiber et al. measure allow for “matching”
between a single event in one train and multiple events in the other, since the
exponential kernel of an event in one train may overlap with the exponential
kernels of multiple events in the other train. Similarly in event synchroniza-
tion and the Hunter-Milton measure, an event may be matched with multiple
events. In SES and the Victor-Purpura metric on the other hand, each event

can be coincident with at most one other event.
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6 Analysis of Surrogate Data

Here we investigate the robustness and reliability of SES and the classical
(dis)similarity measures reviewed in Section 5. In order to benchmark the
different measures, we apply them to surrogate data. For this data, the true
values of event reliability and timing jitter are known and directly controllable.
As far as we know, such comparison using surrogate data has not been carried
out yet. In the investigation of (Tiesinga et al., 2008), the measures were
applied to spike trains generated by a Hodgkin-Huxley type model; for such

models, the true values of event reliability and timing jitter are unknown.

We randomly generated 10,000 pairs of one-dimensional point processes (z,
x') according to the symmetric procedure depicted in Fig. 1(b). For the sake
of definiteness, we assume that x and 2’ are point processes in time. We con-
sidered several values of the parameters ¢, py, 6; and s; (0;). More specifically,
the length ¢ was chosen as ¢ = {y/(1 — pg), where ¢y € Ny is a constant. With
this choice, the expected length of z and 2’ is ¢y, which is independent of pgy.
We considered the values £y = 40 and 100, p; = 0, 0.1, ..., 0.4, §; = Oms,
25ms, 5H0ms, and o; = 10ms, 30ms, and 50ms. The parameter T was chosen
as £y - 100ms. The average spiking rate therefore is about 10Hz, for all choices

of /o and pg.

In the SES approach, we used the initial values &SO) =0, 30, and 70 and §§0) =
(30ms)?. The parameter 3 was identical for all settings of £, pg, §; and s, i.e.,
£ = 0.02; it was optimized to yield the best overall results. There are perhaps
ways to determine [ from a single pair of point processes, which would allow

us to determine 3 for each setting of ¢, py, 6; and s; separately; we leave this
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issue as a topic for further research. In practice, however, one often considers
multiple point processes simultaneously. In Section 7 we determine the SES
parameters from multiple point process, and we will describe a method to

determine the “optimal” parameter (3.

The constant Cy of the Victor-Purpura metric was set to 0.001 and 0.1ms™*.
For the time constants 7, and 7g, and 74 (cf. Section 5), we considered the
values 10ms and 20ms. For the time constant 7¢ (cf. Section 5), we chose the
values 20ms and 40ms. Those values of the different time constants seemed to
yield the most reasonable results. Since we consider different lengths ¢y, we
normalized the Victor-Purpura metric Dy by the number of events in both

point processes, i.e., we consider the normalized metric Dy defined as:

[ (45)

n+n'’

In order to assess the (dis)similarity measures, we compute for each above
mentioned parameter setting and for each measure S the expectation E[S]
and normalized standard deviation @[S] = o[S]/E[S]. Those statistics are
computed by averaging over 10,000 pairs of point processes (z,z’), randomly

generated according to the symmetric procedure depicted in Fig. 1(b).

6.1 Results

Results for SES are summarized in Fig. 6. From this figure we can make the

following observations:

e The estimates of s; and p, are biased, especially for small ¢y, i.e., {o = 40,

and s; > (30ms)? and pg > 0.2; more specifically, the expected value of
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those estimates is smaller than the true value, which is due to ambiguity
inherent in event synchrony (cf. Fig. 2). On the other hand, the estimates
of 0; are unbiased for all considered values of d;, s; and pg (not shown here).

e The estimates of s; do only weakly depend on py, and vice versa.

e The estimates of s; and py; do not depend on ¢;, i.e., they are robust to
lags d;, since the latter can be estimated reliably.

e The normalized standard deviation of the estimates of d;, s; and py grows
with s; and pg, but it remains below 30% (not shown here). Those estimates
are therefore reliable.

e The expected value of s; and p; does hardly depend on the length ¢;. On
the other hand, the estimates of s; and py are less biased for larger /.
The normalized standard deviation of the SES parameters decreases as the

length ¢, increases (not shown here), as expected.

In other words, the SES algorithm results in reliable estimates of the SES

parameters s; and p.

Results for the classical measures reviewed in Section 5 are summarized in Fig. 7
to Fig. 9. For the sake of clarity, we only show the results for §; = 0 in those
figures. The influence of lags on classical measures will be investigated later
in this section (see Fig. 9(a)). Let us first consider the results for the Victor-
Purpura distance metric (Victor et al., 1997; Aronov, 2003; Victor et al., 2007),

which are summarized in Fig. 6. From that figure we can see the following:

e For Cyy = 0.001 ms™', the distance metric Dy grows with p; and is prac-
tically independent of s;. (This is the “intermediate” regime mentioned in
Section 5.1.) In this regime, the metric Dy is proportional to the number of

non-coincident events, and it behaves similarly as p; however, due to ambi-
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guity inherent in event synchrony (cf. Fig. 2), for p; > 0.2, it overestimates
the number of coincident events and underestimates py.

For larger Cy, in particular Cy = 0.1 ms™!, the metric clearly depends on
both pg and s;. It is noteworthy that the value Cy = 0.1 ms—! depends on
To/lo (average distance between events in x and z’), which is 100 ms.

If Cy =0 ms™! (not shown here), the metric Dy is close to zero, since it is
equal to the difference in length of both point processes x and z’, and in our
experiments, both point processes have equal length on average. However,
note that the metric Dy is not ezactly equal to zero, since the length of
the sequences is not identical in every realization but only on average. The
difference in length fluctuates stronger as p, increases. Therefore, for Cy = 0
ms~!, Dy increases (weakly) with py, independently of s;, but remains close
to zero (Dy < 0.1).

On the other hand, if Cyy > 1 (not shown here), the metric Dy is close
to one, independently of p; and s;. In the transformation of one point pro-
cess into the other, (almost) every event is either deleted or inserted, and
therefore, a cost of 1 is associated to (almost) every event.

e The normalized standard deviation of Dy decreases with p; and s;, and
it remains below 30% (not shown here); the estimates of Dy are therefore
reliable.

e The expected value of Dy does not depend on the length ¢y, however, its
normalized standard deviation decreases as the length ¢y increases (not

shown here).

The results for the van Rossum distance measure Dg (Van Rossum, 2001) are

summarized in Fig. 8. From that figure one can see the following:
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e The distance metric Dy grows with both pg and s;, similarly as the distance
metric Dy (for Cy > 0.001).

e The normalized standard deviation of Dpg is largely independent of p; and
decreases with s; (not shown here). Since it remains below 15%, the esti-
mates of Dp are reliable.

e Similarly as the metric Dy, the expected value of Dy does not depend on
the length ¢y, however, its normalized standard deviation decreases as the
length ¢y increases (not shown here).

e As the time constant 7 increases, the expected value of D and its normal-
ized standard deviation decrease (not shown here). This can be explained
as follows: the larger 7z, the more the time series s(¢) and s'(¢) overlap, and
hence the smaller Dg. Since there are generally also more coincident events
for larger Dp, the fluctuations of Dy are smaller, as a result, its normalized

standard deviation becomes smaller.

We made similar observations can for the Schreiber et al. measure Sg (Schreiber
et al., 2003), the Hunter-Milton measure Sy (Hunter et al., 2003), and event

synchronization Sg (both with fixed and adaptive time constant 7o (k, k) (41)).

In order to assess the robustness of the SES algorithm, we also analyzed surro-
gate data generated by an alternative procedure; in the symmetric procedure
depicted in Fig. 1(b), the timing perturbations are not drawn from a Gaussian

distribution but from a Laplacian distribution instead:

1 r—m

where w is a scale parameter. The variance s of the Laplacian distribution is
given by s = 2w?, and hence the parameter w is related to the variance s as

w=/s/2.
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More specifically, the generative process is as follows: First, one generates
an event string v of length ¢, where the events v, are mutually independent
and uniformly distributed in [0, 7p]. The strings z and z’ are generated by
delaying v over —¢;/2 and §;/2 respectively and by (slightly) perturbing the
resulting event occurrence times. Those perturbations as zero-mean Laplacian
variables with variance s;/2; the scale parameter w (cf. (46)) is chosen as
w= m = 0¢/2. Next some of the events in z and 2’ are removed, resulting
in the sequences x and z’; each event of z and 2’ is removed with probability

pa (“deletion”), independently of the other events.

We again considered the values ¢, = 40 and 100, p; = 0, 0.1, ..., 0.4, §; =
Oms, 25ms, 50ms, and o; = 10ms, 30ms, and 50ms, and the parameter T was

again chosen as ¢ - 100ms.

The results are summarized in Fig. 10. By comparing Fig. 10 with Fig. 6, it
can be seen that the results for both generative processes are very similar. This

suggests that SES can robustly quantify timing precision and event reliability.

6.2 Discussion

From this study of surrogate data, we can conclude the following:

e SES and the classical measures considered in this paper are reliable in the
sense that their statistical fluctuations are relatively small; their normalized
standard deviation is typically below 30%, and often even below 20%.

e The longer the point process, the more reliable the measures become, as
expected.

e The classical measures are sensitive to lags, therefore, one needs to estimate
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potential lags before they can be applied. As an illustration, Fig. 9(a) shows
how the Schreiber et al. measure Sg depends on ¢;; clearly, Sg drops as the
delay ¢, increases. On the other hand, SES directly incorporates lags, and as
a result, the estimates p,; and s, are robust to lags (cf. Fig. 6). However, it
is critical to choose an appropriate set of initial values S,fo). For example, if
one only uses &EO) = 0 as initial value, the estimates py and s; become more
sensitive to lags (not shown here). In other words, one of the initial values
should be sufficiently close to the true lag. Therefore, prior information
about potential lags is crucial for the success of the SES algorithm. If no
such prior information is available, one needs to choose multiple initial
values in a wide range; if the true lag falls within that range, the SES
algorithm will most likely yield reliable estimates of p; and s;. On the other
hand, if the true lag is far from the initial values &SO), the estimates of p,
and s; may not be reliable.

Most classical measures depend on both p; and s;, and therefore, they are
not able to separate the two key aspects of synchrony, i.e., timing preci-
sion and event reliability. There is one exception: the distance metric Dy
grows with py for small cost factors Cy, independently of s; (cf. Fig. 7(a)
and Fig. 7(c)). The same holds for the SES parameter p (cf. Fig. 6(c) and
Fig. 6(d)); both Dy and p are measures of event reliability. Note that p
is robust to lags &;, in contrast to Dy. The SES parameter s, is largely
independent of py (cf. Fig. 6(a) and Fig. 6(b)), it is a robust measure for
timing dispersion. Interestingly, the parameters py and s; seem to quantify
event reliability and timing precision respectively, even if the data at hand
is generated from a model that differs from the SES model (cf. Fig. 1(b)).
We wish to point out once more, however, that all (dis)similarity measures

for one-dimensional point processes underestimate the timing dispersion
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and the number of event deletions due to the ambiguity inherent in event
synchrony (cf. Fig. 2).

There exists a classical procedure to estimate the timing dispersion based
on the Schreiber et al. measure Sg (see, e.g., Tiesinga et al. (2008)). One
computes Sg for a range of values of 7g. The value of 7¢ at which Sg =
0.5 is considered as an estimate og of the timing dispersion. Similarly one
may determine timing dispersion from other classical measures, e.g., the
Hunter-Milton similarity measure. It is important to realize, however, that
since the classical measures significantly depend on p,; (with the exception
of the Victor-Purpura distance for sufficiently small CY/), also the resulting
estimates of timing dispersion will significantly depend on pg. This is illus-
trated in Fig. 9(b). From the figure it can be seen that both the similarity
measure Ss and the timing dispersion estimate og significantly depends on
paq- For example, og is equal to 12ms for the parameter settings (o, = 30ms,
pa = 0.4) and (o = 50ms, py = 0.1); in other words, og is not a reliable
measure for timing dispersion, and the same holds for similar estimates of
timing dispersion, for example derived from the Hunter-Milton similarity
measure. In contrast, the estimate $; of the SES parameter s; does not suffer
from those shortcomings (see Fig. 6(a) and Fig. 6(b)).

SES is significantly more computationally complex than some classical sim-
ilarity measures, e.g., the Hunter-Milton similarity measure. In principle,
the complexity of the SES inference algorithm scales quadratically with the
sequence length. Without further modifications, the SES algorithm is only
practical for sequences of length 100 and less. However, a very reasonable
approach to limit the computationally complexity is to only consider pairs
of events that are sufficiently close to each other. For example, in the ap-

plication at hand, it is not likely that two events with a lag of more than
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Fig. 6. Results for stochastic event synchrony: the figure shows the expected value
E[6¢] and E[p] and the normalized standard deviation [d;| and G[p] for the pa-
rameter settings o = 40 and 100, 6; = 0,25,50ms, o; = 10,30,50ms, and

pq = 0,0.1,...,0.4. The curves for different §; are practically coinciding.

500ms form an event pair. Therefore, such pairs can be discarded a priori
in the SES algorithm. The complexity then becomes linear in the sequence
length, and the SES algorithm remains practical for sequences of length
1000 and more.

e The SES algorithm only leads to reliable estimates of p; and s; if the pa-
rameter 3 is appropriately chosen. In the application at hand, § was fixed
for all parameter settings, and we choose the value of 3 that resulted in the
most reliable estimates. In the application of Section 7, we will propose a

technique to determine 3 from multiple given point processes.
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Fig. 7. Results for (normalized) Victor-Purpura distance metric Dy : the figure shows
the expected value E[Dy] and the normalized standard deviation [Dy] for the
parameter settings ¢o = 40 and 100, 6; = Oms o; = 10, 30, 50ms, pg = 0,0.1,...,0.4

and Cy = 0.001, 0.1ms ™.
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Fig. 8. Results for van Rossum distance metric Dg: the figure shows the expected
value E[Dg] and the normalized standard deviation [Dp] for the parameter settings

fo = 40 and 100, 6; = Oms oy = 10, 30, 50ms, pg = 0,0.1,...,0.4 and 7= 10, 20ms.
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(a) Sg as a function of 7g for o, = 10, 30, 50ms

and d; = 0,25, 50ms.
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(b) Sg as a function of 7g for o, = 10, 30, 50ms

and pg = 0,0.1,...,0.4.
Fig. 9. Sensitivity of the Schreiber et al. measure Sg to §; and pg, with £y = 100
and oy = 10,30,50. In the top figure, the parameter settings are py; = 0.2 and
d¢ = 0,25, 50ms; note that the similarity Sg decreases with §;. In the bottom figure,

the parameter settings are pg = 0,0.1,...,0.4 and §; = Oms.
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Fig. 10. Results for stochastic event synchrony for the surrogate data with Laplacian
timing perturbations: the figure shows the expected value E[d;] and E[p] and the
normalized standard deviation [6¢] and &[p] for the parameter settings ¢y = 40
and 100, d&; = 0,25, 50ms, o; = 10, 30, 50ms, and p; = 0,0.1,...,0.4. The curves for

different d; are practically coinciding.
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7 Application: Firing Reliablity of a Neuron

In this section, we investigate an application related to neuroscience. In par-
ticular, we apply SES to quantify the firing reliability of neurons. We consider
the Morris-Lecar neuron model (Morris et al., 1981), which exhibits properties
of type I and II neurons (Gutkin et al., 1998; Tsumoto et al., 2007; Tateno
et al., 2004). The spiking behavior differs in both neuron types, as illustrated
in Fig. 12 and Fig. 13. In type Il neurons, the timing jitter is small, but spikes
tend to drop out. In type I neurons, on the other hand, fewer spikes drop
out, but the dispersion of spike times is larger. In other words, type II neurons
prefer to stay coherent or to be silent, on the other hand, type I neurons follow

the middle course between those two extremes (Robinson, 2003).

This difference in spiking behavior is due to the way periodic firing is es-
tablished (Gutkin et al., 1998; Tsumoto et al., 2007; Tateno et al., 2004). In
type I neurons, periodic firing results from a saddle-node bifurcation of equi-
librium points. Such neurons show a continuous transition from zero frequency
to arbitrary low frequency of firing. Pyramidal cells are believed to be type I
neurons. On the other hand, in type II neurons, periodic firing occurs by a
sub-critical Hopf-bifurcation. Such neurons show an abrupt onset of repetitive
firing at a higher firing frequency, they cannot support regular low-frequency

firing. Squid giant axons and the Hodgkin-Huxley model are type II.

In the following section, we describe the Morris-Lecar neuron model in more
detail. In Section 7.2.1, we apply both SES and classical (dis)similarity to
quantify the firing reliability of both types of neurons, and will discuss how

the difference in spiking behavior is reflected in those (dis)similarity measures.
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Fig. 11. A realization of the input current Iy (52): it consists of a base line B, a

sinusoid with amplitude A and frequency f, and additive white Gaussian noise with

2

variance o;,.

7.1  Morris-Lecar Neuron Model

The Morris-Lecar neuron model is described by (Morris et al., 1981):

av

CME = _gL(V - VL) - gCaMoo(V - VCa) - gKN<V o VK) + ]CXt <47>
%:)\N(NOO_N)7 (48)

where M., N, and Ay are the following functions:

M., = 0.5<1 + tanh ((V - vl)/vg)) (49)
Ny = 0.5<1 + tanh ((v — ‘/3)/‘/4)) (50)
A = eosh ((V = Va)/2V4). (51)
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(b) Membrane potential V' of type II neuron.

Fig. 12. Membrane potential V' (47) for type I (top) and type II (bottom) neurons:

5 realizations are shown.
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Fig. 13. Raster plots of spike trains from type I (top) and type II (bottom) neurons;

in each case 50 spike trains are shown.
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Depending on the parameters of the system, the M-L neuron model behaves
as a type I or II neuron. Rinzel and Ermentrout (Gutkin et al., 1998) have
determined a setting of the system parameters for each type. Table 3 lists
parameter values that are different in the two classes, whereas Table 4 lists
common parameter values. The analysis of (Gutkin et al., 1998) was further re-
fined in (Tsumoto et al., 2007; Tateno et al., 2004), however, for our purposes,

the parameter setting of Table 3 and 4 suffices.

In our experiments the input current I, is equal to:

Iyt = Asin(27ft) + B + n(t), (52)

where n(t) is zero-mean white Gaussian noise with variance 2. Fig. 11 shows
a realization of I.;. The sinusoidal component forces the neuron to spikes
regularly, however, the precise timing varies from trial to trial due to the noise
n(t). Our objective is to investigate how the noise affects the spike timing and
the tendency to drop spikes. We are especially interested in how the effect
of noise differs in both neuron types. The parameter settings for the input
current I are listed in Table 5. We have chosen the parameters such that
we obtain the typical spiking behavior of both types of neurons, as described
in (Robinson, 2003). Fig. 12 shows the membrane potential V' (47) for 5 trials.

By thresholding V' we obtain the raster plots of Fig. 13; we show 50 trials.

7.2  Results

We will first present the results for the SES approach (Section 7.2.1). In Sec-

tion 7.2.2 we discuss the results for classical methods.
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Parameter type I | type II

gca [pS/ecm?F] || 4.0 4.4

¢ [s71 1/15 | 1/25
V3 [mV] 12 2
Vi [mV] 17.4 30

Table 3

Parameter setting for type I and II Morris-Lecar neurons.

7.2.1 Stochastic event synchrony

We computed the SES parameters for each pair of the 50 trials and for different

values of 3. Next we averaged those parameters over all pairs; since there are

50 trials, we have 1225 such pairs in total. A similar approach was followed

in (Haas et al., 2002; Schreiber et al., 2003; Hunter et al., 2003). We set

50 = 0, and in order to overcome local extrema, we use multiple initial values

39 = (1ms)?, (3ms)?, (5ms)?, (7ms)? and (9ms)2. Each initialization of (6,
(0)

$;”) may lead to a different solution (7, 7, o, $;); we choose the most probable

solution, i.e., the one that has the largest value p(z, 2/, 7, 7', o, S¢).

Note that instead of considering all 1225 pairs of trials, an arguably more
elegant approach would be to consider all 50 trials jointly. As we pointed out
earlier, SES can indeed be extended to collections of point processes, but this
goes beyond the scope of this paper (Part I) and the companion paper (Part
I1).

Fig. 14(a) and Fig. 14(b) shows how the average s; (0y) and p respectively
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Fig. 14. The parameters oy and p estimated from spike trains of type I and type 11
Morris-Lecar neurons (cf. Fig. 13): the top and middle figure show how o; and
p respectively depend on (3. The bottom figure show how o; and p jointly evolve
with 3. The arrows indicate the optimal settings (3, s¢, p) = (1073, (15.2ms)2, 0.029)

and (83, s¢, p) = (0.03, (2.7ms)?, 0.27) for type I and type II neurons respectively.
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Parameter Value
Cwmr 5 [uF /cm?]
gK 8 [uS/cm?]
9L 2 [uS/cm?]
Vea 120 [mV]
Vk -80 [mV]
%9 -60 [mV]
Vi -1.2 [mV]
Vs 18 [mV]

Table 4
Fixed parameters for the Morris-Lecar neuron; this parameter setting is used in

both types of neurons.

depend on 3 for both neuron types. Fig. 14(c) shows s; (0;) as a function
of p for several values of 5. The “optimal” values of (/3, s, p) are indicated
by arrows. Later we will explain how we determined those values. From those
three figures it becomes immediately clear that the parameter p is significantly
smaller in type I than in type II neurons (for 3 € [1071°,1072]), in contrast, s;
is vastly larger. This agrees with our intuition: since in type II neurons spikes
tend to drop out, p should be larger. On the other hand, since the timing

dispersion of the spikes in type I is larger, we expect s; to be larger in those
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Parameter type I | type II
A [nA/em?] 40 72
B [nA/em?) || 0.67 6

f [Hz] 10 10
o [nA/em?] 9 5

Table 5

Parameters of input current Ioy (52) for type I and IT Morris-Lecar neurons.

neurons.

Fig. 14(a) to Fig. 14(c) show the pair (s, p) for various values of 3. Of course,
we eventually want to describe the firing reliability by one pair (s, p), but how
should we select 37 If we choose 3 too small, some non-coincident events will
be treated as coincident events, i.e., they will be matched with other events,
resulting in large offsets. As a consequence, the distribution of the offsets will
have a significant number of outliers, which leads to an inconsistency: in model
p(z, 2’ b,b, 6, 8¢, €) (26), this distribution is supposed to be Gaussian, which
cannot capture the large number of outliers. In addition, due to those outliers,
the parameter s; will be unreasonably large. As can be seen from Fig. 14(a),
this occurs for type IT neurons when 3 < 10719, Fig. 14(c) shows this threshold
phenomenon more clearly: there are two distinct regimes in the s;-p curve. This
is most obvious for the type II neuron, but it also occurs in type I neuron:
the slope of its s;-p curve is larger in the region p < 0.03 than in the region

p > 0.03.
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On the other hand, if 5 too large, some coincident event pairs will no longer be
matched, those events will be treated as non-coincident events. As a result, the
distribution of the offsets will have lighter tails than the Gaussian distribution;
the parameter s; will than be too small and p unreasonably large. This occurs

in both neuron types for # > 0.01 (cf. Fig. 14(a) and Fig. 14(b)).

From this intuitive reasoning, we expect there is an optimal value of 3. This
is confirmed in Fig. 15 and Fig. 16: those figures show quantile-quantile plots
of the offset distribution for various values of (. If the offset distribution were
exactly Gaussian, the data quantiles would lie on the straight dashed lines.
One can clearly see deviations from the straight lines for small and large
values of 3. Fig. 17 shows the average deviation from the straight line as a
function of 3, which is a measure for how much the offset distribution differs
from a Gaussian distribution. The value of § with the smallest deviations is
1073 and 0.03 for type I and type II neurons respectively, which corresponds
to (s, p) = ((15.2ms)?, 0.029) and (s;, p) = ((2.7ms)?, 0.27) respectively. For
those values of 3, the data quantiles practically coincide with the straight line,
and therefore, the offset distribution may be considered Gaussian and model

plz, 2’ bV, 6, s4,0) (26) is then self-consistent.

We also applied this technique for determining [ to single pairs of point pro-
cesses (cf. Section 6) but did not obtain satisfactory results. The method needs
a sufficient number of (coincident) events in order to be reliable. Therefore,
we decided to fix the parameter § in the experiments of Section 6, and to

optimize over it.

We assessed the estimates of (s;, p) by bootstrapping (Efron et al., 1993). More

precisely, for both types of neurons we generated 1,000 sets of 50 spike trains.

58



Those sets of spike trains were generated along the lines of the symmetic
procedure of Fig. 1(b): first we generate a hidden process v with length ¢ =
40/(1 — pg) and equidistant events vy; then we generate 50 noisy copies of v,
by slightly perturbing the timing of the events v (with noise variance s;/2)
and deleting some of the events (with probability py). The delay J; was set
equal to zero. We carried out this procedure for type I neurons with (s, p) =
((15.2ms)?, 0.029) and type II neurons with (s, p) = ((2.7ms)?, 0.27), which
are the estimates obtained by the SES inference procedure, as discussed in
the above. Next we applied the SES algorithm of Table 2 to those sets of
point processes; the parameter 3 was set equal to 1072 and 0.03 for type I and
type II neurons respectively, and we chose the initial values 5§0) = Oms and
SEO) = 30(ms)?. The results of this analysis are summarized in Table 6. Since
the expected values of s; and p agree very well with the true values, and the
normalized standard deviations are small (<15%), it is reasonable to believe

that the estimates (s;, p) = ((15.2ms)?, 0.029) and (s;, p) = ((2.7ms)?, 0.27)

for type I and type II neurons respectively are accurate.

For completeness, we show in Fig. 18 a histogram of the number of iterations
required for the SES algorithm of Table 2 to converge. In each of those itera-
tions, one updates the sequences (j, j') and the SES parameters (cf. Table 2).
The histogram of Fig. 18 was computed over all pairs of trials of both types of
neurons and for all values of § considered in Fig. 14(a). From the histogram,
we can see that the algorithm converged after at most 19 iterations, and on
the average, after about three iterations. We allowed a maximum number of
30 iterations, and therefore, from Fig. 18 we can conclude that the algorithm

always converged in our experiments.
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Statistics || type I | type II
E[s] 15.3 2.70
(st 1.8% | 1.8%
E[p] 0.0283 | 0.273
alp] 12% 3.1%

Table 6

Results from the bootstrapping analysis of the SES estimates (s;, p) = ((15.2ms)?,
0.029) and (s, p) = ((2.7ms)?, 0.27) for type I and type II neurons respectively. The
table shows the expected values E[s;] and E[p], besides the normalized standard
deviations &[s;| and G[p]. The expected values practically coincide with the actual

estimates and the normalized standard deviations are small; therefore, the SES

estimates (s¢, p) may be considered reliable.
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Fig. 15. Quantile-quantile plots for the offset between coincident spikes the type I
neuron. If the (solid) quantile-quantile curve coincides with the (dotted) straight
line, the distribution of the offset of coincident events is Gaussian. The deviation
between both curves is the smallest at (3,s¢, p) = (1072, (15.2ms)2, 0.029), they

then practically coincide.
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Fig. 16. Quantile-quantile plots for the offset between coincident spikes of the type 11
neuron. If the (solid) quantile-quantile curve coincides with the (dotted) straight
line, the distribution of the offset of coincident events is Gaussian. The deviation

between both curves is the smallest at (3, s, p) = (0.03, (2.7ms)?, 0.27), they then

practically coincide.
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Fig. 17. Non-Gaussianity of the offset between coincident events; this is the deviation
of the offset distribution from a Gaussian distribution. This quantity is computed as
the average distance between the quantile-quantile curve and the straight line shown
in the quantile-quantile plots of Fig. 15 and Fig. 16. The minimum non-Gaussianity

is reached when the distance between both curves is the smallest; this occurs at 3

1073 and 3 = 0.03 in type I and type II neurons respectively.
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Fig. 18. Histogram of the number of iterations required for convergence of the SES
inference algorithm of Table 2; in each of those iterations, the sequences (j, j') and
the SES parameters are updated (cf. Table 2). The histogram is computed over all
pairs of spike trains of both types of neurons (cf. Fig. 13) and for all values of 3
considered in Fig. 14(a). The maximum number of iterations was set to 30. It can

be seen from this histogram that the algorithm converged in all experiments.
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7.2.2 Classical measures

Besides SES, we also applied the classical methods reviewed in Section 5. The

results are summarized in Fig. 19.

From those figures, it can be seen that the similarity measures Sg, Sy and
Sg are larger for type II neurons than for type I neurons if the time constants
Ts, T and 7o are small; for large time constants, the opposite holds. This
can be explained as follows. Since the timing dispersion in type I neurons is
fairly large, many spikes of type I neurons will be treated as non-coincident
(non-overlapping) if the time constants 7g, 75 and 7¢ are small. On the other
hand, if those time constants are large, most spikes of type I neurons will
be considered as coincident (overlapping). In contrast, type II neurons have
high timing precision, and therefore, the similarity measures Sg, Sg and Sg
grow quickly with the time constants 7g, 7y and 7o. However, the measures
converge to relatively small values: due to the large number of drop-outs in
spike trains of type II neurons, a substantial amount of spikes are treated as
non-coincident; therefore, as the time constants grow, the similarity measures

Ss, Sg and Sg attain smaller values than in type I neurons.

The results of the (normalized) Victor-Purpura distance metric Dy and the

van Rossum distance metric Di can be understood along the same lines.

As we pointed out earlier, SES adjusts its time scale automatically. The same
holds for event synchronization Quian Quiroga et al. (2002): one may adapt
the time constant 7¢ according to (41). With this adaption rule for 7o, we
obtained Sg = 0.96 for type I neurons and Sg = 0.83 for type II neurons.
This can be understood as follows: since the adaptive time constant 7¢ is

typically about 50ms or larger, the value of Sg is the lowest in type II neurons
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due to the frequent drop-outs in their spike trains.

At last, we consider a classical similarity measure Sig; for multiple point pro-
cesses, introduced in (Tiesinga et al., 2004) (see also (Tiesinga et al., 2008)); it
is based on inter-spike intervals (IST). As a first step one merges the spike times
across all trials. Next the inter-spike intervals of this sequence are calculated
and the coefficient of variation of the aggregated response (CVP) is calculated
as the standard deviation of the interspike-intervals divided by their mean.
The similarity measure Sigr is then eventually obtained by subtracting 1 from
the CVP and dividing by the square root of the number of trials. We obtained
Sist = 0.25 and Sigr = 0.64 for type I and type II neurons respectively. Since
Sist captures mostly the timing precision and is less sensitive to drop-outs, we
indeed expect that it attains a larger value for type II neurons than for type I

neurons.

7.8  Discussion

This analysis underlines an important issue: most classical measures depend
on a time constant, and in some practical situations, it is not obvious how to
choose the “optimal” value of those time constants. Indeed, Fig. 19 suggests
that one should compute the measures for a range of values of the time con-
stants. As a result, one obtains not just one single measure of similarity, but
a similarity function S(7). Such function may not always be easy to interpet,
compare, or manipulate in practice. Event synchronization and SES are able

to automatically determine the appropriate time scale.

However, as we pointed out earlier, in some applications, one may wish to
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Fig. 19. Classical (dis)similarity measures applied to the spike trains of type I and
type II Morris-Lecar neurons (cf. Fig. 13). The figures show the (normalized) Vic-
tor-Purpura distance metric Dy, the van Rossum distance metric Dy, the Schreiber
et al. similarity measure Sg, the Hunter-Milton similarity measure Sy, and the
event synchronization measure Sg as a function of their (inverse) time constants
v =1/Cy, g, Ts, T, and 7 respectively. For small values of those constants, the
measures indicate that type Il neurons fire more synchronously than type I neurons;

for larger values of the time constants, the opposite holds.
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investigate how the similarity depends on the time scale. In event synchro-
nization and SES, the time scale can be fixed, therefore, event synchronization

and SES can be computed for a range of time scales.
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8 Conclusions

We have presented an alternative method to quantify the similarity of two
time series, referred to as stochastic event synchrony (SES). As a first step,
one extracts events from both time series, resulting in two point processes. The
events in those point processes are then aligned. The better the alignment, the
more similar the original time series are considered to be. In this paper (Part I),

we focussed on one-dimensional point processes.

Obviously, it is important to extract meaningful events from the given time
series. The proposed method may only be expected to produce useful results
if the events characterize the time series in a suitable manner. In the case of
spike trains, individual spikes can naturally be considered as events. Note that
for certain neurons, however, it may actually be more appropriate to define a

burst of spikes as a single event.

We compared SES to classical (dis)similarity measures for one-dimensional
point processes. Through the analysis of surrogate data, we observed that most
classical (dis)similarity measures are not able to distinguish timing dispersion
from event reliability, i.e., they depend on both quantities. In contrast, SES
allows to quantify both aspects of synchrony separately. We also wish to reit-
erate that all (dis)similarity measures, both the classical measures and SES,
typically underestimate the timing dispersion and overestimates event relia-
bility; this is due to the ambiguous nature of the synchrony of one-dimensional

point processes.

This ambiguity may be resolved by incorporating additional information about

the events. For example, in the case of spikes, one may take the shape of the
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spikes into account. The point processes then become multi-dimensional. In
our companion paper (Part IT), we will describe how SES may be extended
to multi-dimensional point processes. In that setting, the events pairs are no
longer assumed to be ordered, in contrast to the present formulation of SES

(see Section 3).

At last, we would like to address an interesting topic for future reseach. The
SES parameters are determined by coordinate descent, which is guaranteed
to converge to stationary points of the posterior distribution of the SES pa-
rameters. However, it does not necessarily converge to the mazimum of that
distribution, which corresponds to the maximum a posteriori (MAP) estimates
of the SES parameters. Instead of trying to obtain the MAP estimates (by co-
ordinate descent or other techniques), one may (approximately) compute the
posterior distribution of the SES parameters by means of Monte-Carlo algo-
rithms such as Gibbs sampling or Markov-chain Monte Carlo methods. From
that (approximate) posterior distribution, one may be able to obtain more
reliable estimates of the SES parameters. In addition, whereas the proposed
approach is mostly practical when the prior for the number of events is a ge-
ometric distribution, Monte Carlo methods can easily deal with other priors
such as Poisson distributions. However, such Monte-Carlo approaches would
be substantially slower than the proposed algorithm based on coordinate de-

scent.
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A Derivation of Inference Algorithm for One-Dimensional SES

Here we derive the algorithm of Table 2, more specifically, we clarify how to

carry out the updates (36) and (37).

We start with the update (37) since it is the most straightforward. The es-

timate 55”1) is the average offset between the coincident events at iteration

¢+ 1
| D
(i+1) A 1) (i)
where 20" £ @6+ is the F8*V_th event of z, and j(*Y is the estimate of
j at iteration i + 1. Likewise #]' ™) £ & /u+1> is the j"™_th event of 2/, and

n*+1 is the number of coincident pairs at iteration i + 1:

) z": (i+1) z": D). (A2)

A(i+1)

Similarly, the estimate is the variance §;  ’ of the offset between the coincident

events at iteration ¢ + 1:

A(H—l é i ( (i+1) A(H-l 5(24—1) (AB)

The update (36) can readily be carried out by applying the Viterbi algo-
rithm (Forney, 1973) (“dynamic programming”) on a trellis with the pairs of
coincident events (l’jk,l’;lg) as states, or equivalently, by applying the max-
product algorithm on a cycle-free factor graph (Loeliger, 2004; Loeliger et al.,
2007) of p(x,2’, 4,7, &, s¢). The procedure is equivalent to dynamic time warp-
ing (Myers et al., 1981); it is for example used in the context of bio-informatics
to compute the distance between genetic sequences (Sellers, 1974, 1979). It is

also applied in neuroscience to compute various spike metrics (Victor et al.,
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1997; Aronov, 2003; Victor et al., 2007).

As a first step in that procedure, one arranges the sequences x and z’ on the
sides of a (n+1) x (n'41) grid (see Fig. 5). Note that we assume, without loss
of generality, that the sequences x and 2’ are ordered, i.e., z;, > z;_1 and x} >
24, An alignment (7, ') corresponds to a path P = {(z,,, xizﬁ)’ (2gy, x;é), o}
on the grid, in particular, the alignment (36) corresponds to the minimal-cost
path. Note that each path starts at (0,0) and ends at (n,n’). In addition, it
never turns back, in other words, the indices g, and g}, never decrease, since
the event sequences are assumed to be ordered (cf. Section 3). Moreover, those
indices increase by at most 1 at each step along the path. As a result, each

path contains three kinds of segments [(qx—1, ¢ _1)s (@, @k)], all of length 1:

(1) horizontal: (qx, qr) = (qr—1 + 1, ¢fr_1)
(2) vertical: (¢x, @) = (qh—1, Q1 + 1)

(3) diagonal: (g, q) = (qr—1+ 1,¢w_; + 1).

The minimal-cost path is found by computing an (n+1) x (n’+ 1) cost matrix
M. The first row and column of M are filled with zeroes, i.e., the elements
Mpo=0= My (for k=0,1,...,nand k¥’ =0,1,...,n'), the other elements

are computed recursively as:
Mk,k’ = min [Mk—l,k’ + d(gil)), Mk,k’—l + d(ggz)),
M1 -1 + d(ﬂm Ty 597 §§i))]a (A.4)
for k =1,...,nand k' = 1,...,n/. Obviously, in order to compute the cost
M, s, the costs My_q 4, My 1, and Mj_; 11 need to have been computed

previously. To this end, one may first compute M ;, then one may gradually

fill the rest of the matrix M. The minimal cost is eventually given by M,,,/, the
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corresponding path P and alignment (7, ;) may be traced back from the op-
tions chosen at each stage in the recursion (A.4). The first choice corresponds
to treating x; as a non-coincident event (l;k = 1; horizontal segment), the
second choice corresponds to treating z}, as a non-coincident event (b}, = 1;
vertical segment), and the third choice corresponds to treating (zy,x},) as
an event pair (Bk = 0 and IA);, = 0; diagonal segment). Combining the up-

dates (A.1) and (A.3) with the recursion (A.4) leads to the algorithm of Ta-
ble 2.

Note that if the event sequences are not assumed to be ordered, the paths on
the grid may return and the minimal-cost path may no longer be found by

the above simple dynamic programming procedure.
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