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Abstract

A novel approach to measure the interdependence of two tmiesss proposed,
referred to as “stochastic event synchrony” (SES); it gifiastthe alignment of
two point processes by means of the following parametemse telay, variance
of the timing jitter, fraction of “spurious” events, and asge similarity of events.
SES may be applied to generic one-dimensional and multedsional point pro-
cesses, however, the paper mainly focusses on point pexcEsme-frequency
domain. The average event similarity is in that case desdrity two parameters:
the average frequency offset between events in the tinggerrecy plane, and the
variance of the frequency offset (“frequency jitter”); SE®n consists of five pa-
rameters in total. Those parameters quantify the synchobngcillatory events,
and hence, they provide an alternative to existing synghnogasures that quan-
tify amplitude or phase synchrony. The pairwise alignmédnpant processes
is cast as a statistical inference problem, which is solyedgplying the max-
product algorithm on a graphical model. The SES parameteidedermined from
the resulting pairwise alignment by maximum a posteriorAf®) estimation. The
proposed interdependence measure is applied to the pralfldetecting anoma-
lies in EEG synchrony of Mild Cognitive Impairment (MCI) patts; the results
indicate that SES significantly improves the sensitivitfe&G in detecting MCI.

1 Introduction

Synchrony is an important topic in neuroscience. For iratit is hotly debated whether the
synchronous firing of neurons plays a role in cognition [1d awen in consciousness [2]. The syn-
chronous firing paradigm has also attracted substant&itin in both the experimental (e.qg., [3])
and the theoretical neuroscience literature (e.g., [4prédver, medical studies have reported that
many neurophysiological diseases (such as Alzheimer&adi) are often associated with abnor-
malities in neural synchrony [5, 6].

In this paper, we propose a hovel measure to quantify thedependence between point processes,
referred to as “stochastic event synchrony” (SES); it cstesif the following parameters: time delay,
variance of the timing jitter, fraction of “spurious” eventaind average similarity of the events. The
pairwise alignment of point processes is cast as a stafistiterence problem, which is solved
by applying the max-product algorithm on a graphical modgl [n the case of one-dimensional
point processes, the graphical model is cycle-free andsstal inference is exact, whereas for



multi-dimensional point processes, exact inference besantractable; the max-product algorithm
is then applied on a cyclic graphical model, which not nealysyields the optimal alignment [7].
Our experiments, however, indicate that the it finds reasienalignments in practice. The SES
parameters are determined from the resulting pairwiserilants by maximum a posteriori (MAP)
estimation.

The proposed method may be helpful to detect mental disesimh as Alzheimer’s disease, since
mental disorders are often associated with abnormal blodahaural activity flows, and changes in
the synchrony of brain activity (see, e.g., [5, 6]). In thigppr, we will present promising results on
the early prediction of Alzheimer’s disease from EEG sigrsed on SES.

This paper is organized as follows. In the next section, viméuce SES for the case of one-
dimensional point processes. In Section 3, we considerttension to multi-dimensional point

processes. In Section 4, we use our measure to detect aditi@sna the EEG synchrony of

Alzheimer’s disease patients.

2 One-Dimensional Point Processes

Let us consider the one-dimensional point processes (testengs”) X and X" in Fig. 1(a) (ignore

Y and Z for now). We wish to quantify to which exted and X’ are synchronized. Intuitively
speaking, two event strings can be considered as synctsdooliocked”) if they are identical apart
from: (i) a time shiftd,; (ii) small deviations in the event occurrence times (“edaming jitter”); (iii)

a few eventinsertions and/or deletions. More preciseitviio event strings to be synchronous, the
event timing jitter should be significantly smaller than g#iverage inter-event time, and the number
of deletions and insertions should comprise only a smaditiva of the total number of events.
This intuitive concept of synchrony is illustrated in Figal The event string’ is obtained from
event stringX by successively shiftingd over, (resulting inY), slightly perturbing the event
occurrence times (resulting i), and eventually, by adding (plus sign) and deleting (misigs)
events, resulting ifX’. Adding and deleting events iff leads to “spurious” events iX and X’
(see Fig. 1(a); spurious events are marked in red): a spueieent inX is an event that cannot be
paired with an event iX’ and vice versa.

The above intuitive reasoning leads to our novel measursyfechrony between two event strings,
i.e., “stochastic event synchrony” (SES); for the one-disienal case, it is defined as the tripl&t, (
st, pspup), Wheres, is the variance of the (event) timing jitter, apgh.. is the percentage of spurious

events ,
N nSDUf+ nspur
Popur = M

with » andn’ the total number of events i and X’ respectively, anthsy,r and ngpu, the total
number of spurious events i and X’ respectively. SES is related to the metrics (“distances”)
proposed in [9]; those metrics are single numbers that éfyahé synchrony between event strings.
In contrast, we characterize synchrony by means of thresnpeters, which allows us to distinguish
different types of synchrony (see [10]). We compute thoseglparameters by performing inference
in a probabilistic model. In order to describe that model, amasider Fig. 1(b), which shows a
symmetric procedure to generake and X’. First, one generates an event strivigof length/,
where the event¥}, are mutually independent and uniformly distributed(nTp). The stringsZ
andZ’ are generated by delayiig over—¢; /2 andd, /2 respectively and by (slightly) perturbing
the resulting event occurrence times (variance of timittgrjiequalss; /2). The sequenceX and

X'’ are obtained fron¥ and Z’ by removing some of the events; more precisely, from each pai
(Zx, Z},), eitherZ, or Z;, is removed with probability,.

This procedure amounts to the statistical model:
p(x, (E/, b7 b/a v, 6t7 St, ‘g) = p(x|b7 v, 5151 St)p(x/lb/a v, 6ta St)p(b7 b/l’g)p(vw)p(’g)p(&t)p(st)7 (2)

whereb andd’ are binary strings that indicate whether the eveni¥ iand X’ are spuriousB;, = 1
if X}, is spurious,B, = 0 otherwise; likewise foB}); the length? has a geometric prigs(¢) =
(1 — M)A with A € (0,1), andp(v|¢) = T, *. The prior on the binary stringsand¥’ is given by

p(b,b|0) = (1 — pg)" ™ p2n =" = (1 — py) 7 o, (3)



with ng) - = nspur+ népur = 2¢ — n — n’ the total number of spurious eventsihand X', nspur =
> i1 bx = £ — n’ the number of spurious events ¥, and likewisen,,, the number of spurious
events inX’. The conditional distributions iX and X’ are equal to:

- 515 St 1=bw
p(x[b,v, 8¢, 5¢) = kli[l (N(Ik Ui 5)) (4)
n (St St 17b;€
p(x'|b',v, 6, 8¢) = k[[l (N(a:; — Vi 2 5)) , (5)

whereV;, is the event inl’ that corresponds t&’; (likewise Vi, ), and N (z;m, s) is a univariate
Gaussian distribution with mean and variances. Since we do not wish/need to encode prior
information aboub; ands;, we adopt improper priors(d;) = 1 = p(st).

Eventually, marginalizing (2) w.r.t: results in the model:

Tnon-spur

pla, @b,V 8y, 50, 0) = / p(z, @' b,V v, 8,51, Odv o< B ] M@, — 25,360, 51),  (6)
k=1

with (:vjk,:v;. ) the pairs of non-spurious evenison.spur = n + 1’ — £ the total number of non-

k
spurious event pairs, and = ps\/Tzo; in the example of Fig. 1(b)J = (1,2,3,5,6,7,8),
J' = (2,3,4,5,6,7,8), and npon-spur = 7. In the following, we will denote model (6) by
p(z, 2, j,7, 01, s¢) instead ofp(z, z', b, V', d¢, s¢, £), since for givenc, 2/, b, andd’ (and hence given
n, n’, andnnon-spuy, the lengthy is fully determined, i.e{ = n + n’ — nnon-spus MoOreover, it is more
natural to describe the model in terms.bfind.J’ instead ofB and B’ (cf. RHS of (6)). Note that
B and B’ can directly be obtained froni and.J’.

It also noteworthy thal, A andps do not need to be specified individually, since they appeég)in
only throughgS. The latter serves in practice as a knob to control the numfssurious events.
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(a) Asymmetric procedure

(b) Symmetric procedure

Figure 1: One-dimensional stochastic event synchrony.

Given event stringsX and X’, we wish to determine the parametégsand s;, and the hidden
variablesB and B’; the parametepspy (cf. (1)) can obtained from the latter :

n n’ 12
2 Dopm1 b+ 251 Uk 7
Pspur = n+n : (7)
There are various ways to solve this inference problem, bthiaps the most natural one is cyclic

maximization: first one chooses initial valué@) and ,§§O), then one alternates the following two
update rules until convergence (or until the available tivas elapsed):

GO+, 0D = argmaxp(, o/, j, 5,61, 57) (8)
b,b’

(S£i+1)7 §1(£l+1)) = argmaxp(a:, I/a j(iJrl)vj/(iJrl) ) 5t7 St)- (9)
6t75t



The update (9) is straightforward, it amounts to the emaginoean and variance, computed over
the non-spurious events. The update (8) can readily beedawtit by applying the Viterbi algorithm
(“dynamic programming”) on an appropriate trellis (witkethairs of non-spurious everits;, , x;};)

as states), or equivalently, by applying the max-prodwzigthm on a suitable factor graph [7]; the
procedure is similar to dynamic time warping [8].

3 Multi-Dimensional Point Processes

In this section, we will focus on the interdependence of idithensional point processes. As a
concrete example, we will consider multi-dimensional pgirocesses in time-frequency domain;
the proposed algorithm, however, is not restricted to tlatiqular situation, it is applicable to
generic multi-dimensional point processes.

Suppose that we are given a pair of (continuous-time) sigead)., EEG signals recorded from two
different channels. As a first step, the time-frequency ¢&let”) transform of each signal is approx-
imated as a sum of (half-ellipsoid) basis functions, reféto as “bumps” (see Fig. 2 and [17]); each
bump is described by five parameters: tiiefrequencyr’, width A X, heightAF', and amplitude
W. The resulting bump model8 = ((X1, F1,AX 1, AF, W1), ..., (Xn, F, AX,,, AF,, W,,))
andY’ = ((X{,F|,AX{,AF|,W]),...,(X].,F,,AX!, AF!, ,W!,)), representing the most
prominent oscillatory activity, are thus 5-dimensionainp@rocesses. Our extension of stochastic
event synchrony to multi-dimensional point processes famdp models in particular) is derived
from the following observation (see Fig. 3): bumps in onegtifrequency map may not be present
in the other map (“spurious” bumps); other bumps are preadatth maps (“non-spurious bumps”),
but appear at slightly different positions on the maps. Tlaelblines in Fig. 3 connect the centers
of non-spurious bumps, and hence, visualize the offsetdmvpairs of non-spurious bumps. We
qguantify the interdependence between two bump models bypfivameters, i.e., the parameters
Pspur, 0¢, ands, introduced in Section 2, in addition to:

e J;: the average frequency offset between non-spurious bumps,
e s;: the variance of the frequency offset between non-spubongos.

We determine the alignment of two bump models in additiom&og above parameters by an infer-
ence algorithm similar to the one of Section 2, as we will akpin the following; we will use the
notationd = (d;, s¢, d7, sy). Model (6) may naturally be extended in time-frequency dioraa:

TMnon-spur

! !
;.. 9 77}50‘[” Lpr — Tk . fk’_fk L5
p(y,y' 4,4, 0) o< B kl;[l N(ﬁ%+Ax;€/,5t,8t)N(7Afk+Af//,5175f)

-p(60)p(se)p(87)p(s), (10)

where the offset), — zy, in time and offseff;, — fi in frequency are normalized by the width and
height respectively of the bumps; we will elaborate on therpron the parameterslater on. In
principle, one may determine the sequenéesd.J’ and the parametetsby cyclic maximization
along the lines of (8) and (9). In the multi-dimensional ¢dsavever, the update (8) is no longer
tractable: one needs to allow permutations of events, tfieés;, andj;, are no longer necessarily
monotonically increasing, and as a consequence, the gtate $ecomes drastically larger. As a
result, the Viterbi algorithm (or equivalently, the maxeduct algorithm applied on cycle-free factor
graph of model (10)) becomes impractical.

We solve this problem by applying the max-product algoritmacyclic factor graph of the system
at hand, which will amount to a suboptimal but practical jgawre to obtain pairwise alignments
of multi-dimensional point processes (and bump models itiqudar). To this end, we introduce a
representation of model (10) that is naturally represehtea cyclic graph: for each pair of events
Y, andY},, we introduce a binary variabléy, that equals one i, andY}, form pair of non-
spurious events and is zero otherwise. Since each evénhassociated to at most one eventih
we have the constraints:

Z Olk’ é Sl € {07 1}3 Z CQk’ é SQ € {Oa 1}7 RS Z an’ é Sn € {Oa 1}7 (11)

k'=1 k'=1 k'=1



and similarly, each event ii’ is associated to at most one eventipwhich is expressed by a similar
set of constraints. The sequencgandS’ are related to the sequencBsand B’ (cf. Section 2):
B, =1- S, andB;, =1 — S,.. In this representation, the global statistical model (¥0) be cast
as. n’

P,y b,V c,0) H (B6[bx — 1]+ S[bx]) [T (BS[b% — 1] + 6[b3))

k=1 k'=1
n n JJ// — fl, _ fk ' Chole!
gigtl ( (m S5t ) N (m"sw)) P(60p(s:)p(3)p(s)
T ©lbe + Z e —11) T (O1h + > erwr = 11). (12)
k=1 k'=1 k=1 k=1

Since we do not need to encode prior information abBuand i, we choose improper priors
p(d:) =1 =p(dy). Onthe other hand, we have prior knowledge abgainds ;. Indeed, we expect
a bump in one time-frequency map to appear in the other mamat she samé&equency, but there
may be some timing offset between both bumps. For examptapbu. 1 in Fig. 3(a){ = 10.7s)
should be paired with bump nr. 8€ 10.9s) and not with nr. 2 & 10.8s), since the former is much
closer in frequency than the latter. As a consequence, wma @xpect smaller values for; than
for s;. We encode this prior information by means of conjugaterprfor s, andsy, i.e., scaled
inverse chi-square distributions.

A factor graph of model (14) is shown in Fig. 4 (each edge regmts a variable, each node corre-
sponds to a factor of (14), as indicated by the arrows at titet hand side; we refer to [7] for an
introduction to factor graphs). We omitted the edges for(tiEserved) variableX,, X;,, Fy., F}.,
AXy, AX},, AFy,, andAF], in order not to clutter the figure.
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Figure 2: Two-dimensional stochastic event synchrony.

We determine the alignment = (C11, Cia, . .., Cphy) @and the parametets= (0;, 4,9y, s7) by
maximum a posteriori (MAP) estimation:

(¢,0) = argmaxp(y,y’, c,0), (13)
c,6

wherep(y,y’, ¢, 0) is obtained from (14) by marginalizing oveandd’:

’

p(y,y',¢,0) H( i_: Chi nzckk'—l)H( ikk/ zn:Ckk/—lD

k'=1 k'=1 k=1

. H <N(ﬁ Ot, St) N(%;dﬁ 5f)> p(6)p(se)p(65)p(sy)-
(14)
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(a) Bump models of two EEG channels. (b) Non-spurlous bumpsppur = 27%); the
black lines connect the centers of non-spurious
bumps.

Figure 3: Spurious and non-spurious activity.
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From¢, we obtain the estimai@pyr as:
Doy b+ 3y b _nAn =23 Y G . (15)

n+n’/ n—+n'

The MAP estimate (13) is intractable, and we try to obtain) (iBcyclic maximization: first, the
parameterg are initialized:ét(o) =0= 5;0), §§O) = So4, andé}o) = so,f, then one alternates the
following two update rules until convergence (or until tvaidable time has elapsed):

¢ = argmaxp(y, /', ¢, 00) (16)

ﬁspur =

g+ — argmax p(y, y, el 6). 17)
)

The estimateé(i“) (17) is available in closed-form; indeed, it is easily vexfithat the point es-
timatesSt(”l) and 5;”1) are the (sample) mean of the timing and frequency offsetectsly,

computed over all pairs of non-spurious events. The estissat™" andsgf“) are obtained simi-
larly.

Update (16), i.e., finding the optimal pairwise alignhméhfor given valuesi(®) of the parameters,

is less straightforward: it involves an intractable conalbamial optimization problem. We attempt
to solve that problem by applying the max-product algoritienthe (cyclic) factor graph depicted
in Fig. 4 [7]. Let us first point out that, since the alignmehiis computed for giver) = (9,

the (upward) messages along the edgjase the point estimaté® (cf. (16)); equivalently, for the
purpose of computing (16), one may remove fhedges and the two bottom nodes in Fig. 4; the
N-nodes then become leaf nodes. The other messages in thheagesiperatively updated according
to the generic max-product update rule [7].

The resulting inference algorithm for computing (16) is seanized in Table 1. The messages
] (ckrr) and ]’ (ckis) propagateipward along the edgesys towards theX-nodes connected to
the edgesB;, andB;, respectively (see Fig. 4, left hand side); the messagés..) andu|’(cxr )
propagatedownward along the edges;;, from the $-nodes connected to the edgBs and B,
respectively. After initialization (18) of the messagel(cii ) andul’(ckrr) (=1, 2, ...,n; k'
=1, 2,...,n), one alternatively updates (i) the messagé&:x ) (19) andu]’(ckr) (20), (ii) the
messages | (cxr) (21) andul’(ckrr) (22), until convergence; it is noteworthy that, althougé th
max-product algorithm is not guaranteed to converge oncygcaphs, we observed in our experi-
ments (see Section 4) that alternating the updates (19)a(@2ys converged to a fixed point. At
last, one computes the marginglgxx-) (23), and from the latter, one may determine the decisions
¢k by greedy decimation.

4 Diagnosis of MCI from EEG

We analyzed rest eyes-closed EEG data recorded from 21agitéise scalp based on the 10-20
system. The sampling frequency was 200 Hz, and the signails bandpass filtered between 4



Initialization

wl(crrr) = pl (epnr) o (N(%;ﬁt.st)/\/(ﬁﬁf Sf)> (18)
Tk am

Iteratively compute messages until convergence
A. Downward messages:

( Zﬂgj: z (ng ) o ( max (3, maxg £ /J,T((:lkp =1)/ul(cker = 0)) ) (19)
( ﬁ/gil;z, - (1J§ ) ~ ( max (6, maxgz, u (Cf,lk’ =1)/ul(cawr = 0)) ) (20)

B. Upward messages:

i(cn) o m’<ckkf><N(Lz?,;af ) V(e sf)> (21)
0

Azi + Ax Afy+ AfL
' (ewnr) o< pl(crnr) <N(ﬁ 0, St) N(W o Sf)) . (22)
Marginals Crnt
plerrr) oc pl(ew )l (crnr) (N(ﬁéf S’) N(W or: Sf)) (23)

Table 1: Inference algorithm.

and 30Hz. The subjects comprised two study groups: the firssisted of a group of 22 patients
diagnosed as suffering from MCI, who subsequently develapéd AD. The other group was a

control set of 38 age-matched, healthy subjects who had meameor other cognitive impairments.

Pre-selection was conducted to ensure that the data werdighaguality, as determined by the
presence of at least 20s of artifact free data. We computatha variety of synchrony measures
for both data sets; the results are summarized in Table 2. epart results for global synchrony,

obtained by averaging the synchrony measures over 5 bigion®(frontal, temporal left and right,

central, occipital). For SES, the bump models were cludtbyemeans of the aggregation algorithm
described in [17].

The strongest observed effect is a significantly higher elegf background noisedp,) in MCI
patients, more specifically, a high number of spurious, syimehronous oscillatory events (p =
0.00021). We verified that the SES measures are not comgBarson’) with other synchrony
measuresy(> 0.10); in contrast to the other measures, SES quantifieytieheony of oscillatory
events (instead of more conventional amplitude or phasetsgny). Combiningsy,r with ffDTF
yields good classification of MCI vs. Control patients (ség3{a)). Interestingly, we did not ob-
serve a significant effect on the timing jitterof the non-spurious events (p = 0.91). In other words,
AD seems to be associated with a significant increase of apatiackground activity, while the
non-spurious activity remains well synchronized. Moreover, only the rgpurious activity slows
down (p = 0.0012; see Fig.5(c)), the average frequency affiheious activity is not affected in MCI
patients (see Fig.5(c)). In future work, we will verify tleogbservations by means of additional data
sets.

Measure || Cross-correlation Coherence Phase Coherence  Corr-entropy Wave-entropy
p-value 0.028 0.060 0.72 0.27 0.012
References [16] [18] [20]
Measure || Granger coherence Partial Coherencg PDC DTF ffDTF dDTF
p-value 0.15 0.16 0.60 0.34 0.0012 0.030
References [13]
Measure Kullback-Leibler Rényi Jensen-Shannon Jensen-Rényi Tw 1
p-value 0.072 0.076 0.084 0.12 0.060 0.080
References [23] [22]
Measure NF Sk H* S-estimator
p-value 0.032 0.29 0.090 0.33
References [15] [21]
Measure Hilbert Phase Wavelet Phase | Evolution Map | Instantaneous Periofl
p-value 0.15 0.082 0.072 0.020
Referenceg [24] 19]
Measure E Pspur
p-value 0.91 0.00021*

Table 2: Sensitivity of synchrony measures for early préaticof AD (p-values for Mann-Whitney
test; * and ** indicatep < 0.05 andp < 0.005 respectively).N*, S*, and H* are three measures
of nonlinear interdependence [15].
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