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Abstract

It is well known that EEG signals of Alzheimer’s disease (AD) patients are generally
less synchronous than in age-matched control subjects. However, this effect is not al-
ways easily detectable. This is especially the case for patients in the pre-symptomatic
phase, commonly referred to as Mild Cognitive Impairment (MCI), during which
neuronal degeneration is occurring prior to the clinical symptoms appearance. In
this paper, various synchrony measures are studied in the context of AD diagno-
sis, including the correlation coefficient, mean-square and phase coherence, Granger
causality, phase synchrony indices, information-theoretic divergence measures, state
space based measures, and the recently proposed stochastic event synchrony mea-
sures. Experiments with EEG data show that many of those measures are strongly
correlated (or anti-correlated) with the correlation coefficient, and hence, provide
little complementary information about EEG synchrony. Measures that are only
weakly correlated with the correlation coefficient include the phase synchrony in-
dices, Granger causality measures, and stochastic-event synchrony measures. In ad-
dition, those three families of synchrony measures are mutually uncorrelated, and
therefore, they each seem to capture a specific kind of interdependence. For the data
set at hand, only two synchrony measures are able to convincingly distinguish AD
patients from age-matched control patients, i.e., Granger causality (in particular,
full-frequency directed transfer function) and stochastic event synchrony. Those two
measures are used as features to distinguish MCI patients from age-matched control
subjects, yielding a leave-one-out classification rate of 83%. The classification per-
formance may be further improved by adding complementary features from EEG;
this approach may eventually lead to a reliable EEG-based diagnostic tool for MCI
and AD.
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1 Introduction

Many studies have shown that Alzheimer’s disease (AD) causes EEG signals
to slow down: AD is associated with an increase of power in the low-frequency
range (delta and theta) and a decrease of power in the high-frequency range
(alpha and beta). In addition, the EEG signals of AD patients are generally
less coherent than in age-matched control patients; see (Jeong, 2004; Uhlhaas
& Singer, 2006) for an in-depth review. It is noteworthy, however, that those
two effects are not always easily detectable: there tends to be large variability
among AD patients. As a result, none of those phenomena allow at present to
reliably diagnose AD at an early stage.

A considerable amount of research has recently been devoted to detecting fluc-
tuations in EEG synchrony; more specifically, a large variety of measures has
been proposed to quantify EEG synchrony, stemming from a wide spectrum
of disciplines such as physics, information theory, statistics, and signal pro-
cessing; we refer to (Pereda et al., 2005; Uhlhaas & Singer, 2006; Pereda et al.,
2005; Breakspear, 2004; Kamiński et al., 2005; Stam, 2005) for recent reviews
on EEG synchrony measures.

In this paper, we try to systematically investigate EEG synchrony with special
focus on the early diagnosis of AD. (A related but less exhaustive study has
been presented in (Quiroga et al., 2002; Sakkalis et al., 2006) in the context of
epilepsy.) We will consider EEG data from mild cognitive impairment (MCI)
patients that later suffer from AD. We apply a large variety of synchrony
methods to the same EEG data set recorded from MCI and control subjects.
To our knowledge, those synchrony methods have so far only been applied
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separately to different data sets from MCI/AD patients. As a result, it is
hard to compare the effectiveness of those methods in the context of diagnosing
MCI/AD from EEG.

Our objective is to apply synchrony measures to EEG data of MCI patients
and control subjects, and to use those measures as features to separate MCI
patients from control subjects. In other words, our study is mostly clinically
motivated; in this paper, we will not try to identify the biophysical mechanisms
that cause the observed effects. Such interpretation, albeit of great importance,
is notoriously difficult, since fluctuations in EEG synchrony may be caused
by a variety of phenomena, and may be affected by the choice of reference
electrodes.

To understand some of those issues, it helps to divide the synchrony measures
into two separate classes: local and global methods. Local measures estab-
lish links between pairs of signals. Global methods can in principle handle
an arbitrary number of signals, and can therefore analyze signals from all
EEG channels simultaneously. Therefore, global measures are applicable to
processes that produce EEG signals distributed over the entire scalp. The
problem with global measures is obviously that they usually cannot provide
local information about synchronous activity. On the other hand, local mea-
sures can strictly speaking only be applied meaningfully when local activity
has been identified; that essentially involves solving the inverse problem, which
is known to be very hard. Solving those issues goes beyond the scope of this
paper. Because of the above mentioned limitations of synchrony measures, it
is hard to infer the precise biophysical mechanisms that cause loss in EEG
synchrony. We will simply conjecture some plausible explanations, and will
leave the in-depth investigation of those theories as subject of future research.

We wish to underline that although we consider a large variety of synchrony
measure, it is virtually impossible to include all existing synchrony measures
in this study. Novel synchrony measures are constantly being developed; the
total number of proposed synchrony measures is probably close to one hundred
or even higher.

This paper is structured as follows. In Section 2 we review the synchrony
measures considered in this paper. In Section 3 those measures are applied to
EEG data, in particular, for the purpose of diagnosing MCI: we describe our
data set, elaborate on various implementation issues, and present our results.
At the end of the paper (Section 4), we briefly relate our results to earlier
work on this topic, and speculate about the neurophysiological interpretation
of our results.
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2 Synchrony Measures

We briefly review various families of synchrony measures: correlation coeffi-
cient and analogues in frequency and time-frequency domain, Granger causal-
ity, phase synchrony, state space based synchrony, information theoretic inter-
dependence measures, and stochastic event synchrony.

2.1 Correlation Coefficient

The correlation coefficient r is perhaps one of the most well-known measures
for (linear) interdependence between two signals x and y (Nunez & Srinivasan,
2006):

r =
1

N

N
∑

k=1

(x(k) − x̄)

σx

(y(k) − ȳ)

σy
, (1)

where N is the length the signals, x̄ and ȳ is the (sample) mean of x and y
respectively, and σ2

x and σ2
y is the (sample) variance of x and y respectively.

The correlation coefficient r quantifies the linear correlation between x and y.
If x and y are not linearly correlated, r is close to zero; on the other hand, if
both signals are identical, then r = 1.

2.2 Coherence

The coherence function quantifies linear correlations in frequency domain (Nunez
& Srinivasan, 2006). One distinguishes the magnitude square coherence func-
tion and the phase coherence function. In order to compute those quantities,
the signals x and y are subdivided in M segments of equal length L. The co-
herence function is computed by averaging over those segments. In particular,
the magnitude square coherence function c(f) is computed as:

c(f) =
|〈X(f)Y ∗(f)〉|2
|〈X(f)〉| |〈Y (f)〉| , (2)

where X(f) and Y (f) are the Fourier transforms of x and y respectively; Y ∗ is
the complex conjugate of Y ∈ C, |Y | is the magnitude of Y , and 〈X(f)〉 stands
for the average of X(f) computed over the M segments, likewise 〈Y (f)〉 and
〈X(f)Y ∗(f)〉.

The phase coherence function is defined as

φ(f) = arg〈X(f)Y ∗(f)〉, (3)

4



where argX is the argument of X ∈ C. Note that both c(f) and φ(f) de-
pend on the frequency f . In our study, we will test various values for M (see
Section 3.2.4).

2.3 Corr-Entropy Coefficient

The corr-entropy coefficient rE is a recently proposed (Gunduz and Principe,
2009) non-linear extension of the correlation coefficient r:

rE =
1
N

∑N
k=1 κ(x(k), y(k)) − 1

N2

∑N
k,ℓ=1 κ(x(k), y(ℓ))

√

KX − 1
N2

∑N
k,ℓ=1 κ(x(k), x(ℓ))

√

KY − 1
N2

∑N
k,ℓ=1 κ(y(k), y(ℓ))

, (4)

where

KX =
1

N

N
∑

k=1

κ(x(k), x(k)) KY =
1

N

N
∑

k=1

κ(y(k), y(k)), (5)

and where κ is a symmetric positive definite kernel function (Shawe-Taylor &
Cristianini, 2004), for example, a Gaussian, sigmoidal, or polynomial kernel.
In this paper (as in (Gunduz and Principe, 2009)), we will only consider the
Gaussian kernel:

κ(x, y) =
1√
2πσ

e−
|x−y|2

2σ2 , (6)

with kernel width σ = 0.4 (as in (Gunduz and Principe, 2009)).

We wish to point out that the signals x and y need to be normalized before
evaluating (4), by subtracting the mean and then dividing by the standard
deviation. Such normalization is crucial, since x and y may have significantly
different dynamic ranges; moreover, as a result of this normalization, both x
and y are dimensionless.

Note that rE is close to zero if x and y are independent (which is stronger
than being uncorrelated); if both signals are equal, then rE = 1.

2.4 Coh-Entropy and Wav-Entropy Coefficient

Similarly to (4), one can define a non-linear magnitude square coherence func-
tion, which we will refer to as “coh-entropy” coefficient cE(f):

cE(f) =
〈κ(X(f), Y (f))〉

√

〈κ(X(f), X(f))〉
√

〈κ(Y (f), Y (f))〉
, (7)
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where the averages 〈·〉 are again computed over M segments of equal length L.
Before computing cE(f), the Fourier-transforms X(f) and Y (f) need to be
normalized by the mean and standard deviation, computed over all segments.

The coh-entropy is an extension of corr-entropy to the frequency domain.
In addition, it can be viewed as a generalization of the magnitude square
coherence function c(f) (2).

One can also readily extend corr-entropy to the time-frequency domain by
replacing x(k) and y(k) in (4) by the time-frequency (“wavelet”) transforms
X(k, f) and Y (k, f) respectively, resulting in a “wav-entropy” coefficient wE(f).
The (continuous) wavelet transform of x is obtained as:

X(k, s) =
∑

ℓ

x(ℓ)ψ∗

(

ℓ− k

s

)

, (8)

where ψ(k) is the (complex) “mother” wavelet, and s is a scaling factor. In
this paper, we use the complex Morlet wavelet

ψ(k) = Ae−k2/2σ2
0e2iπf0k, (9)

where the width σ2
0 and frequency f0 jointly determine the number of os-

cillations in the wavelet. The complex Morlet wavelet results in the optimal
resolution in time and frequency; it has also proven to be well-suited for EEG
signals (Herrmann et al., 2005). The wavelet transform (8) is a time-frequency
representation of x; the scaled and shifted “daughter” wavelet in (8) has center
frequency f = f0/s. In the following, we will use the notation X(k, f) instead
of X(k, s).

It is noteworthy that before computing the wav-entropy coefficient wE(f), the
time-frequency transforms X(k, f) and Y (k, f) need to be normalized, for any
frequency f , by subtracting the average (over time) and then dividing by the
standard deviation (over time).

The two straightforward extensions cE(f) and wE(f) were not considered
in (Gunduz and Principe, 2009); to our knowledge, they are novel. It is note-
worthy that both coefficients are equal to one if the signals x and y are iden-
tical; if the latter signals are independent, both coefficients are close to zero.
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2.5 Granger Causality

Granger causality 2 refers to a family of synchrony measures that are derived
from linear stochastic models of time series; as the above linear interdepen-
dence measures, they quantify to which extent different signals are linearly
interdependent (see (Granger , 1969; Kamiński et al., 1991, 2005; Gourévitch
et al., 2006; Korzeniewska et al., 2003; Eichler, 2006; Blinowska et al., 2004;
Ancona et al., 2004; Astolfi et al., 2004, 2005; Schelter et al., 2005; Chen et
al., 2006) for detailed information about Granger causality). Whereas the lin-
ear interdependence measures of Section 2.1 to 2.4 are bivariate, i.e., they
can only be applied to pairs of signals, Granger causality measures are multi-
variate, they can be applied to multiple signals simultaneously. Interestingly,
non-linear extensions of Granger causality have been proposed recently (see,
e.g., (Ancona et al., 2004; Chen et al., 2004)), but we will not consider such
extensions in this paper, since they are less commonly used.

Suppose that we are given n signals x1(k), x2(k), . . . , xn(k), each stemming
from a different channel; we will assume, without loss of generality, that those
signals are normalized to have zero mean and standard deviation equal to one.
We consider the multivariate autoregressive (MVAR) model:

x(k) =
p
∑

ℓ=1

A(j)x(k − ℓ) + e(k), (10)

where x(k) = (x1(k), x2(k), . . . , xn(k))T , p is the model order, the model co-
efficients A(j) are n× n matrices, and e(k) is a zero-mean Gaussian random
vector of size n. In words: Each signal xi(k) is assumed to linearly depend on
its own p past values and the p past values of the other signals xj(k). The
deviation between x(k) and this linear dependence is modeled by the noise
component e(k). Model (10) can also be cast in the form:

e(k) =
p
∑

ℓ=0

Ã(j)x(k − ℓ), (11)

where Ã(0) = I (identity matrix) and Ã(j) = −A(j) for j > 0. One can
transform (11) into the frequency domain (by applying the z-transform and
by substituting z = e−2πi∆t, where 1/∆t is the sampling rate):

X(f) = Ã−1(f)E(f) = H(f)E(f). (12)

The power spectrum matrix of the signal x(k) is determined as

S(f) = E
[

X(f)X(f)†
]

= H(f)VH†(f), (13)

2 The Granger causality measures we consider here are implemented in the BioSig
library, available from http://biosig.sourceforge.net/.
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where V stands for the covariance matrix of e(k), and X(f)† is the hermitian
conjugate of X(f). The Granger causality measures are defined in terms of
the matrices A, H, and S.

We now list the most common Granger causality measures.

2.5.1 Partial Coherence (PC)

One defines partial coherence (Kamiński et al., 2005):

Cij(f) =
Mij(f)

√

Mii(f)
√

Mjj(f)
∈ C, (14)

where Mij is a minor (i, j) of S, i.e., the determinant of S with row i and col-
umn j removed; |Cij(f)| ∈ [0, 1] describes the amount of in-phase components
in signals i and j at the frequency f when the influence (i.e., linear depen-
dence) of the other signals is statistically removed. Note that this Granger
causality measure is symmetric, i.e., Cij = Cji.

The following Granger causality measures capture causal relations, they are
asymmetric or “directed”.

2.5.2 Directed Transfer Function (DTF)

The directed transfer function is defined in terms of H (Kamiński et al., 1991):

γ2
ij(f) =

|Hij(f)|2
∑m

j=1 |Hij(f)|2 ∈ [0, 1], (15)

where the (frequency-dependent) normalization is chosen so that γ2
ij(f) quan-

tifies the fraction of inflow to channel i stemming from channel j.

2.5.3 Full Frequency Directed Transfer Function (ffDTF)

Full frequency directed transfer function is defined as (Kamiński et al., 2005):

F 2
ij(f) =

|Hij(f)|2
∑

f

∑m
j=1 |Hij(f)|2 ∈ [0, 1], (16)

which is a variation of γ2
ij(f) with a global normalization in frequency.
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2.5.4 Partial Directed Coherence (PDC)

The previous two measures are causal extensions of coherence (2). One can
also define causal extensions of partial coherence (14), i.e., partial directed
coherence (Kamiński et al., 2005):

Pij(f) =
Ãij(f)

√

∑m
i=1 |Ãij(f)|2

∈ C, (17)

where |Pij(f)| ∈ [0, 1] represents the fraction of outflow from channel j to
channel i due to the choice of normalization.

2.5.5 Direct Directed Transfer Function (dDTF)

At last, we consider the direct directed transfer function (Korzeniewska et al.,
2003):

χ2
ij(f) = F 2

ij(f)C2
ij(f) ∈ [0, 1], (18)

which is non-zero if the connection between channel i and j is causal (non-zero
F 2

ij(f)) and direct (non-zero C2
ij(f)).

It is noteworthy that DTF, dDTF, PDC, and ffDTF are asymmetric measures,
i.e., γ2

ij 6= γ2
ji, F

2
ij 6= F 2

ji, P
2
ij 6= P 2

ji, and χ2
ij 6= χ2

ji.

2.6 MVAR Coherence

By means of the matrix S (13), one may also compute the coherence func-
tion (Kamiński et al., 2005):

Kij(f) =
Sij(f)

√

Sii(f)
√

Sjj(f)
∈ C, (19)

where |Kij(f)| ∈ [0, 1] describes the amount of in-phase components in sig-
nals i and j at the frequency f . The squared magnitude |Kij(f)|2 ∈ [0, 1]
is an alternative to the square magnitude coherence function c(f) (2). The
argument of Kij(f), i.e., argKij(f), is an alternative to the phase coherence
function φ(f) (3). The coherence functions |Kij(f)|2 and argKij(f) may be
more reliable than c(f) (2) and φ(f) (3) respectively if the MVAR system (10)
is a good model for the signals at hand.

Note that Kij(f) is usually not considered as a Granger measure, although it
is also derived from an MVAR model (10); we will refer to Kij(f) it as “MVAR
coherence”.
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2.7 Phase Synchrony

Phase synchrony refers to the interdependence between the instantaneous
phases φx and φy of two signals x and y; the instantaneous phases may be
strongly synchronized even when the amplitudes of x and y are statistically
independent. The instantaneous phase φx of a signal x may be extracted
as (Lachaux et al., 1999):

φH
x (k) = arg [x(k) + ix̃(k)] , (20)

where x̃ is the Hilbert transform of x. Alternatively, one can derive the in-
stantaneous phase from the time-frequency transform X(k, f) (8) of x:

φW
x (k, f) = arg[X(k, f)]. (21)

The phase φW
x (k, f) depends on the center frequency f of the applied wavelet.

By appropriately scaling the wavelet, the instantaneous phase may be com-
puted in the frequency range of interest.

The phase synchrony index γ for two instantaneous phases φx and φy is defined
as (Lachaux et al., 1999):

γ =
∣

∣

∣

〈

ei(nφx−mφy)
〉
∣

∣

∣ ∈ [0, 1], (22)

where n and m are integers (usually n = 1 = m), and 〈·〉 stands for the
time average. We will use the notation γH and γW to indicate whether the
instantaneous phases are computed by the Hilbert transform or time-frequency
transform respectively. Note that γW depends on frequency f .

An alternative phase synchrony index is Global Field Synchronization (GFS) (Koenig
et al., 2001); whereas the index γ (22) is determined for pairs of signals x and
y, GFS quantifies the synchrony of multiple signals x1(k), x2(k), . . . , xn(k).
GFS is based on principal component analysis (PCA) applied in the com-
plex plane; as a first step, one computes the Fourier transform Xi(f) ∈
C of the signals xi(k) (i = 1, 2, . . . , n). Next one constructs the vectors

XR =
(

Re(X1(f)), . . . ,Re(Xn(f))
)

and XI =
(

Im(X1(f)), . . . , Im(Xn(f))
)

,

and computes the covariance matrix C ∈ R2×2 for those two vectors. GFS is
defined in terms of the normalized eigenvalues λ1 and λ2 of C (with λ1 ≥ λ2):

GFS(f) = λ1 − λ2. (23)

It is noteworthy that GFS depends on the frequency f . If the phases of the
signals x1(k), x2(k), . . . , xn(k) are strongly interdependent, the Fourier trans-
forms X1(f), X2(f), . . . , Xn(f) will lie on a straight line in the complex plane.
The largest normalized eigenvalue of C will be close to one, and as a result,

10



also GFS will tend to one. On the other hand, if the phases are not correlated,
we have λ1 ≈ 1/2 ≈ λ2 and GFS will be close to zero.

In this paper, we will consider two additional phase synchrony indices, i.e.,
the evolution map approach (EMA) and the instantaneous period approach
(IPA) (Rosenblum et al., 2002). Due to space constraints, we will not describe
those measures here, instead we refer the reader to (Rosenblum et al., 2002) 3 ;
additional information about phase synchrony can be found in (Quiroga et al.,
2002).

2.8 State Space Based Synchrony

State space based synchrony (or “generalized synchronization”) evaluates syn-
chrony by analyzing the interdependence between the signals in a state space
reconstructed domain (see (Sauer et al., 2005) for a review). The central hy-
pothesis behind this approach is that the signals at hand are generated by an
(unknown) deterministic, potentially high-dimensional, non-linear dynamical
system:

ds/dt = f(s), (24)

where s ∈ Rq is the state of the system, and q and f are usually unknown. In
order to reconstruct such system from a signal x, one considers delay vectors
X(k) = (x(k), x(k − τ), . . . , x(k − (m − 1) τ))T , where m is the embedding
dimension and τ denotes the time lag. If τ and m are appropriately chosen,
and the signals are generated by a deterministic dynamical system with a
smooth attractor, the delay vectors lie on a smooth manifold (“mapping”) in
Rm. The principle of state space reconstruction can be generalized from smooth
attractors to generic sets of arbitrary box-counting dimension, including fractal
attractors (Sauer et al., 2005).

State space based synchrony measures assess the interdependence between two
signals x and y by comparing local neighborhoods of their state space recon-
structed mappings. More precisely, they quantify how local neighborhoods in
one manifold are transformed into neighborhoods in the other manifold. If a
neighborhood on one manifold is mapped unto a much larger neighborhood
on the other manifold, the signals x and y are only weakly synchronized; on
the other hand, if it is mapped to a neighborhood of about the same size, the
two signals x and y are strongly coherent.

First we consider three non-linear interdependence measures (Sk, Hk, and
Nk) that are based on this idea, then we consider a recently proposed state
space based synchrony measure, i.e., the S-estimator. The latter may be con-
sidered as a state-space formulation of omega complexity, which is a classical

3 Program code is available at www.agnld.uni-potsdam.de/%7Emros/dircnew.m
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similarity measure derived from principal component analysis (PCA). After
describing the three non-linear interdependence measures Sk, Hk, and Nk, we
will consider omega complexity and then proceed to the S-estimator.

We will again assume, without loss of generality, that all signals are normalized
to have zero mean and standard deviation equal to one.

2.8.1 Nonlinear Interdependence

For each delay vector X(k), one computes the average squared Euclidian dis-
tance RM

k (X) to its M nearest neighbors. In addition, one computes the mean
squared Euclidian distance between delay vector X(k) and the X-delay vec-
tors corresponding to the M nearest neighbors of Y (k), referred to as the
Y -conditioned mean squared Euclidian distance RM

k (X|Y ). Three measures
of nonlinear independence, Sk, Hk, and Nk, are defined in terms of those two
distances (Quiroga et al., 2002) 4 :

Sk(X|Y ) =
1

N

N
∑

k=1

RM
k (X)

RM
k (X|Y )

(25)

Hk(X|Y ) =
1

N

N
∑

k=1

log
Rk(X)

RM
k (X|Y )

(26)

Nk(X|Y ) =
1

N

N
∑

k=1

Rk(X) −RM
k (X|Y )

Rk(X)
, (27)

where Rk(X) is the mean squared Euclidian distance between X(k) and the
other points X(ℓ) (ℓ 6= k). The measure Hk is believed to be more robust
against noise than Sk; it is also easier to interpret, however, it is not normal-
ized; Nk is a normalized version of Hk.

In our calculations (see Section 3), the number M of nearest neighbors was
set equal to 10, as in (Quiroga et al., 2002).

2.8.2 Omega Complexity and S-estimator

Omega complexity Ω is a measure derived from principal component analysis
(PCA) (Saito et al., 1998) (see (Yoshimura et al., 2004) for an application
to EEG). Suppose that we are given n signals X1(k), X2(k), . . . , Xn(k); one
computes the covariance matrix C ∈ Rn×n. Omega complexity is defined in
terms of the normalized eigenvalues λi of C:

Ω = exp

(

−
n
∑

i=1

λi log λi

)

. (28)

4 Software is available from http://www.vis.caltech.edu/~rodri/software.htm
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The argument of the exponential in (28) is the entropy of the normalized-
eigenvalue distribution. If the signals Xi(k) are identical, all eigenvalues except
one are zero, and Ω = 1. On the other hand, if the signals Xi(k) are inde-
pendent, all n eigenvalues are identical, and hence Ω = n. Therefore, omega
complexity Ω is a dissimilarity measure.

The S-estimator extends omega complexity to state space embedded signals (Carmeli
et al., 2005) 5 (see (Celka et al., 2006) for a recent refinement). Suppose again
that we are given n signals X1(k), X2(k), . . . , Xn(k); first one constructs m-
dimensional delay vectors for each signal, then one computes the covariance
matrix C ∈ R

mn×mn for the n sequences of delay vectors. The S-estimator is
defined in terms of the normalized eigenvalues λi of C:

Sest = 1 +

∑mn
i=1 λi log(λi)

log(mn)
. (29)

The numerator in the second term represents the negative entropy of the
normalized eigenvalues λi, and the denominator is the negative entropy of
the uniform distribution, which has maximum entropy; as a consequence, the
second term in the RHS of (29) takes values in [−1, 0], and hence, Sest ∈ [0, 1].
If the signals Xi(k) are statistically independent, all normalized eigenvalues
tend to be equal to 1/mn, and as a result, Sest approaches 0. On the contrary,
if the signals are well synchronized, only a few number of eigenvalues will
remain prominent, and as a result, Sest is then close to 1.

2.9 Information-Theoretic Measures

Several interdependence measures have been proposed that have their roots
in information theory (Cover & Thomas, 1991).

2.9.1 Mutual Information

Mutual information is perhaps the most well-known information-theoretic in-
terdependence measure between two random variables X and Y :

I(X;Y ) = H(X) +H(Y ) −H(X, Y ), (30)

where H(X) and H(Y ) is the Shannon entropy of X and Y respectively, and
H(X, Y ) is the joint entropy of X and Y (Cover & Thomas, 1991). The mutual
information quantifies the amount of information the random variable Y con-
tains about random variable X (and vice versa); it is always positive, and it

5 A toolbox is available from http://aperest.epfl.ch/docs/software.htm
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vanishes when X and Y are statistically independent. If X and Y are identical
(with probability 1), then I(X;Y ) = H(X) = H(Y ).

It is noteworthy that in the problem at hand (i.e., diagnosis of MCI from
EEG), we are given signals and not random variables. Computing the mutual
information between (stationary) signals is non-trivial: naively quantizing the
signals and computing I(X;Y ) from the resulting histograms often leads to
unreliable estimates of mutual information. Recently, a sophisticated and ef-
fective technique to compute mutual information was proposed (Kraskov et
al., 2004); we will use that method in this paper, with the same parameter
settings 6 .

The method of (Kraskov et al., 2004) computes mutual information in time-
domain. Alternatively, this quantity may also be determined in time-frequency
domain (Aviyente, 2005a,b) (see also (Quiroga et al., 1999; Blanco et al., 1995;
Quiroga et al., 2001)), more specifically, from the normalized spectrograms:

Cx(k, f) =
|X(k, f)|2

∑

k,f |X(k, f)|2 , (31)

where the summation in the denominator is carried out over the time win-
dow and frequency range of interest. The normalized spectrograms can be
treated as probability distributions, and accordingly, mutual information can
be determined in terms of the normalized spectrograms as:

IW (Cx, Cy, Cxy) =
∑

k,f

Cxy(k, f) log
Cxy(k, f)

Cx(k, f)Cy(k, f)
, (32)

where the (normalized) cross time-frequency distribution of x and y is defined
as

Cxy(k, f) =
|X(k, f)Y ∗(k, f)|

∑

k,f |X(k, f)Y ∗(k, f)| . (33)

In the following, we will list several information-theoretic measures that quan-
tify the dissimilarity (or “distance”) between two random variables (or sig-
nals). In contrast to the previously mentioned measures, those divergence mea-
sures vanish if the random variables (or signals) are identical ; moreover, they
are not necessarily symmetric, and therefore, they can not be considered as
distance measures in the strict sense. Divergences may be computed in time
domain and time-frequency domain; in this paper, we will only compute the
divergence measures in time-frequency domain, since the computation in time
domain is far more involved.

6 Program code (in C) is available at www.klab.caltech.edu/~kraskov/MILCA/
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2.9.2 Kullback-Leibler Divergence

The Kullback-Leibler divergence is a well-known distance measure:

K(Cx, Cy) =
∑

k,f

Cx(k, f) log
Cx(k, f)

Cy(k, f)
. (34)

This measure diverges when the two distributions are disjoint. The Kullback-
Leibler divergence is an asymmetric measure; it can be symmetrized, for exam-
ple, by taking the average of K(Cx, Cy) and K(Cy, Cx) (Johnson & Sinanovic,
2001):

K(Cx;Cy) =
K(Cx, Cy) +K(Cy, Cx)

2
. (35)

2.9.3 Rényi Divergence

Rényi divergence is a generalized formulation of Kullback-Leibler divergence:

Dα(Cx, Cy) =
1

α− 1
log

∑

k,f

[Cx(k, f)]α[Cy(k, f)](1−α), (36)

where α ∈ [0, 1] is the order of the divergence. This measure is asymmetric
(except if α = 0.5), and converges to the Kullback-Leibler distance as α → 1.

2.9.4 Jensen-Shannon Divergence

An alternative divergence measure is Jensen-Shannon divergence:

J(Cx, Cy) = H
(

Cx + Cy

2

)

− H(Cx) +H(Cy)

2
, (37)

where H stands for Shannon entropy of normalized spectrograms (31):

H(Cx) = −
∑

k,f

Cx(k, f) logCx(k, f). (38)

Interestingly, J(Cx, Cy) is symmetric.

2.9.5 Jensen-Rényi Divergence

Jensen-Rényi divergence extends Jensen-Shannon divergence from arithmetic
to geometric mean, by using the Rényi entropy instead of the Shannon entropy.
Rényi entropy can be defined for normalized spectrograms (31) as:

Hα(Cx) =
1

1 − α
log

∑

k,f

(Cx(k, f))α (39)
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Rényi entropy converges to Shannon entropy as α→ 1. For two positive time-
frequency distributions, Jensen-Rényi divergence is obtained as:

Jα(Cx, Cy) = Hα

(

√

Cx(k, f)Cy(k, f)
)

− Hα(Cx) +Hα(Cy)

2
, (40)

which is a symmetric measure (as Jensen-Shannon divergence).

2.10 Stochastic Event Synchrony (SES)

Stochastic event synchrony (SES), a family of synchrony measures that we
developed in recent work (Dauwels et al., 2007, 2009a,b), quantifies the simi-
larity between point processes. The latter may be defined in time, frequency,
space or any other domain. In this paper, we extract point processes from the
time-frequency representations of the EEG signals. We will in this section out-
line the main ideas behind stochastic event synchrony. In the Supplementary
Material, we provide more details on the implementation, and we refer the in-
terested reader to (Dauwels et al., 2007, 2009a,b) for additional information;
an other application of SES to EEG signals is presented in (Vialatte et al.,
2009a).

As a first step, the time-frequency transform of each signal is approximated
as a sum of half-ellipsoid basis functions, referred to as “bumps” 7 (see Fig. 1
and (Vialatte et al., 2007, 2009b)); each bump may be considered as an event
on the time-frequency plane, and the resulting bump models E and E ′ may
be considered as two-dimensional point processes (“event sequences”), repre-
senting the most prominent oscillatory activity. Only bumps whose energy is
larger than a threshold T are retained in the bump model (see Supplementary
Material).

Next the two bump models are aligned (see Fig. 2 and 3): bumps in one
time-frequency map may not be present in the other map (“non-coincident”
bumps); other bumps are present in both maps (“coincident” bumps), but
appear at slightly different positions on the maps.

The black lines in Fig. 3 connect the centers of coincident bumps, and hence,
visualize the offset in position between pairs of coincident bumps. Stochastic
event synchrony (SES) consists of five parameters that quantify the alignment
of two bump models:

• ρ: fraction of non-coincident bumps,

7 An implementation of the bump extraction algorithm is available from
http://www.bsp.brain.riken.jp/~fvialatte/bumptoolbox/toolbox home.html.
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Fig. 1. Bump modeling. From top to bottom: EEG signal in time-domain; EEG
signal in time-frequency domain; Bump model of the EEG signal (two-dimensional
and three-dimensional view).

• δt and δf : average time and frequency offset respectively between coincident
bumps,

• st and sf : variance of the time and frequency offset respectively between
coincident bumps.

The parameters ρ and st are the most relevant for the present study, since
they quantify the synchrony between bump models and hence the original
time-frequency maps; low ρ and st implies that the two time-frequency maps
at hand are well synchronized.

The SES parameters are computed iteratively 8 . One starts with an initial
guess δ̂

(0)
t , δ̂

(0)
f , ŝ

(0)
t , ŝ

(0)
f , and aligns the two bump models. Using this alignment,

one updates the SES parameters δ̂t, δ̂f , ŝt, ŝf , and with those estimates, one
re-aligns the bump models, etc., until convergence. From the final alignment,
one can directly compute an estimate of ρ. More details on this procedure are
provided in the Supplementary Material.

8 An implementation of SES for one-dimensional and multi-dimensional point pro-
cesses is available from http://www.dauwels.com/SESToolbox/SES.html.
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Time-frequency map Time-frequency map

↓ ↓

Bump model Bump model

⇔
Fig. 2. Two-dimensional stochastic event synchrony. Top: two given EEG signals in
time-frequency domain; Bottom: bump models extracted from those time-frequency
maps. Stochastic event synchrony quantifies the similarity of two such bump models.

Important parameters in the SES method are the initial estimates δ̂
(0)
t , δ̂

(0)
f ,

ŝ
(0)
t , ŝ

(0)
f , and the threshold T . In addition, the SES model depends on a pa-

rameter β that controls the number of matches (see Supplementary Material).
Indeed, it is easy to verify that the problem of aligning bump models is am-
biguous. For example, one may only allow extremely small offsets, and as a
result, virtually all bumps would be non-coincident; in the other extreme, one
may allow unrealistically large offsets, in which case almost all bumps are
coincident. The parameter β allows us to sweep between both extremes in or-
der to obtain reasonable alignments and hence plausible estimates of the SES
parameters.

2.11 Local vs. Global Synchrony

As we pointed out in the introduction, the measures we have reviewed in the
above may be divided into two separate classes: local and global methods. The
global methods in the above list are the Granger causality measures, MVAR
coherence, GFS, Omega complexity, and the S-estimator, all other measures
in the above are local.

Interestingly, the Granger causality measures and MVAR coherence provide
also local synchrony information since from the underlying MVAR model,
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Fig. 3. Non-coincident and coincident activity (“bumps”). Top: Bump models of
two signals (red and blue); one can observe pairs of bumps that are coincident
(matched), other bumps are not overlapping and cannot be matched to bumps from
the other bump model. Bottom: Coincident bumps; the black lines connect the
centers of coincident bumps.

one can extract interactions between individual signals. In contrast, the other
global measures considered in this paper, i.e., GFS, Omega complexity, and
the S-estimator, do not provide any local information when applied to all EEG
signals simultaneously. One may obtain local information by applying them
to subsets of signals, as we will explain in Section 3.

We reiterate that we are fully aware of the drawbacks of both local and global
synchrony measures. Our core objective is to use those synchrony measures
as features to distinguish MCI patients from control subjects; to this end, we
apply a large variety of synchrony methods to the same EEG data set of MCI
and control subjects, a study that has not been carried out yet. Given the
shortcomings and limitations of the synchrony measures, we will not try to
unravel the biophysical mechanisms that cause the observed effects; however,
we will suggest some possible theories.
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3 Diagnosis of EEG Synchrony Abnormalities in AD Patients

In the following section, we describe the EEG data we analyzed. In Section 3.2
we address certain technical issues related to the synchrony measures, and in
Section 3.3, we present and discuss our results.

3.1 EEG Data

The EEG data used here have been analyzed in previous studies concerning
early diagnosis of AD (Chapman et al., 2007; Cichocki et al., 2005; Hogan et
al., 2003; Musha et al., 2002; Vialatte et al., 2005).

Ag/AgCl electrodes (disks of diameter 8mm) were placed on 21 sites according
to 10–20 international system, with the reference electrode on the right ear-
lobe. EEG was recorded with Biotop 6R12 (NEC San-ei, Tokyo, Japan) at a
sampling rate of 200Hz, with analog bandpass filtering in the frequency range
0.5-250Hz and online digital bandpass filtering between 4 and 30Hz, using
a third-order Butterworth filter. We used a common reference for the data
analysis (right ear-lobe), and did not consider other reference schemes (e.g.,
average or bipolar references).

The subjects comprise two study groups. The first consists of 25 patients who
had complained of memory problems. These subjects were diagnosed as suf-
fering from mild cognitive impairment (MCI) when the EEG recordings were
carried out. Later on, they all developed mild AD. The criteria for inclusion
into the MCI group were a mini mental state exam (MMSE) score = 24,
though the average score in the MCI group was 26 (SD of 1.8). The other
group is a control set consisting of 56 age-matched, healthy subjects who had
no memory or other cognitive impairments. The average MMSE of this control
group is 28.5 (SD of 1.6). The ages of the two groups are 71.9 ± 10.2 and 71.7
± 8.3, respectively. Finally, it should be noted that the MMSE scores of the
MCI subjects studied here are quite high compared to a number of other stud-
ies. For example, in (Hogan et al., 2003) the inclusion criterion was MMSE =
20, with a mean value of 23.7, while in (Chapman et al., 2007), the criterion
was MMSE = 22 (the mean value was not provided); thus, the disparity in
cognitive ability between the MCI and control subjects is comparatively small,
making the present classification task relatively difficult.

All recording sessions were conducted with the subjects in an awake but resting
state with eyes closed; the EEG technicians prevented the subjects from falling
asleep (vigilance control). The length of the EEG recording is about 5 minutes,
for each subject. After recording, the EEG data has been carefully inspected.
Indeed, EEG recordings are prone to a variety of artifacts, for example due to
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electronic smog, head movements, and muscular activity. For each patient, an
EEG expert selected by visual inspection one segment of 20s artifact free EEG,
blinded from the results of the present study. Only those subjects were retained
in the analysis whose EEG recordings contained at least 20s of artifact-free
data. Based on this requirement, the number of subjects in the two groups
described above was further reduced to 22 and 38, respectively. From each
subject, one artifact-free EEG segment of 20s was analyzed (for each of the
21 channels).

In the following sections, we will describe how we applied the synchrony mea-
sures to those EEG segments.

3.2 Methods

3.2.1 Different Approaches to Compute EEG Synchrony

In order to compute EEG synchrony, we first aggregated the EEG signals into 5
zones, as illustrated in Fig. 4. We quantified the EEG synchrony between those
5 different regions using each synchrony measure of Section 2. It is noteworthy
that the EEG synchrony between those regions needs to be considered as
large-scale synchrony, since each region spans several tens of millimeters. In
the following, we detail how we applied the different synchrony measures to
determine large-scale synchrony.

Local Synchrony Methods
Before applying the local synchrony measures, we first determine the arith-
metic average of the signals within each zone. For example, we determine the
average EEG in the left temporal zone by computing the arithmetic average
of the EEG at channels F7, T3, and T5. Next we apply the local synchrony
methods to each of the 10 pairs of average signals. We refer to this approach
as “Local Approach 1”.

We also followed an alternative approach (Local Approach 2): in order to
determine the synchrony between two zones, we first evaluated the synchrony
between each EEG signal from one zone and each signal from the other. Next
we averaged over all those signal pairs. For example, the synchrony between
the left and right temporal region is determined by averaging the synchrony
measures for the 9 pairs (F7,F8), (F7, T4), (F7, T6), . . . , (T5, T6). We apply
this approach to all local measures except the information-theoretic measures
(cf. Section 2.9), the wavelet-based phase synchrony index γW , the wav-entropy
coefficient wE, and SES. Local Approach 2 is not feasible for the information-
theoretic measures, wavelet-based phase synchrony index γW and wav-entropy
coefficient wE, since it is too computationally complex. In the case of SES, we
apply the following procedure: first we compute a bump model for each of the
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21 EEG signals. We aggregate those 21 models into 5 models, one for each
zone, by means of the algorithm described in (Vialatte et al., 2007). We then
compute the SES parameters for each pair of the resulting 5 bump models. We
refer to that approach as Local Approach 2 for SES; it is a natural alternative
to Local Approach 1.

Global Synchrony Methods
Global synchrony methods can in principle be applied to all 21 EEG signals
simultaneously; this is a reasonable idea for GFS, Omega complexity, and the
S-estimator. However, for the Granger measures and MVAR coherence, this
would involve estimating a 21-dimensional MVAR model with 212 times p
parameters (cf. (10)). The EEG signals at hand are too short (20s) to estimate
such large number of parameters reliably. Moreover, EEG signals are non-
stationary, and therefore, the MVAR models need to be trained from even
shorter EEG segments (e.g., 1s or 5s).

Therefore, in order to reduce the dimensionality, we apply the Granger mea-
sures to the 5 average EEG signals and learn a 5-dimensional MVAR models
(cf. (10)) from those averages. For the sake of consistency, we also compute
GFS, Omega complexity, and the S-estimator from the 5 average EEG signals.
We refer to this approach as “Global Approach 1”. Also in Local Approach 1,
synchrony measures are applied to the 5 average EEG signals, and therefore,
results from Local Approach 1 and Global Approach 1 are directly comparable.

In addition, we apply GFS, Omega complexity, and the S-estimator to all 21
EEG signals (Global Approach 2). We also apply those measures to all pairs of
zones (Global Approach 3). More specifically, we evaluate Omega complexity
and the S-estimator index between each pair of zones by applying PCA to
the EEG signals and state space embedded EEG signals respectively within
the two zones. Likewise, we compute GFS by applying PCA to the Fourier
transformed EEG signals within each pair of zones. For example, in order to
compute GFS index between the left and right temporal zone, we apply PCA
to the Fourier transformed EEG signals recorded at channels F7, F8, T3, T4,
T5, and T6.

3.2.2 Average EEG Synchrony

In this study, we solely consider spatially averaged EEG synchrony, we do not
investigate the spatial distribution of EEG synchrony; after applying the syn-
chrony measures, we average the synchrony values over the 5 regions (cf. Fig. 4)
to obtain an average measure of EEG synchrony. More precisely, in Local Ap-
proach 1 and 2 and Global Approach 3, we average the pairwise synchrony
values over the 10 pairs of regions; we also follow this averaging procedure in
the case of Granger measures (Global Approach 1). Note that the other global
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Fig. 4. The 21 channels used for EEG recording, distributed according to the 10–20
international placement system (Nunez & Srinivasan, 2006). The clustering into 5
zones is indicated by the colors and dashed lines (1 = frontal, 2 = left temporal, 3
= central, 4 = right temporal and 5 = occipital).

synchrony measures (GFS, Omega complexity, and the S-estimator) directly
quantify average EEG synchrony in Global Approach 1 and 2, there is no need
for additional averaging.

3.2.3 Frequency-Dependent Synchrony Measures

Several measures depend on the frequency f , e.g., the magnitude square co-
herence function c(f) (2). We compute those measures for all (integer) fre-
quencies within the frequency band at hand (4–30Hz). Next we average the
measures over those frequencies. For the example, in case of the magnitude
square coherence function c(f), we compute:

c =
1

27

30
∑

f=4

c(f). (41)

Alternatively, one may compute frequency-dependent measures at the center
frequency of the frequency band at hand, for example at 17Hz for the 4-
30Hz band. However, that frequency band is wide and the center frequency is
not necessarily representative; one would neglect the contributions from other
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frequencies in that band.

3.2.4 Non-stationarity

Spontaneous EEG is usually highly non-stationary, which is an important issue
that needs to be taken into account before applying synchrony measures. The
wavelet-based synchrony measures are directly applicable to non-stationary
signals, in particular, the wavelet-based divergence measures (Kullback-Leibler,
Rényi, Jensen-Shannon, and Jensen-Rényi divergence), wavelet-based mutual
information IW , the wavelet and Hilbert phase indices φW and φH respectively,
wave-entropy wE , and the SES measures (ρ and st). The other synchrony mea-
sures considered in this paper, however, are strictly speaking only applicable
to stationary signals. Therefore, we computed those measures by averaging
over M short segments of the EEG. All M segments have equal length L
(cf. Section 2.2). Since the statistics of the EEG strongly fluctuates over time,
the length L should be sufficiently small. On the other hand, in order to ob-
tain reliable measures for synchrony, the length should be chosen sufficiently
large. For example, in order to compute the Granger measures, one needs to
determine the matrices H, A and S. If the EEG signals were stationary, one
should obviously use the entire EEG signals to estimate the coefficient matri-
ces. However, since the EEG is non-stationary, those matrices may vary over
time; it is then not necessarily meaningful to estimate them using the en-
tire EEG signals (20s), instead one may divide the EEG signals in segments,
and estimate separate matrices from each EEG segment. From each of those
matrices, one computes Granger measures, and eventually one averages those
measures over all EEG segments.

Since it is not a priori clear how to choose the length L, we tested several
values, i.e., L = 1s, 5s, and 20s; the latter is length of the entire EEG signal
selected for the analysis at hand (see Section 3.1). In other words, we apply
the measures to EEG segments of either 1 or 5s, and we also apply them to
the entire EEG signal, of length 20s.

3.2.5 Statistical Analysis

We investigate whether there are statistically significant differences in EEG
synchrony between MCI patients and age-matched control subjects. To this
end, we apply the Mann-Whitney test to the EEG synchrony values of MCI
patients and age-matched control subjects. In particular, we conduct a Mann-
Whitney test for each individual synchrony measure, each approach to com-
pute the synchrony measures (Local Approach 1 and 2, Global Approach 1,
2, and 3), and each parameter setting, e.g., different EEG segment length L.
(The Supplementary Material contains detailed information about the param-
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eter settings.) The Mann-Whitney test allows us to investigate whether the
statistics at hand, in particular, the synchrony measures, take different values
for the two subject populations. Low p-values indicate large difference in the
medians of the two populations.

Since we consider many different synchrony measures, various approaches to
compute those synchrony measures (Local Approach 1 and 2, Global Ap-
proach 1, 2, and 3), and many different parameter settings simultaneously, it
is likely that a few p-values are small merely due to stochastic fluctuations and
not due to systematic difference between MCI patients and control subjects;
as a consequence, the p-values need to be appropriately corrected. One may
try to control the probability that a false positive occurs by applying Bon-
ferroni post-correction (Bonferroni, 1936). Since we are dealing with many
different simultaneous tests (1270 tests in total), it is more natural to try
to control the false discovery rate: the fraction of supposedly positive results
that are in fact negative (Benjamini and Hochberg, 1995). In other words,
instead of controlling the absolute number of false positives (which would be
very conservative in our problem setting, see, e.g., (Benjamini and Hochberg,
1995; Storey, 2002; Vialatte and Cichocki, 2008)), we will bound the frac-
tion of false positives within the supposedly positive results. The method of
Benjamini-Hochberg (Benjamini and Hochberg, 1995) has recently be refined
by Storey (Storey, 2002); the latter method is more powerful, however, it is
not suitable for a small number of comparisons.

We consider two different schemes for statistical post-correction:

(1) We apply the Storey method (Storey, 2002) to all 1270 comparisons si-
multaneously, that is all synchrony measures, the different approaches to
compute those measures (Local Approach 1 and 2, Global Approach 1,
2 and 3), and their parameter settings. We retain the smallest p-value
for each synchrony measure, and as a result, we obtain one (corrected)
p-value for each synchrony measure.

(2) We apply a two-step procedure: first we correct for the multiple ap-
proaches to compute each synchrony measure (Local Approach 1 and
2, Global Approach 1, 2 and 3) and the multiple corresponding param-
eter settings, then we correct for the multiple synchrony measures. In
the first step, we treat each synchrony method separately, and apply the
Benjamini-Hochberg method (Benjamini and Hochberg, 1995) to the p-
values for different parameter settings and computational approaches (Lo-
cal Approach 1 and 2, Global Approach 1, 2 and 3). For each synchrony
measure, we retain the smallest corrected p-value among the different
parameter settings and computational approaches. As a result, we obtain
one (corrected) p-value for each synchrony measure. Those p-values are
further corrected in a second step by means of the Storey method (Storey,
2002); that correction accounts for the multiple synchrony measures.
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In the first step of the latter scheme, we do not apply the Storey method
since for some synchrony measures, there are only few different parameter
settings; the Benjamini-Hochberg method (Benjamini and Hochberg, 1995) is
then more accurate.

Interestingly, as we will show later on, both statistical post-correction schemes
lead to the same positive results. More details can be found in the Supple-
mentary Material.

In addition to the tests of statistical significance, we investigate whether loss
of EEG synchrony allows us to separate MCI patients from age-matched con-
trol subjects. Using the synchrony measures that yield statistically significant
differences, we conduct linear and quadratic discriminant analysis with leave-
one-out crossvalidation (Duda et al., 1992).

3.3 Results and Discussion

We observed that most synchrony measures indicate decreased EEG synchrony
in MCI patients. However, for only two measures, this effect is statistically
significant. In the following we provide more detailed numerical results. Ta-
bles 1 to 3 show the sensitivity of the synchrony measures for detecting loss in
EEG synchrony: they contain (uncorrected) p-values obtained by the Mann-
Whitney test. We also indicate in those tables which synchrony measures
yield significant differences after post-correction (cf. Section 3.2.5). In addi-
tion, we list (in brackets) the corrected p-values obtained through statistical
post-correction scheme 1 (cf. Section 3.2.5). The results of statistical post-
correction scheme 2 can be found in the Supplementary Material. Note that
Tables 1 to 3 contain the corrected p-values for the individual computational
approaches (Local/Global Approach 1 to 3); in the Supplementary Material,
we list the smallest corrected p-values among the different computational ap-
proaches, we do not list corrected p-values for the different computational
approaches separately.

Table 1 contains results for Local Approach 1 and Global Approach 1. Since in
both approaches, the synchrony methods are applied to the same signals, i.e.,
the 5 local averages (cf. Fig. 4), differences in p-values are due to the measures
themselves, and not to differences in preprocessing. As we pointed out earlier,
for certain synchrony methods, alternative preprocessing techniques may be
more adequate. Therefore we consider alternative preprocessing methods for
local and global measures, i.e., Local Approach 2 and Global Approach 2
and 3 respectively (cf. Section 3.2.4). Results for Local Approach 2 and Global
Approach 2 and 3 are presented in Table 2 and 3 respectively.

From Table 1 to 3, it becomes clear that several measures yield significant
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results on the p = 0.05 level (without post-correction): correlation coefficient,
magnitude coherence, phase coherence, corr-entropy, ffDTF, dDTF, Nk, Hk,
Instantaneous Period, GFS, S-estimator, st, and ρ. Most of those measures,
however, do not remain significant after statistical post-correction (see Supple-
mentary Material); only two measures remain significant (with false discovery
rate ≤ 5%) after correcting for the large number of measures and parameter
settings: full-frequency DTF (ffDTF) and ρ.

Table 4 shows our results for discriminant analysis (DA) with as features full-
frequency DTF (ffDTF) and ρ, the two synchrony measures that yield the most
statistically significant differences; we analyzed those two measures separately
and jointly, and applied linear as well as quadratic discriminant analysis (with
diagonal covariance matrix estimates) (Duda et al., 1992). The classification
rates are obtained through leave-one-out crossvalidation (Duda et al., 1992).
From Table 4 we can see that the combination of full-frequency DTF and ρ
is to some extent able to discriminate MCI patients from control subjects;
this is illustrated in Fig. 5, for one particular parameter setting and classifier.
Since the classifiers in linear/quadratic discriminant analysis depend on few
parameters and the input space is only two-dimensional, it is not implausible
that the classification results generalize to other data sets. In other words,
this study seems to suggest that MCI-induced loss of EEG synchrony can be
detected, as was reported earlier in the literature. We will expand on this issue
in the following section.

As we pointed out earlier, the results we have presented so far are obtained
after bandpass filtering the EEG signals in the frequency range 4–30Hz (see
Section 3.1). However, we have also considered several components within
that frequency range: 4–8Hz (theta), 8–10Hz (alpha 1), 10–12Hz (alpha 2),
and 12–30Hz (beta). We did not observe any consistent and significant MCI
induced perturbation in EEG synchrony for those narrower frequency bands
(not shown here). Note also that by analyzing separate frequency bands, we
introduce more degrees of freedom to the analysis; as a result, statistical post-
correction becomes more severe, and positive results may vanish after post-
correction. For those reasons and for the sake of conciseness, we decided not
to include results for individual frequency components in this report; we limit
ourselves here to the frequency range 4–30Hz.

Although the classification results of Table 4 are promising, the separation is
not sufficiently strong to yield reliable early prediction of AD. For this purpose,
the two features (ffDTF and ρ) need to be combined with complementary
features of the EEG (e.g., spectral properties of the EEG, affected through
the slowing effect of AD on EEG), or perhaps from different modalities such as
PET, MRI, DTI, or biochemical indicators. On the other hand, we remind the
reader of the fact that in the data set at hand, patients did not carry out any
specific task; moreover, the recordings were short (only 20s). It is plausible that
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Measure Correlation Coherence Phase Coherence Corr-entropy Wave-entropy

p-value 0.025
∗ (0.059) 0.029

∗ (0.064) 0.041
∗ (0.077) 0.032

∗ (0.067) 0.096 (0.11)

References (Nunez & Srinivasan, 2006) (Gunduz and Principe, 2009)

Measure MVAR coherence Partial Coherence PDC DTF ffDTF dDTF

p-value 0.15 (0.13) 0.16 (0.14) 0.60 (0.32) 0.29 (0.19) 0.0012
∗∗† (0.0098∗) 0.029

∗ (0.064)

References (Kamiński et al., 2005)

Measure Kullback-Leibler Rényi Jensen-Shannon Jensen-Rényi IW I

p-value 0.065 (0.096) 0.067 (0.096) 0.069 (0.096) 0.074 (0.097) 0.052 (0.088) 0.060 (0.094)

References (Aviyente, 2005a) (Kraskov et al., 2004)

Measure Nk Sk Hk S-estimator Omega complexity

p-value 0.029
∗ (0.064) 0.045

∗ (0.080) 0.052 (0.088) 0.042
∗ (0.077) 0.079 (0.10)

References (Quiroga et al., 2002) (Carmeli et al., 2005) (Saito et al., 1998)

Measure Hilbert Phase Wavelet Phase Evolution Map Instantaneous Period GFS

p-value 0.96 (0.42) 0.082 (0.10) 0.64 (0.33) 0.73 (0.36) 0.031
∗ (0.066)

References (Lachaux et al., 1999) (Rosenblum et al., 2002) (Koenig et al., 2001)

Measure st ρ

p-value 0.012
∗ (0.040∗) 0.00044

∗∗ (0.037∗)

References (Dauwels et al., 2007)

Table 1
Sensitivity of average synchrony for prediction of MCI, following Local and Global
Approach 1: uncorrected p-values for Mann-Whitney test; * and ** indicate p < 0.05
and p < 0.005 respectively; † indicates p-values that remain significant after post-
correction. The corrected p-values (from post-correction method 1) are reported in
brackets. Since Local and Global Approach 1 are based on the same 5 local averages,
the p-values are directly comparable.

the sensitivity of EEG synchrony could be further improved by increasing the
length of the recordings and by recording the EEG before, while, and after
patients carry out specific tasks, e.g., working memory tasks. On the other
hand, the present method might be applied to screen a population for AD,
since it only requires an EEG recording system, which is a relatively simple and
low-cost technology, at present available in most hospitals. Moreover, recently
developed portable and wireless EEG systems make it possible to record EEG
on virtually any location (see, e.g., (Jun et al., 2005; Carmo et al., 2006)).
Alternative imaging technologies such as MRI and DTI are far less flexible in
terms of mobility, and they are vastly more expensive.

In order to gain more insight in the relation between the different synchrony
measures, we calculated the correlation between those measures (see Fig. 6).
We calculated the correlation coefficient between all pairs of synchrony mea-
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Measure Correlation Coherence Phase Coherence Nk Sk Hk

p-value 0.018
∗ (0.052) 0.062 (0.094) 0.61 (0.32) 0.054 (0.090) 0.019

∗ (0.054) 0.15 (0.13)

Measure Hilbert Phase Evolution Map Instantaneous Period Corr-entropy st ρ

p-value 0.15 (0.13) 0.072 (0.096) 0.020
∗ (0.054) 0.036

∗ (0.071) 0.0065
∗ (0.027∗) 0.00012

∗∗† (0.005∗∗)

Table 2
Sensitivity of average synchrony for prediction of MCI, following Local Approach 2:
uncorrected p-values for Mann-Whitney test; * and ** indicate p < 0.05 and
p < 0.005 respectively, and † indicates p-values that remain significant after post-
correction. The corrected p-values (from post-correction method 1) are reported in
brackets.

Global Approach 2 Global Approach 3

GFS 0.36 (0.22) 0.17 (0.14)

Omega complexity 0.47 (0.27) 0.46 (0.26)

S-estimator 0.36 (0.22) 0.33 (0.21)

Table 3
Sensitivity of average synchrony for prediction of MCI, following Global Approach 2
and 3: uncorrected p-values for Mann-Whitney test. The corrected p-values (from
post-correction method 1) are reported in brackets.

Linear DA Quadratic DA

ffDTF 70.0% 70.0%

ρ 68.3% 75%

ffDTF and ρ 83.3% 83.3%

Table 4
Classification rates for discriminant analysis (DA) of full-frequency DTF and ρ,
determined through leave-one-out crossvalidation.

sures:

rij =
1

Nsubject

Nsubject
∑

k=1

(mi(k) − m̄i)

σi

(mj(k) − m̄j)

σj
, (42)

where mi(k) and mj(k) is the average value of measure i and j respectively for
subject k, the sum is computed over all 60 subjects (Nsubject = 60), and m̄i, m̄j ,
σi, and σj are the mean and standard deviation of mi and mj respectively, also
computed over all subjects. A similar study has been carried out in (Jellens
et al., 2008) for a few synchrony measures. From Fig. 6, it becomes strikingly
clear that the majority of measures are strongly correlated (or anti-correlated)
with each other. In other words, the measures can easily be classified in dif-
ferent families. More concretely, one can distinguish the following 9 families
of measures:
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(1) correlation coefficient, cross-entropy, wav-entropy, state-space measures
(Nk, Hk, Sk, Ω, S-estimator), mutual information (in time and frequency
domain), divergence measures, MVAR coherence, Hilbert and wavelet
phase,

(2) GFS,
(3) phase coherence,
(4) EMA and IPA (phase measures),
(5) partial coherence (PC) and direct DTF (Granger),
(6) PDC and DTF (Granger),
(7) full frequency DTF (Granger),
(8) st (SES),
(9) ρ (SES).

Interestingly, the first family contains the correlation coefficient; all measures
from that family are strongly correlated (or anti-correlated) with the cor-
relation measure, and therefore, provide little additional information about
synchrony, at least for the EEG data set at hand. Measures that are only
weakly correlated with the correlation coefficient include the phase synchrony
indices, Granger causality measures, and stochastic event synchrony measures.
Interestingly, those three families of synchrony measures are mutually uncor-
related, and as a consequence, they each seem to capture a specific kind of
interdependence. Moreover, most Granger measures seem to be largely mutu-
ally uncorrelated, the same holds for the SES parameters st and ρ, and some
phase synchrony measures.

In parallel work, Jellens et al. applied the correlation coefficient and the cor-
relation dimension D2 (Grassberger and Procaccia, 1983) to EEG of mild to
moderate AD patients and control subjects, and observed that both measures
are strongly correlated (Jellens et al., 2008). The correlation dimension D2 is
a state space measure similar to the Sk, Hk, and Nk indices (Grassberger and
Procaccia, 1983).

Fig. 6 seems also to suggest that in order to quantify EEG synchrony, it is
not necessary to apply the whole set of synchrony measures considered in
this paper. Instead it may suffice to evaluate only a few measures from each
of the families, i.e., correlation coefficient, phase synchrony indices, Granger
measures, and SES.

4 Conclusions

A variety of studies have investigated the effect of Alzheimer’s disease on EEG
synchrony. However, it is not always obvious how to compare those studies to
our work:
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• Several synchrony measures considered in this study have not been applied
before to MCI or AD data,

• In some studies the EEG was recorded under different conditions, e.g., dur-
ing working memory tasks instead of resting condition,

• Some studies consider different subject groups, for example, probable-MCI
patients that do not necessarily evolve towards AD.

We first briefly comment on studies that are related but not directly compara-
ble to our work. In some studies that investigate working memory tasks (Jiang,
2005a,b; Jiang & Zheng, 2006) or probable-MCI subjects (Rossini et al., 2006),
an increase of EEG synchrony was observed. This inverse effect is often in-
terpreted as the result of a compensatory mechanism in the brain. In those
studies, one applied magnitude coherence (cf. Section 2.2) as a measure for
EEG synchrony. A similar effect was observed in (Pijnenburg et al., 2004) by
means of the synchronization likelihood measure, which is state-space based
measure similar to the indices Sk, Hk, and Nk. In particular, in that study,
one observed an increase of EEG synchrony during working memory task, but
there was no significant effect in rest condition. We remind the reader of the
fact that the data we investigated in this report were gathered in resting state,
therefore, we could not study this inverse effect of increased EEG synchrony.

Now we proceed to studies that exclusively deal with subjects in resting con-
dition. In most of those studies, brain dynamics in AD and MCI patients were
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Fig. 6. Correlation between the synchrony measures (red and blue indicate strong
correlation and anti-correlation respectively; Local and Global Approach 1).

mainly investigated using coherence (cf. Section 2.2) or state space based mea-
sures of synchrony (cf. Section 2.8). We provide a concise overview of existing
studies and discuss them in the light of our own results:

• A large number of studies have reported a decrease in magnitude and phase
coherence in the EEG of MCI and AD patients (Stevens et al., 2001; Brassen
et al., 2004; Locatelli et al., 1998; Wada et al., 1998; Hogan et al., 2003;
Anghinah et al., 2000; Besthorn et al., 1994; Hidasi et al., 2007; Jellens et
al., 2008; Stam, 2007; Güntekin et al., 2008). In (Brassen et al., 2004) those
measures allowed to separate depressed MCI patients from control subjects.
In some other studies, however, no effects on coherence were observed, nei-
ther between AD and controls (Stam et al., 2002, 2003) nor between MCI
and controls (Jiang, 2005a). We observed a weak decrease in magnitude
coherence (p = 0.029; uncorrected) and phase coherence (p = 0.041; uncor-
rected).

• Koenig et al. (Koenig et al., 2005) observed a general decrease of GFS (cf.
Section 2.7) in correlation with cognitive decline and AD. In our study,
GFS was lower for MCI patients, but this effect was not significant after
statistical post-correction (p = 0.031; uncorrected). Recently, a decrease in
phase synchrony has been reported in EEG of patients with mild AD (resting
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condition), using three different measures: phase coherence, phase lag index
(PLI), and imaginary component of coherence (Stam, 2007). Besides GFS,
we analyzed five alternative phase synchrony measures: Hilbert and wavelet
based phase synchrony, phase coherence, evolution map approach (EMA),
and instantaneous period approach (IPA). The p-value of the latter is low
(p = 0.020; uncorrected), in agreement with the results of (Koenig et al.,
2005), but this effect is non-significant after statistical post-correction.

• In a recent study, the state space based measure Hk decreased significantly
in MCI and AD patients (Kramer et al., 2007), however, the measure Sk

did not decrease. Unfortunately, the measure Nk was not investigated in
that study. Synchronization likelihood (Stam et al., 2002), a state space
based synchronization measure similar to the non-linear interdependence
measures Sk, Hk, and Nk (cf. Section 2.8), is believed to be more sensitive
than coherence to detect changes in AD patients (Stam et al., 2003). Using
state space based synchrony methods, significant loss of EEG synchrony
was found in MCI (Stam et al., 2003) and AD patients (Jeong, 2004; Stam
et al., 2003, 2005; Babiloni et al., 2006; Pijnenburg et al., 2004; Yagyu et
al., 1997; Wan et al., 2008), which evolved consistently from MCI to AD
stage (Stam et al., 2003). We report here a low (uncorrected) p-value for the
indices Nk (p = 0.029; uncorrected) and Sk (p = 0.019; uncorrected), and
the S-estimator (p = 0.042; uncorrected); however, after post-correction,
those effects are not statistically significant. Omega complexity was found
to be greater in patients with mild AD, which corresponds to decreased
synchronization (Yoshimura et al., 2004). We also observed that effect in
our data, but it was weak (p = 0.079; uncorrected).

In summary, it is not always straightforward to compare our results with pre-
vious reports due to significant differences in methodology and to inconsisten-
cies caused by statistical fluctuations. Nevertheless, our results are generally
consistent with most studies on the loss of average EEG synchrony in rest con-
dition of MCI and AD patients. This decrease in synchrony is often attributed
to a functional disconnection of the neocortex. If the decrease of EEG coher-
ence were simply due to a loss of cortical neurons, it would be difficult to
explain why all frequencies are not equally affected (Stam et al., 2003). As a
consequence, it is likely that the loss in EEG synchrony may be due to other
mechanisms. For example it may result from both anatomical disconnections
among different cortical regions and reduced cholinergic coupling interactions
between cortical neurons (Jeong et al., 2001). In particular, a common hypoth-
esis, proposed about three decades ago, is that basal forebrain neurons may
be severely affected in AD and result in a cerebral cholinergic deficit, underly-
ing memory loss and other cognitive symptoms (Jeong et al., 2001). In other
words, our report supports the view that the cognitive disturbances associated
with AD may not solely be due to the loss of neurons, but also due to impair-
ments in the temporal coordination of distributed neuronal activity (Uhlhaas
& Singer, 2006).
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Our report also adds an interesting new element to these theories. The main
effect observed in our study is a significantly higher degree of local asyn-
chronous activity (quantified by ρ), more specifically, a high number of non-
coincident, asynchronous oscillatory events (p = 0.00012; uncorrected, sig-
nificant after post-correction). Interestingly, we did not observe a significant
effect on the timing jitter variance st of the coincident, synchronous events.
As a consequence, our results seem to indicate that there is significantly more
non-coincident background activity, while the coincident activity remains well
synchronized. On the one hand, this observation is in agreement with previ-
ous studies that report a general decrease of neural synchrony in MCI and AD
patients; on the other hand, it goes beyond previous results, since it yields a
more subtle description of EEG synchrony in MCI and AD patients. It shows
that the loss of coherence is mostly due to an increase of (local) non-coincident
background activity, whereas the locked (coincident) activity remains equally
well synchronized. The interpretation of this effect, in regard to neurobiologi-
cal theories of AD, needs further analysis, and will be the object of our future
reports.

Interestingly, the observed MCI-induced increase in ρ allows us to discriminate
MCI patients from age-matched control subjects, especially in conjunction
with the observed decrease of ffDTF (cf. Table 4). The obtained classification
rates are probably robust to overfitting, since (i) they were computed through
leave-one-out crossvalidation; (ii) only two features are used; (iii) the classi-
fiers are simple and depend only on a few parameters. It is hard to compare
this result to existing studies: In the literature, one most often reports re-
sults obtained on the training set, without any crossvalidation; those results
are most likely over-optimistic. Moreover, the few reported results obtained
through crossvalidation are typically based on five or more features and use
more complicated classifiers; those classification results are typically in the
range of 80–90%, but they are probably more prone to overfitting than our
results.

At last, we would like to make a critical remark regarding EEG synchrony. It is
important to realize that EEG synchrony values may be significantly affected
by brain events other than changes of synchrony, and by choices (like the ref-
erence electrode) that necessarily have to be made during the analysis. The
scalp EEG signals that are being analyzed depend on the reference, and the
synchrony of two signals may thus equally depend on the choice of reference.
In this particular study, we compare the EEG synchrony of two different pop-
ulations. We are not interested in the absolute values of EEG synchrony, but
in differences between the two populations instead. Since we used the same
reference electrodes for all subjects, it is less probable that difference in EEG
synchrony are related to the choice of the reference electrode.
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Furthermore, as a single active source in the brain may affect the EEG signals
across the entire scalp, changes in synchrony, and especially simultaneity of
some events across channels, may be observed when the activity of one source
alone changes, which is remote from a change in neural synchrony. Therefore,
the effects we observed in MCI patients concerning EEG synchrony may per-
haps be described and explained in terms of the activity and distribution of
equivalent brain sources. It might be that in MCI subjects, there are generally
fewer active (equivalent) brain sources, or perhaps the activity level of those
sources is lower, which indirectly can be observed as loss of EEG synchrony.

Obviously, the problem that measures of EEG synchrony and connectivity are
often confounded by effects other than synchrony of brain activity is a general
one, and solving this problem clearly goes beyond the scope of this paper. Here,
we merely wish to underline that those issues need to be carefully taken into
account when formulating and verifying theories that try to explain the loss
in EEG synchrony in MCI patients. As a result, relating those perturbations
in EEG synchrony to biophysical processes, which is a crucial step towards
a deeper understanding of MCI and the development of potential therapies,
may prove to be more challenging than commonly believed.
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A Background information on SES

We provide here more information on the SES method outlined in Section 2.10.

We successively apply the following transformations to the EEG signals:

(1) wavelet transform,
(2) normalization of the wavelet coefficients,
(3) bump modeling of the normalized wavelet representation,
(4) aggregation of the resulting bump models in several regions,
(5) computation of the SES parameters for each pair of aggregated bump

models.

In the following, we elaborate on each of those five operations.

A.1 Wavelet Transform

In order to extract the oscillatory patterns in the EEG, we apply a wavelet
transform. More specifically, we use the complex Morlet wavelets (Goupillaud
et al., 1984; Delprat et al., 1992):

ψ(t) = A exp
(

− t2/2σ2
0

)

exp(2iπf0t), (A.1)

where t is time, f0 is frequency, σ0 is a (positive) real parameter, and A is
a (positive) normalization factor. The Morlet wavelet (A.1) has proven to be
well suited for the time-frequency analysis of EEG (Tallon-Baudry et al., 1996;
Herrmann et al., 2005). The product w0 = 2πf0 · σ0 determines the number
of periods in the wavelet (“wavenumber”). This number should be sufficiently
large (≥ 5), otherwise the wavelet ψ(t) does not fulfill the admissibility con-
dition:

∫ |ψ(t)|2
t

dt <∞, (A.2)

and as a result, the temporal localization of the wavelet becomes unsatis-
factory (Goupillaud et al., 1984; Delprat et al., 1992). In the present study,
we choose a wavenumber w0 = 7, as in earlier studies (Tallon-Baudry et al.,
1996; Vialatte et al., 2007); this choice yields good temporal resolution in the
frequency range considered in this study.

The wavelet transform x(t, s) of an EEG signal x(t) is obtained as:

x(t, s) =
K
∑

t′=1

x(t′)ψ∗

(

t′ − t

s

)

, (A.3)
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where ψ(t) is the Morlet “mother” wavelet (A.1), s is a scaling factor, and
K = fsT , with fs the sampling frequency and T the length of the signal.
For the EEG data at hand, we have T = 20s and fs = 200Hz and hence
K = 4000. The scaled and shifted “daughter” wavelet in (A.3) has center
frequency f = f0/s. In the following, we will use the notation x(t, f) instead
of x(t, s).

Next we compute the squared magnitude s(t, f) of the coefficients x(t, f):

s(t, f) = |x(t, f)|2. (A.4)

Intuitively speaking, the time-frequency coefficients s(t, f) represents the en-
ergy of oscillatory components with frequency f at time instances t. It is
noteworthy that s(t, f) contains no information about the phase of that com-
ponent.

It is well known that EEG signals have very non-flat spectra with an overall
1/f shape, besides state-dependent peaks at specific frequencies. Therefore,
the map s(t, f) contains most energy at low frequencies f . If we directly apply
bump modeling to the map s(t, f), most bumps would be located in the low-
frequency range, in other words, the high-frequency range would be under-
represented. Since relevant information might be contained at high frequency,
we normalize the map s(t, f) before extracting the bump models.

A.2 Normalization

The normalized coefficients s(t, f) are obtained as:

z̃(t, f) =
s(t, f) −ms(f)

σs(f)
, (A.5)

where ms(f) is obtained by averaging s(t, f) over the whole length of the EEG
signal:

ms(f) =
1

K

K
∑

t=1

s(t, f). (A.6)

Likewise, σ2
s (f) is the variance of s(t, f):

σ2
s (f) =

1

K

K
∑

t=1

(

s(t, f) −ms(f)
)2
. (A.7)

In words: the normalized coefficients z̃(t, f) encode fluctuations from the base-
line EEG power at time t and frequency f . The normalization (A.5) is known
as z-score (see, e.g., (Buzsáki, 2006)), and is commonly applied (Matthew et
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al., 2002; Vialatte et al., 2007). The coefficients z̃(t, f) are positive when the
activity at t and f is stronger than the baseline ms(f) and negative otherwise.

There are various approaches to apply bump modeling to the z-score z̃(t, f).
One may first set the negative coefficients to zero, and next apply bump mod-
eling. The bump models in that case represent peak activity. Alternatively,
one may first set the positive coefficients equal to zero, reverse the sign of the
negative coefficients, and then apply bump modeling. In that case, the bump
models represent dips in the energy maps s(t, f).

In the present application of diagnosing MCI, we will follow yet another ap-
proach. In order to extract bump models, we wish to exploit as much informa-
tion as possible from the z̃ maps. Therefore we will set only a small fraction
of the coefficients z̃(t, f) equal to zero, i.e., the 1% smallest coefficients. This
approach was also followed in (Vialatte et al., 2007), and is equivalent to the
following transformation: we shift the coefficients (A.5) in the positive direc-
tion by adding a constant α, the remaining negative coefficients are set to
zero:

z(t, f) =
⌈

z̃(t, f) + α
⌉+

=









s(t, f) −ms(f)

σs(f)
+ α









+

, (A.8)

where ⌈x⌉+ = x if x ≥ 0 and ⌈x⌉+ = 0 otherwise. The constant α is chosen such
that only 1% of the coefficients remains negative after addition with α; this
corresponds to α = 3.5 in the present application. (In the study of (Vialatte et
al., 2007), it corresponds to α = 2.) The top row of Fig. 2 shows the normalized
wavelet map z (A.8) of two EEG signals.

A.3 Bump Modeling

Next, bump models are extracted from the coefficient maps z (see Fig. 2
and (Vialatte et al., 2007, 2009b)). We approximate the map z(t, f) as a
sum zbump(t, f, θ) of a “small” number of smooth basis functions or “bumps”
(denoted by fbump):

z(t, f) ≈ zbump(t, f, θ) =
Nb
∑

k=1

fbump(t, f, θk), (A.9)

where θk are vectors of bump parameters and θ = (θ1, θ2, . . . , θNb
). The sparse

bump approximation zbump(t, f, θ) represents regions in the time-frequency
plane where the EEG contains more power than the baseline; in other words,
it captures the most significant oscillatory activities in the EEG signal.

We choose half-ellipsoid bumps since they are well suited for our purposes (Vialatte,
2005; Vialatte et al., 2007) (see Fig. A.1). Since we wish to keep the number
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(a) Bump parameters: time t and fre-
quency f , width ∆t and height ∆f , and am-
plitude w.

(b) Learning the bump parameters by min-
imizing the quadratic cost function (A.10);
Top (left and right): a given patch of the
time-frequency map. Bottom left: initial
bump; Bottom right: bump obtained after
adaptation.

Fig. A.1. Half ellipsoid bump.

of bump parameters as low as possible, the principal axes of the half ellip-
soid bumps are restricted to be parallel to the time-frequency axes. As a
result, each bump is described by five parameters (see Fig. 1(a)): the coor-
dinates of its center (i.e., time tk and frequency fk), its amplitude wk > 0,
and the extension ∆tk and ∆fk in time and frequency respectively, in other
words, θk = (tk, fk, wk,∆tk,∆fk). More precisely, the ellipsoid bump function
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fbump(t, f, θk) is defined as:

fbump(t, f, θk) =







wk

√

1 − κ(t, f, θk) for 0 ≤ κ(t, f, θk) ≤ 1

0 for κ(t, f, θk) > 1,
(A.10)

where

κ(t, f, θk) =
(t− tk)

2

(∆tk)2
+

(f − fk)
2

(∆fk)2
. (A.11)

For the EEG data described in Section 3.1, the number of bumps Nb (cf. (A.9))
is typically between 50 and 100, and therefore, zbump(t, f, θ) is fully specified by
a few hundred parameters. On the other hand, the time-frequency map z(t, f)
consists of between 104 and 105 coefficients; the bump model zbump(t, f, θ) is
thus a sparse (but approximate) representation of z(t, f).

The bump model zbump(t, f, θ) is extracted from z(t, f) by the following algo-
rithm (Vialatte, 2005; Vialatte et al., 2007, 2009b):

(1) Define appropriate boundaries for the map z(t, f) in order to avoid finite-
size effects.

(2) Partition the map z(t, f) into small zones. The size of these zones depends
on the time-frequency ratio of the wavelets, and are optimized to model
oscillatory activities lasting 4 to 5 oscillation periods. Larger oscillatory
patterns are modeled by multiple bumps.

(3) Find the zone Z that contains the most energy.
(4) Adapt a bump to that zone; the bump parameters are determined by

minimizing the quadratic cost function (see Fig. 1(b)):

E(θk) =
∑

t,f∈Z

(

z(t, f) − fbump(t, f, θk)
)2
. (A.12)

Next withdraw the bump from the original map.
(5) The fraction of total intensity contained in that bump is computed:

F =

∑

t,f∈Z fbump(t, f, θk)
∑

t,f∈Z z(t, f)
. (A.13)

If F < G for three consecutive bumps (and hence those bumps contain
only a small fraction of the energy of map z(t, f)), stop modeling and
proceed to (6), otherwise iterate (3).

(6) After all signals have been modeled, define a threshold T ≥ G, and remove
the bumps for which F < T . This allows us to trade off the information
loss and modeling of background noise: when too few bumps are gener-
ated, information about the oscillatory activity of the brain is lost. On the
other hand, if too many bumps are generated, the bump model also con-
tains low-amplitude oscillatory components; since the measurement pro-
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cess typically introduces a substantial amount of noise, it is likely that
the low-amplitude oscillatory components do not stem from organized
brain oscillations but are instead due measurement noise. By adjusting
the threshold T , we try to find an appropriate number of bumps.

We used a threshold G = 0.05. With this threshold, each bump model contains
many bumps, and some of those bumps may actually model background noise.
Therefore, we further pruned the bump models (cf. Step 6); we consider values
of T .

We refer to (Vialatte, 2005; Vialatte et al., 2007, 2009b) for more information
on bump modeling. In particular, we used the same choice of boundaries (Step
1) and partitions (Step 2) as in those references.

Eventually, we obtain 21 bump models, i.e., one per EEG channel.

A.4 Aggregation

As a next step, we group the 21 electrodes into 5 regions, as illustrated
in Fig. 4. From the 21 bump models obtained by sparsification (cf. Sec-
tion A.3), we extract a single bump model for each of the zones by means
of the aggregation algorithm described in (Vialatte et al., 2007, 2009b).

A.5 Stochastic Event Synchrony

We compute the SES parameters ρ, δt, δf , st and sf , for all pairs of regions.
In addition, in order to obtain measures for average synchrony, we average
the SES parameters over all region pairs, resulting in one set of average SES
parameters per subject.

We now briefly describe how we compute the SES parameters; we refer to (Dauwels
et al., 2007, 2009a,b) for more details. The alignment of the two time-frequency
maps (cf. Fig. 3, bottom) is cast as a statistical inference problem. The asso-
ciated probabilistic model depends on the SES parameters θ = (δt, δf , st, sf)
besides the following two kinds of latent variables: (i) binary variables Ckk′,
associated to each pair of events, where Ckk′ = 1 indicates that event Ek of
the first time-frequency map is coincident with event E ′

k′ in the other time-
frequency map, and where Ckk′ = 0 otherwise; (ii) binary variables Bk which
indicate whether the events Ek is coincident or not; likewise, binary variables
B′

k′ for the events E ′
k′. Note that one can straightforwardly infer ρ from B and
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B′. The latent-variable model is of the form:

p(e, e′, b, b′, c, θ) ∝
n
∏

k=1

(βδ[bk − 1] + δ[bk])
n′
∏

k′=1

(βδ[b′k − 1] + δ[b′k])

·
n
∏

k=1

n′
∏

k′=1

(

N (t′k′ − tk; δt, st)N (f ′
k′ − fk; δf , sf)

)ckk′

·
n
∏

k=1

(

δ[bk +
n′
∑

k′=1

ckk′ − 1]
)

n′
∏

k′=1

(

δ[b′k′ +
n
∑

k=1

ckk′ − 1]
)

· p(δt)p
(

st

)

p(δf )p
(

sf

)

, (A.14)

where β is a constant that serves as a knob to control the number of non-
coincident events, n and n′ is the total number of events in the two time-
frequency maps, and N (x;m, s) stands for a univariate Gaussian distribution
with mean m and variance s (Dauwels et al., 2007, 2009a,b). For convenience,
we choose improper priors p(δt) = p(δf) = p(st) = p(sf) = 1.

The SES parameters θ = (δt, δf , st, sf) and the latent variables C,B and B′

are determined jointly by maximum a posteriori estimation (MAP) estima-
tion. This may practically be carried out by cyclic maximization (Dauwels et
al., 2007, 2009a,b): for fixed θ, one maximizes log p (cf. (A.14)) w.r.t. C,B and
B′ and vice versa; those two steps are iterated until convergence. Conditional
maximization w.r.t. θ is straightforward, and the conditional maximization
w.r.t. C,B and B′ is equivalent to a well-known problem in combinatorial
optimization, i.e., bipartite max-weight matching. We solve that problem by
applying the max-product algorithm on a graphical model corresponding to
the latent-variable probabilistic model (A.14) (see Fig. A.2) (Dauwels et al.,
2007, 2009a,b). The edges correspond to variables, the nodes corresponds to
factors in (A.14). The nodes N corresponds to the Gaussian distributions

in (A.14), the nodes denoted by Σ̄ represent the factors
(

δ[bk +
∑n′

k′=1 ckk′ −1]
)

(blue) and
(

δ[b′k′+
∑n

k=1 ckk′−1]
)

(red), and the nodes denoted by β correspond

to the factors (βδ[bk−1]+δ[bk]) and (βδ[b′k−1]+δ[b′k]). The arrows in Fig. A.2
depict “messages”, which are probabilistic information about which pairs of
events are coincident and which not. The messages are iteratively computed
at each node according to the max-product computation rules (Loeliger et al.,
2007). Intuitively, the nodes may be viewed as computing elements that itera-
tively update their opinion about which events match and which do not, based
on the opinions (“messages”) they receive from neighboring nodes. When the
algorithm eventually has converged and the nodes have found a “consensus”,
the messages are combined to obtain a decision on C,B and B′, and an esti-
mate of ρ and the other SES parameters. We refer to (Dauwels et al., 2007,
2009a,b) for a detailed description of the algorithm.
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Fig. A.2. Max-product message passing; the arrows indicate the max-product mes-
sages, computed according to the max-product update rule.
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B Parameter Settings for the Different Synchrony Measures

Many of the synchrony measures considered in this paper depend on one or
more parameters, as pointed out in Section 3.2.5:

• We applied the stationary synchrony methods to EEG segments of length
L = 1s, 5s, and 20s (see Section 3.2.4).

• For mutual information I (time domain) and the state space based measures
Sk, Hk, Nk, and Sest, the embedding dimension m and the time lag τ need
to be chosen. In our experiments, we tested the values m = 1, 2,. . . , 5; the
time delay was each time set to τ = 1/30s, which is the period of the fastest
oscillations in the EEG signals at hand.

• In order to compute MVAR coherence and Granger causality measures, one
needs to specify the order p of the MVAR model (10). Since it is not obvious
which model order amounts to the best performance for diagnosing MCI,
we have tried a range of model orders, i.e., p = 1, 2, . . . , 10.

• The Rényi and Jensen-Rényi divergence depend on the order parameter α.
We computed the Rényi divergence with order parameter α = 0.1, 0.2, . . . ,
1 and the Jensen-Rényi divergence for α = 1, 2, . . . , 10.

• We choose the parameters of the SES algorithm as follows. Since we are deal-
ing with spontaneous EEG, it is unlikely that the EEG signals from certain
channels are delayed w.r.t. other channels; moreover, systematic frequency
offsets are unrealistic. Therefore, we choose the initialization δ̂

(0)
t = 0 = δ̂

(0)
f

(in Local Approach 1 and 2). In Local Approach 1 we investigated the pa-

rameter settings σ̂
(0)
t =

√

ŝ
(0)
t = 0.1, 0.15, 0.2, 0.25, σ̂

(0)
f =

√

ŝ
(0)
f = 0.05, 0.1,

0.15, 0.2, β = 0.01, 0.001, and T = 0.74, 0.76, . . . , 0.88; in Local Approach

2 we considered the parameter settings σ̂
(0)
t =

√

ŝ
(0)
t = 0.15, 0.175,. . . , 0.25,

σ̂
(0)
f =

√

ŝ
(0)
f = 0.025, 0.050,. . . , 0.15, β = 0.01, 0.001, and T = 0.2, 0.21,

. . . , 0.25.

We list the parameter settings that yield the smallest (uncorrected) p-values.
We first consider Local and Global Approach 1:

• Table B.1 to B.3 list the values of L that amounted to the strongest differ-
ence in (average) EEG synchrony between MCI patients and control sub-
jects, referred to as “optimal” length L. In particular, Table B.1 concerns the
state space based measures Sk, Hk, Nk, and Sest, and time-domain mutual
information I, whereas Table B.2 contains the optimal segment length L for
the Granger causality measures. The optimal L for correlation coefficient,
corr-entropy, magnitude and phase coherence, and the phase synchrony in-
dices EMA, IPA, and GFS can be found in Table B.3.

• Table B.1 contains the optimal embedding dimension m for the state space
based measures Sk, Hk, Nk, and Sest, and time-domain mutual informa-
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tion I.
• Table B.2 lists the optimal order p for the Granger causality measures. Note

that not all Granger measures necessarily yield the smallest p-values with
the same MVAR model. For example, we obtained the best results for DTF
with a model of order 9, whereas for PDC the optimal order is 2.

• The p-values for the Rényi divergence did not seem to depend much on α;
in the case of Jensen-Rényi divergence, we obtained the smallest p-values
for α = 2.

• The optimal parameter settings for SES can be found in Table B.4.

In Local and Global Approach 1 the measures are applied to the 5 average
EEG signals, as we pointed out earlier. We now consider Local Approach 2:

• Table B.5 lists the optimal parameters for the S, N , and H indices.
• Table B.6 contains the optimal length L for the remaining local measures

(except time-domain mutual information and SES).
• The optimal parameter settings for SES can be found in Table B.7.
• The p-values for the Rényi divergence did not seem to depend much on α, the

smallest p-value occur for α = 0.1. In the case of Jensen-Rényi divergence,
we obtained the smallest p-values for α = 1.

At last we treat Global Approach 2 and 3:

• Table B.8 lists the optimal length L for Omega complexity and GFS.
• Table B.9 contains the optimal parameters for the S-estimator.

Measure length L embedding dimension m

Sk 20s 5

Hk 20s 1

Nk 20s 1

Sest 20s 1

I 20s 1

Table B.1
Optimal segment length L and embedding dimension m for the state space measures
and mutual information I, applied to the 5 average EEG signals (Local and Global
Approach 1).

C Dependency of Uncorrected p-values on Parameter Settings

We investigate how the (uncorrected) p-values depend on the parameters of the
synchrony methods. This analysis will provide us some intuition about which
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Granger measure length L model order p

MVAR Coherence 1s 8

Partial Coherence 1s 4

DTF 1s 9

ffDTF 1s 6

PDC 1s 2

dDTF 5s 6

Table B.2
Optimal segment length L and model order p for MVAR coherence and the Granger
causality measures, applied to the 5 average EEG signals (Global Approach 1).

Measure length L Measure length L

Correlation 20s Corr-entropy 20s

Coherence 5s Phase Coherence 5s

Evolution Map 20s Instantaneous Map 1s

Hilbert Phase 5s GFS 20s

Omega complexity 20s

Table B.3
Optimal segment length L for various synchrony measures, applied to the 5 average
EEG signals (Local and Global Approach 1).

Measure β σ̂
(0)
t σ̂

(0)
f T

st 0.001 0.2 0.02 0.86

ρ 0.001 0.1 0.02 0.76

Table B.4
Optimal parameters for SES (Local Approach 1); we list optimal parameter settings

for st and ρ separately. We use the notation σ̂
(0)
t =

√

ŝ
(0)
t and σ̂

(0)
f =

√

ŝ
(0)
f .

effects are statistically significant. Indeed, if the p-values are highly dependent
on the specific choice of parameters, the effect is not really robust and therefore
most probably not statistically significant. We will restrict ourselves to the
synchrony measures whose smallest uncorrected p-values are below 0.05.

Table C.1 shows how the (uncorrected) p-values of correlation coefficient,
(magnitude) coherence, phase coherence, corr-entropy, and Instantaneous Pe-
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Measure length L embedding dimension m

Sk 20s 5

Hk 1s 1

Nk 1s 1

Table B.5
Optimal segment length L and embedding dimension m for the S, H, N indices,
applied according to Local Approach 2.

Measure length L Measure length L

Correlation 20s Corr-entropy 20s

Coherence 1s Phase Coherence 5s

Evolution Map 20s Instantaneous Map 20s

Hilbert Phase 20s

Table B.6
Optimal segment length L for various local synchrony measures, applied according
to Local Approach 2.

Measure β σ̂
(0)
t σ̂

(0)
f T

st 0.001 0.175 0.025 0.22

ρ 0.001 0.225 0.050 0.22

Table B.7
Optimal parameters for SES (Local Approach 2); we list optimal parameter settings

for st and ρ separately. We use the notation σ̂
(0)
t =

√

ŝ
(0)
t and σ̂

(0)
f =

√

ŝ
(0)
f .

GFS Omega complexity

21 EEG signals 1s 20s

pairs of zones 20s 20s

Table B.8
Optimal segment length L for GFS and Omega complexity, applied (i) to all 21
EEG signals (Global Approach 2); (ii) to all pairs of zones (Global Approach 3).

riod Approach (IPA) depend on the length L of the EEG segments. Table C.2
and C.3 show how the (uncorrected) p-values of dDTF and ffDTF respectively
depend on L and the model order p. Table C.4, C.5, C.6, and C.7 show how
the (uncorrected) p-values of Nk, Sk, the S-estimator, and GFS respectively
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length L embedding dimension m

21 EEG signals 20s 1

pairs of zones 1s 4

Table B.9
Optimal segment length L and embedding dimension m for S-estimator (Global
Approach 2 and 3).

depend on L and the embedding dimension m. Table C.9 to C.11 show how
the (uncorrected) p-values of the SES parameters st and ρ depend on ŝ

(0)
t and

ŝ
(0)
f , β and T .

The (uncorrected) p-values of correlation coefficient are robust w.r.t. segment
length L and computational approach (cf. Table C.1). This is less the case for
corr-entropy, and not at all the case for (magnitude) coherence, phase coher-
ence, and IPA (cf. Table C.1). The (uncorrected) p-values of dDTF are only
below 0.05 for two specific choices of the model order p and segment length L
(cf. Table C.2); the situation is similar for S-estimator and GFS (cf. Table C.6
and Table C.7). Also the measure Nk does not seem to yield small (uncor-
rected) p-values for most parameter settings (cf. Table C.4): only for L = 5s
and Local Approach 1 the (uncorrected) p-values are robust w.r.t. embedding
dimension m. The (uncorrected) p-values of the measure Sk are even more sen-
sitive to the parameters L and m. Table C.3 shows that for most parameter
settings, the (uncorrected) p-values of ffDTF are smaller than 0.005. Higher-
order models seem to yield the best results. This is in agreement with our
expectations: EEG signals have strong low-frequency components, and there-
fore, present values of the EEG signals depend on values from the past. Such
long-term correlations can only be captured by higher-order MVAR models
(p > 1), not by first-order MVAR models.

Under Local Approach 1 (cf. Table C.9), the (uncorrected) p-values for st and ρ

are smaller than 0.05 for some values of ŝ
(0)
t , ŝ

(0)
f , β and T . However, the results

for ρ are clearly more robust under Local Approach 2 (cf. Table C.11): The
(uncorrected) p-values for ρ are smaller than 0.05 for almost all considered

values of ŝ
(0)
t , ŝ

(0)
f , and β and for T = 0.2, 0.21, 0.22, and 0.23; for T =

0.22, the (uncorrected) p-values are all below 0.005. Note that for T = 0.2,
practically the whole time-frequency map is filled with bumps, whereas for T
= 0.24 and 0.25, there are few bumps. We therefore a priori expect small p-
values to occur for 0.21 < T < 0.24, and it is not surprising that an optimum
is achieved in terms of p-values at T = 0.23; there are sufficient bumps to
reliably the SES parameters, yet at the same time, the bumps do not fill the
entire time-frequency map. It is also noteworthy that Local Approach 2 is
the most appropriate for SES: local averaging (Local Approach 1) typically
reduces the high-frequency components in the EEG signals, and therefore, it
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Local Approach 1 L = 1s L = 5s L = 20s Local Approach 2 L = 1s L = 5s L = 20s

Correlation 0.028
∗

0.026
∗

0.025
∗ Correlation 0.025

∗
0.024

∗
0.0178

∗

Coherence 0.1949 0.0288
∗ NA Coherence 0.062 0.0960 NA

Phase Coherence 0.5344 0.041
∗ NA Phase Coherence 0.72 0.61 NA

IPA 0.7299 0.7415 0.8720 IPA 0.1795 0.1272 0.0201
∗

Corr-entropy 0.26 0.069 0.0324
∗ Corr-entropy 0.1795 0.0437

∗
0.0363

∗

Table C.1
Dependency of (uncorrected) p-values (Mann-Whitney test) on segment length L,
following Local Approach 1 and 2: * indicates p < 0.05.

Model order p L = 1s L = 5s L = 20s

1 0.4295 0.3150 0.1347

2 0.7766 0.9084 0.7185

3 0.3225 0.5651 0.7648

4 0.2112 0.2112 0.3534

5 0.1056 0.0668 0.1308

6 0.1056 0.0288
∗ 0.1269

7 0.1308 0.0691 0.2595

8 0.1232 0.0715 0.2226

9 0.0991 0.0668 0.2057

10 0.1232 0.0421
∗ 0.1845

Table C.2
Dependency of (uncorrected) p-values (Mann-Whitney test) for dDTF on segment
length L and model order p, following Global Approach 1; * indicates p < 0.05.

reduces the number of high-frequency bumps on the time-frequency plane. In
other words, the bump models obtained from locally averaged EEG may not
always be a reliable representation of the time-frequency components. This
seems to be in agreement with the results of Table C.11.
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Model order p L = 1s L = 5s L = 20s

1 0.4569 0.5861 0.3300

2 0.0582 0.2057 0.2864

3 0.0042
∗∗

0.0377
∗ 0.0960

4 0.0024
∗∗

0.0201
∗ 0.0542

5 0.0013
∗∗

0.0377
∗

0.0138
∗

6 0.0012
∗∗

0.0026
∗∗

0.0093
∗

7 0.0027
∗∗

0.0024
∗∗

0.0078
∗

8 0.0020
∗∗

0.0015
∗∗

0.0024
∗∗

9 0.0037
∗∗

0.0012
∗∗

0.0037
∗∗

10 0.0049
∗∗

0.0015
∗∗

0.0037
∗∗

Table C.3
Dependency of (uncorrected) p-values (Mann-Whitney test) for ffDTF on segment
length L and model order p, following Global Approach 1; * and ** indicate p < 0.05
and p < 0.005 respectively.

Local Approach 1 L = 1s L = 5s L = 20s Local Approach 2 L = 1s L = 5s L = 20s

m = 1 0.0324
∗

0.0324
∗

0.0288
∗ m = 1 0.0542 0.0691 0.0582

m = 2 0.0377
∗ 0.0764 0.0645 m = 2 0.0764 0.1308 0.0991

m = 3 0.0336
∗ 0.0872 0.0602 m = 3 0.0645 0.1515 0.1089

m = 4 0.0363
∗ 0.1023 0.0790 m = 4 0.0645 0.2057 0.1651

m = 5 0.0383
∗ 0.1159 0.0960 m = 5 0.0960 0.2661 0.2002

Table C.4
Dependency of (uncorrected) p-values (Mann-Whitney test) for Nk on segment
length L and embedding dimension m, following Local Approach 1 and 2; * indicates
p < 0.05.
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Local Approach 1 L = 1s L = 5s L = 20s Local Approach 2 L = 1s L = 5s L = 20s

m = 1 0.2864 0.0960 0.0715 m = 1 0.7532 0.1651 0.1308

m = 2 0.6181 0.2531 0.1347 m = 2 0.9816 0.6509 0.4477

m = 3 0.3377 0.1472 0.1023 m = 3 0.7300 0.3778 0.2468

m = 4 0.1698 0.0668 0.0602 m = 4 0.3077 0.1195 0.0764

m = 5 0.2737 0.0562 0.0453
∗ m = 5 0.2002 0.0487

∗
0.0193

∗

Table C.5
Dependency of (uncorrected) p-values (Mann-Whitney test) for Sk on segment
length L and embedding dimension m, following Local Approach 1 and 2; * in-
dicates p < 0.05.

m L = 1s L = 5s L = 20s

1 0.0691 0.0505 0.0421
∗

2 0.4662 0.3077 0.2795

3 0.9939 0.8963 0.8002

4 0.8359 0.9816 0.9328

5 0.8720 0.9206 0.9450

Table C.6
Dependency of (uncorrected) p-values (Mann-Whitney test) for S-estimator on seg-
ment length L and embedding dimension m, following Global Approach 1; * indi-
cates p < 0.05.

L = 1s L = 5s L = 20s

1 0.51 0.031
∗

Table C.7
Dependency of (uncorrected) p-values (Mann-Whitney test) for GFS on segment
length L, following Global Approach 1; * indicates p < 0.05.
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T = 0.74, β = 0.01 σ̂
(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25 T = 0.74, β = 0.001 σ̂

(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.05 0.9694 0.4948 0.8841 0.9084 σ̂

(0)
f = 0.05 0.3077 0.5446 0.9694 0.3300

σ̂
(0)
f = 0.1 0.4385 0.6509 0.5344 0.8121 σ̂

(0)
f = 0.1 0.0668 0.3534 0.3005 0.6181

σ̂
(0)
f = 0.15 0.3377 0.0790 0.6509 0.7415 σ̂

(0)
f = 0.15 0.5446 0.1698 0.5144 0.1698

σ̂
(0)
f = 0.2 0.2595 0.0715 0.2112 0.2226 σ̂

(0)
f = 0.02 0.4662 0.3005 0.3614 0.3300

T = 0.76, β = 0.01 σ̂
(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25 T = 0.76, β = 0.001 σ̂

(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.05 0.4852 0.4477 0.5651 0.5651 σ̂

(0)
f = 0.05 0.4477 0.8963 0.5966 0.2285

σ̂
(0)
f = 0.1 0.7415 0.6731 0.3946 0.6289 σ̂

(0)
f = 0.1 0.3150 0.3077 0.4477 0.5548

σ̂
(0)
f = 0.15 0.4206 0.2345 0.6509 0.3077 σ̂

(0)
f = 0.15 0.6181 0.2727 0.7300 0.3377

σ̂
(0)
f = 0.2 0.3077 0.1698 0.2169 0.4295 σ̂

(0)
f = 0.02 0.5144 0.8963 0.3695 0.4385

T = 0.78, β = 0.01 σ̂
(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25 T = 0.78, β = 0.001 σ̂

(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.05 0.8002 0.2406 0.2285 0.2169 σ̂

(0)
f = 0.05 0.1559 0.4206 0.8479 0.1559

σ̂
(0)
f = 0.1 0.5966 0.3534 0.3005 0.5651 σ̂

(0)
f = 0.1 0.2169 0.0691 0.0562 0.1897

σ̂
(0)
f = 0.15 0.1269 0.0960 0.0991 0.1795 σ̂

(0)
f = 0.15 0.2531 0.0715 0.1795 0.0930

σ̂
(0)
f = 0.2 0.2002 0.0790 0.0624 0.1089 σ̂

(0)
f = 0.02 0.2112 0.1949 0.1795 0.2112

T = 0.8, β = 0.01 σ̂
(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25 T = 0.8, β = 0.001 σ̂

(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.05 0.4662 0.5144 0.3005 0.3695 σ̂

(0)
f = 0.05 0.8963 0.5446 0.7766 0.5046

σ̂
(0)
f = 0.1 0.9206 0.6399 0.5548 0.7070 σ̂

(0)
f = 0.1 0.7070 0.1124 0.0668 0.2345

σ̂
(0)
f = 0.15 0.5046 0.2285 0.0739 0.1269 σ̂

(0)
f = 0.15 0.8359 0.1746 0.1651 0.1124

σ̂
(0)
f = 0.2 0.6181 0.1429 0.0453

∗ 0.0739 σ̂
(0)
f = 0.02 0.7766 0.3377 0.1845 0.1559

T = 0.82, β = 0.01 σ̂
(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25 T = 0.82, β = 0.001 σ̂

(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.05 0.9328 0.4206 0.2864 0.5755 σ̂

(0)
f = 0.05 0.7532 0.3946 0.5966 0.8002

σ̂
(0)
f = 0.1 0.6181 0.5244 0.2727 0.5548 σ̂

(0)
f = 0.1 0.1897 0.1159 0.0453

∗ 0.0523

σ̂
(0)
f = 0.15 0.4569 0.1159 0.0324 0.0437

∗ σ̂
(0)
f = 0.15 0.3946 0.1056 0.0237

∗
0.0349

∗

σ̂
(0)
f = 0.2 0.5861 0.1023 0.0624 0.0901 σ̂

(0)
f = 0.02 0.5344 0.1845 0.1347 0.0691

T = 0.84, β = 0.01 σ̂
(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25 T = 0.84, β = 0.001 σ̂

(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.05 0.6181 0.8963 0.4295 0.5548 σ̂

(0)
f = 0.05 0.8240 0.2112 0.1472 0.1604

σ̂
(0)
f = 0.1 0.9816 0.4477 0.1698 0.1845 σ̂

(0)
f = 0.1 0.5548 0.1845 0.1023 0.2406

σ̂
(0)
f = 0.15 0.9084 0.4118 0.0844 0.1559 σ̂

(0)
f = 0.15 0.4477 0.1651 0.0505 0.0764

σ̂
(0)
f = 0.2 0.9816 0.1949 0.0256

∗
0.0349

∗ σ̂
(0)
f = 0.02 0.5651 0.1795 0.0377

∗
0.0437

∗

T = 0.86, β = 0.01 σ̂
(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25 T = 0.86, β = 0.001 σ̂

(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.05 0.2661 0.9328 0.8121 0.8121 σ̂

(0)
f = 0.05 0.8479 0.3861 0.3946 0.1845

σ̂
(0)
f = 0.1 0.7532 0.9450 0.3861 0.4031 σ̂

(0)
f = 0.1 0.4118 0.0602 0.1124 0.2285

σ̂
(0)
f = 0.15 0.9328 0.3225 0.0764 0.1388 σ̂

(0)
f = 0.15 0.2864 0.0311

∗
0.0406

∗ 0.0645

σ̂
(0)
f = 0.2 0.6399 0.0790 0.0210

∗
0.0277

∗ σ̂
(0)
f = 0.02 0.1429 0.0930 0.0111

∗
0.0300

∗

T = 0.88, β = 0.01 σ̂
(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25 T = 0.88, β = 0.001 σ̂

(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.05 0.6399 0.5651 0.5446 0.2934 σ̂

(0)
f = 0.05 0.7300 0.6181 0.3150 0.5046

σ̂
(0)
f = 0.1 0.8720 0.7884 0.6289 0.4295 σ̂

(0)
f = 0.1 0.3946 0.1195 0.0960 0.1056

σ̂
(0)
f = 0.15 0.8963 0.3225 0.0715 0.1195 σ̂

(0)
f = 0.15 0.2468 0.1559 0.0790 0.0437∗

σ̂
(0)
f = 0.2 0.3534 0.3005 0.1195 0.0739 σ̂

(0)
f = 0.02 0.2531 0.1089 0.0453

∗
0.0470

∗

Table C.8

Dependency of (uncorrected) p-values (Mann-Whitney test) for st on σ̂
(0)
t =

√

ŝ
(0)
t ,

σ̂
(0)
f =

√

ŝ
(0)
f , β and T , following Local Approach 1; * indicates p < 0.05.
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T = 0.74, β = 0.01 σ̂
(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25 T = 0.74, β = 0.001 σ̂

(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.05 0.7648 0.2057 0.1472 0.1195 σ̂

(0)
f = 0.05 0.0960 0.3614 0.2406 0.6620

σ̂
(0)
f = 0.1 0.5144 0.0668 0.0901 0.0817 σ̂

(0)
f = 0.1 0.2531 0.1472 0.2795 0.2864

σ̂
(0)
f = 0.15 0.2661 0.1232 0.1651 0.1056 σ̂

(0)
f = 0.15 0.0872 0.3778 0.0930 0.4385

σ̂
(0)
f = 0.2 0.4385 0.1949 0.1089 0.1269 σ̂

(0)
f = 0.02 0.0377

∗ 0.1056 0.0505 0.4852

T = 0.76, β = 0.01 σ̂
(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25 T = 0.76, β = 0.001 σ̂

(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.05 0.1089 0.0542 0.1308 0.0960 σ̂

(0)
f = 0.05 0.0844 0.2169 0.1559 0.3377

σ̂
(0)
f = 0.1 0.0645 0.0132

∗ 0.2057 0.0715 σ̂
(0)
f = 0.1 0.1429 0.1604 0.1269 0.1698

σ̂
(0)
f = 0.15 0.1023 0.0764 0.1124 0.1232 σ̂

(0)
f = 0.15 0.0157

∗ 0.0764 0.0363
∗ 0.1124

σ̂
(0)
f = 0.2 0.1195 0.1269 0.0817 0.0790 σ̂

(0)
f = 0.02 0.0044

∗
0.0336

∗
0.0288

∗ 0.0901

T = 0.78, β = 0.01 σ̂
(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25 T = 0.78, β = 0.001 σ̂

(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.05 0.5651 0.3455 0.3861 0.3695 σ̂

(0)
f = 0.05 0.3150 0.4948 0.2795 0.8002

σ̂
(0)
f = 0.1 0.2169 0.1746 0.5046 0.2864 σ̂

(0)
f = 0.1 0.4569 0.4385 0.4757 0.4295

σ̂
(0)
f = 0.15 0.6620 0.3946 0.2226 0.2595 σ̂

(0)
f = 0.15 0.1515 0.6181 0.3455 0.6844

σ̂
(0)
f = 0.2 0.4295 0.5344 0.4757 0.3534 σ̂

(0)
f = 0.02 0.3300 0.2795 0.4948 0.3946

T = 0.8, β = 0.01 σ̂
(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25 T = 0.8, β = 0.001 σ̂

(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.05 0.4031 0.0406

∗ 0.1056 0.0715 σ̂
(0)
f = 0.05 0.0336

∗ 0.1023 0.0377
∗ 0.0715

σ̂
(0)
f = 0.1 0.1429 0.0470

∗ 0.0668 0.0277
∗ σ̂

(0)
f = 0.1 0.0739 0.0582 0.0266

∗
0.0201

∗

σ̂
(0)
f = 0.15 0.2468 0.0391

∗
0.0311

∗
0.0138

∗ σ̂
(0)
f = 0.15 0.0256

∗
0.0300

∗
0.0081

∗
0.0164

∗

σ̂
(0)
f = 0.2 0.0624 0.0377

∗
0.0391

∗
0.0218

∗ σ̂
(0)
f = 0.02 0.0157

∗
0.0324

∗
0.0047

∗∗
0.0106

∗

T = 0.82, β = 0.01 σ̂
(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25 T = 0.82, β = 0.001 σ̂

(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.05 0.6399 0.0437

∗ 0.2661 0.1651 σ̂
(0)
f = 0.05 0.0377

∗ 0.1845 0.1698 0.1949

σ̂
(0)
f = 0.1 0.3150 0.0844 0.1515 0.1388 σ̂

(0)
f = 0.1 0.0739 0.0901 0.1897 0.1388

σ̂
(0)
f = 0.15 0.3946 0.1124 0.0960 0.1949 σ̂

(0)
f = 0.15 0.0453

∗ 0.1308 0.1232 0.0991

σ̂
(0)
f = 0.2 0.4569 0.1845 0.1056 0.0764 σ̂

(0)
f = 0.02 0.0237

∗ 0.0562 0.0193
∗

0.0421
∗

T = 0.84, β = 0.01 σ̂
(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25 T = 0.84, β = 0.001 σ̂

(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.05 0.3225 0.0406

∗ 0.2345 0.2169 σ̂
(0)
f = 0.05 0.0764 0.2795 0.3300 0.3225

σ̂
(0)
f = 0.1 0.1651 0.1651 0.2795 0.2002 σ̂

(0)
f = 0.1 0.0391

∗ 0.0872 0.1897 0.1897

σ̂
(0)
f = 0.15 0.0991 0.1056 0.0437 0.1429 σ̂

(0)
f = 0.15 0.0377

∗ 0.1195 0.1795 0.2169

σ̂
(0)
f = 0.2 0.1195 0.0739 0.1089 0.1388 σ̂

(0)
f = 0.02 0.0288

∗ 0.1308 0.3300 0.4031

T = 0.86, β = 0.01 σ̂
(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25 T = 0.86, β = 0.001 σ̂

(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.05 0.1845 0.0218

∗ 0.0691 0.0817 σ̂
(0)
f = 0.05 0.0277 0.0668 0.0960 0.2468

σ̂
(0)
f = 0.1 0.1515 0.0150

∗
0.0324

∗
0.0453

∗ σ̂
(0)
f = 0.1 0.0336

∗
0.0288

∗ 0.0505 0.1515

σ̂
(0)
f = 0.15 0.1089 0.0363

∗
0.0185

∗
0.0300

∗ σ̂
(0)
f = 0.15 0.0505 0.0817 0.0739 0.4118

σ̂
(0)
f = 0.2 0.2057 0.1056 0.0790 0.1124 σ̂

(0)
f = 0.02 0.0523 0.1023 0.3455 0.6957

T = 0.88, β = 0.01 σ̂
(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25 T = 0.88, β = 0.001 σ̂

(0)
t = 0.1 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.05 0.3225 0.0991 0.0901 0.1232 σ̂

(0)
f = 0.05 0.1159 0.0790 0.1746 0.1124

σ̂
(0)
f = 0.1 0.3861 0.1023 0.0421

∗ 0.0960 σ̂
(0)
f = 0.1 0.1347 0.2285 0.1124 0.1897

σ̂
(0)
f = 0.15 0.2661 0.1308 0.1559 0.0991 σ̂

(0)
f = 0.15 0.0668 0.2934 0.1604 0.3455

σ̂
(0)
f = 0.2 0.5446 0.2057 0.2002 0.2345 σ̂

(0)
f = 0.02 0.2934 0.2661 0.3778 0.8002

Table C.9

Dependency of (uncorrected) p-values (Mann-Whitney test) for ρ on σ̂
(0)
t =

√

ŝ
(0)
t ,

σ̂
(0)
f =

√

ŝ
(0)
f , β and T , following Local Approach 1; * and ** indicate p < 0.05 and

p < 0.005 respectively.
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T = 0.2, β = 0.01 σ̂
(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25 T = 0.2, β = 0.001 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.025 0.8240 0.6731 0.7185 0.5651 0.4852 σ̂

(0)
f = 0.025 0.6399 0.3861 0.4295 0.8841 0.7532

σ̂
(0)
f = 0.05 0.3225 0.3861 0.1089 0.1429 0.2795 σ̂

(0)
f = 0.05 0.4852 0.2169 0.1347 0.0624 0.1269

σ̂
(0)
f = 0.075 0.4569 0.4295 0.4569 0.4118 0.5548 σ̂

(0)
f = 0.075 0.8240 0.4569 0.2864 0.1089 0.1651

σ̂
(0)
f = 0.1 0.7070 0.3534 0.7300 0.7185 0.3614 σ̂

(0)
f = 0.1 0.7415 0.5144 0.6399 0.1472 0.0901

σ̂
(0)
f = 0.125 0.8002 0.7648 0.7185 0.9084 0.6509 σ̂

(0)
f = 0.125 0.7648 0.9206 0.7648 0.4295 0.2345

σ̂
(0)
f = 0.15 0.7766 0.6399 0.8841 0.8841 0.8240 σ̂

(0)
f = 0.15 0.8600 0.9084 0.7415 0.5446 0.4477

T = 0.21, β = 0.01 σ̂
(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25 T = 0.21, β = 0.001 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.025 0.4569 0.5651 0.8963 0.9084 0.4031 σ̂

(0)
f = 0.025 0.0288

∗ 0.1388 0.3300 0.3778 0.3005

σ̂
(0)
f = 0.05 0.8600 0.8963 0.8600 0.6844 0.2406 σ̂

(0)
f = 0.05 0.1897 0.4031 0.6073 0.9816 0.9572

σ̂
(0)
f = 0.075 0.8002 0.9694 0.7415 0.5244 0.3778 σ̂

(0)
f = 0.075 0.3695 0.3695 0.7185 0.9450 0.8121

σ̂
(0)
f = 0.1 0.5966 0.7648 0.7532 0.5446 0.3861 σ̂

(0)
f = 0.1 0.1604 0.5966 0.6731 0.8841 0.8720

σ̂
(0)
f = 0.125 0.5244 0.9694 0.6731 0.6844 0.4118 σ̂

(0)
f = 0.125 0.1515 0.2406 0.5651 0.9694 0.6399

σ̂
(0)
f = 0.15 0.5344 0.9206 0.9939 0.6073 0.6181 σ̂

(0)
f = 0.15 0.1746 0.2112 0.4948 0.7884 0.7532

T = 0.22, β = 0.01 σ̂
(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25 T = 0.22, β = 0.001 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.025 0.0437

∗ 0.0872 0.2406 0.1124 0.1023 σ̂
(0)
f = 0.025 0.0127

∗
0.0065

∗
0.0300

∗
0.0288

∗ 0.0582

σ̂
(0)
f = 0.05 0.0739 0.1651 0.4385 0.2595 0.3455 σ̂

(0)
f = 0.05 0.0421

∗ 0.0582 0.1269 0.1949 0.3861

σ̂
(0)
f = 0.075 0.0562 0.2864 0.2345 0.4385 0.2468 σ̂

(0)
f = 0.075 0.0668 0.1023 0.1559 0.2727 0.3861

σ̂
(0)
f = 0.1 0.0336

∗ 0.2345 0.3150 0.5446 0.2595 σ̂
(0)
f = 0.1 0.0844 0.0930 0.1159 0.2406 0.5548

σ̂
(0)
f = 0.125 0.0624 0.2468 0.2795 0.4569 0.5446 σ̂

(0)
f = 0.125 0.1472 0.1124 0.0960 0.2661 0.5144

σ̂
(0)
f = 0.15 0.0470

∗ 0.1269 0.2595 0.4757 0.7185 σ̂
(0)
f = 0.15 0.1269 0.1429 0.0817 0.1429 0.7648

T = 0.23, β = 0.01 σ̂
(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25 T = 0.23, β = 0.001 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.025 0.0624 0.1232 0.1269 0.1308 0.1232 σ̂

(0)
f = 0.025 0.1347 0.0991 0.0582 0.0901 0.1347

σ̂
(0)
f = 0.05 0.1472 0.1023 0.1269 0.1308 0.2934 σ̂

(0)
f = 0.05 0.0991 0.0960 0.1023 0.1089 0.1308

σ̂
(0)
f = 0.075 0.1056 0.1949 0.1949 0.1604 0.1559 σ̂

(0)
f = 0.075 0.1651 0.1559 0.1023 0.1124 0.1949

σ̂
(0)
f = 0.1 0.1347 0.2002 0.1472 0.2169 0.2112 σ̂

(0)
f = 0.1 0.1308 0.1308 0.1308 0.1604 0.2285

σ̂
(0)
f = 0.125 0.1429 0.2057 0.1897 0.1559 0.2169 σ̂

(0)
f = 0.125 0.1746 0.1559 0.1746 0.2406 0.2406

σ̂
(0)
f = 0.15 0.1195 0.1347 0.0960 0.1023 0.1089 σ̂

(0)
f = 0.15 0.1429 0.1651 0.1897 0.2406 0.2406

T = 0.24, β = 0.01 σ̂
(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25 T = 0.24, β = 0.001 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.025 0.0116

∗
0.0246

∗
0.0377

∗ 0.0645 0.1056 σ̂
(0)
f = 0.025 0.0150

∗
0.0081

∗
0.0201

∗
0.0171

∗
0.0336

∗

σ̂
(0)
f = 0.05 0.0930 0.2595 0.1845 0.1472 0.1559 σ̂

(0)
f = 0.05 0.0218

∗
0.0406

∗ 0.0764 0.0764 0.0739

σ̂
(0)
f = 0.075 0.0901 0.1159 0.2057 0.1347 0.1949 σ̂

(0)
f = 0.075 0.0311

∗
0.0453

∗ 0.1269 0.1604 0.1651

σ̂
(0)
f = 0.1 0.1124 0.1089 0.1388 0.1698 0.2057 σ̂

(0)
f = 0.1 0.0421

∗ 0.0562 0.1515 0.1515 0.1604

σ̂
(0)
f = 0.125 0.1388 0.1124 0.1124 0.1124 0.1897 σ̂

(0)
f = 0.125 0.0542 0.0817 0.1515 0.1159 0.1515

σ̂
(0)
f = 0.15 0.1089 0.1023 0.0960 0.1515 0.1651 σ̂

(0)
f = 0.15 0.0562 0.0624 0.1559 0.0930 0.1429

T = 0.25, β = 0.01 σ̂
(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25 T = 0.25, β = 0.001 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.025 0.0844 0.1159 0.1023 0.1269 0.1159 σ̂

(0)
f = 0.025 0.0349

∗ 0.0991 0.0523 0.1195 0.2169

σ̂
(0)
f = 0.05 0.0453

∗ 0.0960 0.1159 0.0505 0.0691 σ̂
(0)
f = 0.05 0.0645 0.0406

∗ 0.1347 0.1949 0.1949

σ̂
(0)
f = 0.075 0.0237

∗ 0.0715 0.0960 0.0872 0.1515 σ̂
(0)
f = 0.075 0.0138

∗ 0.0624 0.0790 0.1651 0.1195

σ̂
(0)
f = 0.1 0.0624 0.1089 0.0739 0.0715 0.1232 σ̂

(0)
f = 0.1 0.0193

∗
0.0406

∗ 0.0764 0.1023 0.1159

σ̂
(0)
f = 0.125 0.0582 0.0764 0.0624 0.1429 0.0645 σ̂

(0)
f = 0.125 0.0210

∗ 0.0668 0.1232 0.0930 0.0930

σ̂
(0)
f = 0.15 0.0542 0.0668 0.1056 0.1559 0.1089 σ̂

(0)
f = 0.15 0.0324

∗ 0.1023 0.1347 0.0715 0.0739

Table C.10

Dependency of (uncorrected) p-values (Mann-Whitney test) for st on σ̂
(0)
t =

√

ŝ
(0)
t ,

σ̂
(0)
f =

√

ŝ
(0)
f , β and T , following Local Approach 2; * indicates p < 0.05.
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T = 0.2, β = 0.01 σ̂
(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25 T = 0.2, β = 0.001 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.025 0.0089

∗
0.0078

∗
0.0081

∗
0.0127

∗
0.0164

∗ σ̂
(0)
f = 0.025 0.0132

∗
0.0132

∗
0.0074

∗
0.0059

∗
0.0054

∗

σ̂
(0)
f = 0.05 0.0324

∗
0.0237

∗
0.0227

∗
0.0227

∗
0.0218

∗ σ̂
(0)
f = 0.05 0.0237

∗
0.0324

∗
0.0218

∗
0.0201

∗
0.0171

∗

σ̂
(0)
f = 0.075 0.0300

∗
0.0288

∗
0.0277

∗
0.0237

∗
0.0218

∗ σ̂
(0)
f = 0.075 0.0246

∗
0.0237

∗
0.0237

∗
0.0288

∗
0.0288

∗

σ̂
(0)
f = 0.1 0.0256

∗
0.0246

∗
0.0277

∗
0.0201

∗
0.0218

∗ σ̂
(0)
f = 0.1 0.0164

∗
0.0210

∗
0.0237

∗
0.0227

∗
0.0171

∗

σ̂
(0)
f = 0.125 0.0336

∗
0.0437

∗
0.0391

∗
0.0218

∗
0.0277

∗ σ̂
(0)
f = 0.125 0.0171

∗
0.0210

∗
0.0201

∗
0.0256

∗
0.0227

∗

σ̂
(0)
f = 0.15 0.0421

∗
0.0487

∗
0.0542

∗
0.0300

∗
0.0266

∗ σ̂
(0)
f = 0.15 0.0111

∗
0.0157

∗
0.0201

∗
0.0218

∗
0.0218

∗

T = 0.21, β = 0.01 σ̂
(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25 T = 0.21, β = 0.001 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.025 0.0037

∗∗
0.0049

∗∗
0.0056

∗
0.0054

∗
0.0062

∗ σ̂
(0)
f = 0.025 0.0054

∗
0.0049

∗∗
0.0031

∗∗
0.0035

∗∗
0.0027

∗∗

σ̂
(0)
f = 0.05 0.0059

∗
0.0059

∗
0.0116

∗
0.0193

∗
0.0138

∗ σ̂
(0)
f = 0.05 0.0024

∗∗
0.0022

∗∗
0.0037

∗∗
0.0030

∗∗
0.0031

∗∗

σ̂
(0)
f = 0.075 0.0047

∗∗
0.0093

∗
0.0089

∗
0.0111

∗
0.0157

∗ σ̂
(0)
f = 0.075 0.0023

∗∗
0.0022

∗∗
0.0019

∗∗
0.0033

∗∗
0.0030

∗∗

σ̂
(0)
f = 0.1 0.0081

∗
0.0132

∗
0.0185

∗
0.0150

∗
0.0171

∗ σ̂
(0)
f = 0.1 0.0023

∗∗
0.0035

∗∗
0.0027

∗∗
0.0040

∗∗
0.0037

∗∗

σ̂
(0)
f = 0.125 0.0116

∗
0.0121

∗
0.0164

∗
0.0132

∗
0.0193

∗ σ̂
(0)
f = 0.125 0.0023 0.0024

∗∗
0.0031

∗∗
0.0049

∗∗
0.0093

∗

σ̂
(0)
f = 0.15 0.0097

∗
0.0164

∗
0.0171

∗
0.0178

∗
0.0193

∗ σ̂
(0)
f = 0.15 0.0033

∗∗
0.0042

∗∗
0.0059

∗
0.0074

∗
0.0144

∗

T = 0.22, β = 0.01 σ̂
(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25 T = 0.22, β = 0.001 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.025 0.0003

∗∗
0.0002

∗∗
0.0002

∗∗
0.0003

∗∗
0.0001

∗∗ σ̂
(0)
f = 0.025 0.0027

∗∗
0.0011

∗∗
0.0015

∗∗
0.0018

∗∗
0.0021

∗∗

σ̂
(0)
f = 0.05 0.0004

∗∗
0.0004

∗∗
0.0003

∗∗
0.0002

∗∗
0.0002

∗∗ σ̂
(0)
f = 0.05 0.0003

∗∗
0.0003

∗∗
0.0002

∗∗
0.0001

∗∗
0.0002

∗∗

σ̂
(0)
f = 0.075 0.0004

∗∗
0.0008

∗∗
0.0006

∗∗
0.0011

∗∗
0.0008

∗∗ σ̂
(0)
f = 0.075 0.0009

∗∗
0.0004

∗∗
0.0004

∗∗
0.0003

∗∗
0.0002

∗∗

σ̂
(0)
f = 0.1 0.0006

∗∗
0.0005

∗∗
0.0008

∗∗
0.0009

∗∗
0.0010

∗∗ σ̂
(0)
f = 0.1 0.0005

∗∗
0.0005

∗∗
0.0004

∗∗
0.0003

∗∗
0.0003

∗∗

σ̂
(0)
f = 0.125 0.0011

∗∗
0.0011

∗∗
0.0016

∗∗
0.0024

∗∗
0.0017

∗∗ σ̂
(0)
f = 0.125 0.0016

∗∗
0.0013

∗∗
0.0009

∗∗
0.0007

∗∗
0.0007

∗∗

σ̂
(0)
f = 0.15 0.0015

∗∗
0.0015

∗∗
0.0020

∗∗
0.0035

∗∗
0.0040

∗∗ σ̂
(0)
f = 0.15 0.0026

∗∗
0.0024

∗∗
0.0011

∗∗
0.0007

∗∗
0.0013

∗∗

T = 0.23, β = 0.01 σ̂
(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25 T = 0.23, β = 0.001 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.025 0.0116

∗
0.0116

∗
0.0150

∗
0.0132

∗
0.0150

∗ σ̂
(0)
f = 0.025 0.0542 0.0437

∗
0.0300

∗
0.0336

∗
0.0185

∗

σ̂
(0)
f = 0.05 0.0138

∗
0.0116

∗
0.0121

∗
0.0150

∗
0.0193

∗ σ̂
(0)
f = 0.05 0.0150

∗
0.0106

∗
0.0097

∗
0.0078

∗
0.0085

∗

σ̂
(0)
f = 0.075 0.0102

∗
0.0062

∗
0.0106

∗
0.0138

∗
0.0210

∗ σ̂
(0)
f = 0.075 0.0288

∗
0.0144

∗
0.0074

∗
0.0078

∗
0.0127

∗

σ̂
(0)
f = 0.1 0.0377

∗
0.0363

∗
0.0391

∗ 0.0739 0.0645 σ̂
(0)
f = 0.1 0.0324

∗
0.0201

∗
0.0111

∗
0.0116

∗
0.0157

∗

σ̂
(0)
f = 0.125 0.0453

∗
0.0377

∗ 0.0523 0.0715 0.1056 σ̂
(0)
f = 0.125 0.0715 0.0377

∗
0.0336

∗
0.0453

∗
0.0210

∗

σ̂
(0)
f = 0.15 0.0542 0.0930 0.0602 0.0991 0.1269 σ̂

(0)
f = 0.15 0.0487

∗
0.0487

∗
0.0363

∗ 0.0668 0.0602

T = 0.24, β = 0.01 σ̂
(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25 T = 0.24, β = 0.001 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.025 0.0068

∗
0.0266

∗
0.0277

∗
0.0421

∗
0.0391

∗ σ̂
(0)
f = 0.025 0.0102

∗
0.0035

∗∗
0.0097

∗
0.0116

∗
0.0144

∗

σ̂
(0)
f = 0.05 0.2169 0.2002 0.2468 0.2795 0.2864 σ̂

(0)
f = 0.05 0.0991 0.1308 0.0960 0.1651 0.1746

σ̂
(0)
f = 0.075 0.3455 0.4948 0.5861 0.3778 0.3455 σ̂

(0)
f = 0.075 0.1651 0.1795 0.2531 0.2864 0.3300

σ̂
(0)
f = 0.1 0.5861 0.6731 0.6620 0.5755 0.5244 σ̂

(0)
f = 0.1 0.1845 0.2468 0.4662 0.3946 0.4206

σ̂
(0)
f = 0.125 0.8359 0.8002 0.6957 0.7532 0.6731 σ̂

(0)
f = 0.125 0.4031 0.4477 0.5548 0.5446 0.5548

σ̂
(0)
f = 0.15 0.9572 0.8359 0.7648 0.8121 0.6620 σ̂

(0)
f = 0.15 0.4948 0.6509 0.7415 0.7070 0.7300

T = 0.25, β = 0.01 σ̂
(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25 T = 0.25, β = 0.001 σ̂

(0)
t = 0.15 σ̂

(0)
t = 0.175 σ̂

(0)
t = 0.2 σ̂

(0)
t = 0.225 σ̂

(0)
t = 0.25

σ̂
(0)
f = 0.025 0.1429 0.1746 0.3300 0.4757 0.4118 σ̂

(0)
f = 0.025 0.0363

∗
0.0487

∗
0.0421

∗ 0.0645 0.0562

σ̂
(0)
f = 0.05 0.3225 0.4385 0.4031 0.3377 0.3861 σ̂

(0)
f = 0.05 0.2934 0.3225 0.4385 0.4569 0.4477

σ̂
(0)
f = 0.075 0.3455 0.4948 0.4662 0.5244 0.4948 σ̂

(0)
f = 0.075 0.2934 0.3861 0.4206 0.3377 0.3150

σ̂
(0)
f = 0.1 0.5861 0.7070 0.7415 0.6844 0.7185 σ̂

(0)
f = 0.1 0.4569 0.4662 0.6399 0.6957 0.6844

σ̂
(0)
f = 0.125 0.7415 0.7532 0.8240 0.9084 0.8359 σ̂

(0)
f = 0.125 0.6844 0.7185 0.8002 0.7185 0.6957

σ̂
(0)
f = 0.15 0.8963 0.8720 0.9816 0.9328 0.9816 σ̂

(0)
f = 0.15 0.7766 0.8720 0.9084 0.8600 0.8479

Table C.11

Dependency of (uncorrected) p-values (Mann-Whitney test) for ρ on σ̂
(0)
t =

√

ŝ
(0)
t ,

σ̂
(0)
f =

√

ŝ
(0)
f , β and T , following Local Approach 2; * and ** indicate p < 0.05 and

p < 0.005 respectively.
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D Statistical Post-Correction

Since we consider many different synchrony measures, computational approaches,
and parameter settings simultaneously, we need to correct the p-values of the
single Mann-Whitney tests appropriately (cf. Section 3.2.5). We will try to
control the false discovery rate: the fraction of supposedly positive results
that are in fact negative (Benjamini and Hochberg, 1995). For convenience,
we list our two different schemes for statistical post-correction once more:

(1) We apply the Storey method (Storey, 2002) to all comparisons simultane-
ously, that is all synchrony measures, the different approaches to compute
those measures (Local Approach 1 and 2, Global Approach 1, 2 and 3),
and their parameter settings, comprising 1270 statistical tests. We re-
tain the smallest p-value for each synchrony measure, and as a result, we
obtain one (corrected) p-value for each synchrony measure.

(2) We apply a two-step procedure: first we correct for the multiple ap-
proaches to compute each synchrony measure (Local Approach 1 and
2, Global Approach 1, 2 and 3) and the multiple corresponding param-
eter settings, then we correct for the multiple synchrony measures. In
the first step, we treat each synchrony method separately, and apply the
Benjamini-Hochberg method (Benjamini and Hochberg, 1995) to the p-
values for different parameter settings and computational approaches (Lo-
cal Approach 1 and 2, Global Approach 1, 2 and 3). For each synchrony
measure, we retain the smallest corrected p-value among the different
parameter settings and computational approaches. As a result, we obtain
one (corrected) p-value for each synchrony measure. Those p-values are
further corrected in a second step by means of the Storey method (Storey,
2002); that correction accounts for the multiple synchrony measures.

The p-values resulting from the first and second post-correction scheme are
summarized in Table D.1 and D.2 respectively; we list the lowest corrected
p-value for each synchrony measure. In the first correction scheme, a signifi-
cance level of 0.05 is too liberal: it would result in 199 positives out of 1270
tests, with 10 expected false positives. Instead we choose the significance level
so that there is less than one expected false positive; that corresponds to a
significance level of 0.01. Only full-frequency DTF and ρ are significant on the
0.01 level. Under the second correction scheme, a significance level of 0.05 is
a natural choice; only full-frequency DTF and ρ are significant on the 0.05
level. Interestingly, those two measures remain significant under both post-
correction schemes. Moreover, as we have shown earlier, the combination of
both measures leads to good classification results (cf. Table 4).
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Measure Correlation Coherence Phase Coherence Corr-entropy Wave-entropy

p-value 0.052 0.064 0.077 0.067 0.11

References (Nunez & Srinivasan, 2006) (Gunduz and Principe, 2009)

Measure MVAR coherence Partial Coherence PDC DTF ffDTF dDTF

p-value 0.13 0.14 0.32 0.19 0.0098
∗ 0.064

References (Kamiński et al., 2005)

Measure Kullback-Leibler Rényi Jensen-Shannon Jensen-Rényi IW I

p-value 0.096 0.096 0.096 0.097 0.088 0.094

References (Aviyente, 2005a) (Kraskov et al., 2004)

Measure Nk Sk Hk S-estimator Omega complexity

p-value 0.064 0.054 0.088 0.077 0.10

References (Quiroga et al., 2002) (Carmeli et al., 2005) (Saito et al., 1998)

Measure Hilbert Phase Wavelet Phase Evolution Map Instantaneous Period GFS

p-value 0.13 0.10 0.096 0.054 0.066

References (Lachaux et al., 1999) (Rosenblum et al., 2002) (Koenig et al., 2001)

Measure st ρ

p-value 0.027 0.005
∗

References (Dauwels et al., 2007)

Table D.1
Sensitivity of average synchrony for prediction of MCI: corrected p-values (Correc-
tion Scheme 1); * indicates p < 0.01.
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Measure Correlation Coherence Phase Coherence Corr-entropy Wave-entropy

p-value 0.079 0.091 0.12 0.079 0.079

References (Nunez & Srinivasan, 2006) (Gunduz and Principe, 2009)

Measure MVAR coherence Partial Coherence PDC DTF ffDTF dDTF

p-value 0.13 0.23 0.31 0.27 0.033
∗ 0.13

References (Kamiński et al., 2005)

Measure Kullback-Leibler Rényi Jensen-Shannon Jensen-Rényi IW I

p-value 0.079 0.079 0.079 0.12 0.087 0.79

References (Aviyente, 2005a) (Kraskov et al., 2004)

Measure Nk Sk Hk S-estimator Omega complexity

p-value 0.97 0.13 0.13 0.34 0.13

References (Quiroga et al., 2002) (Carmeli et al., 2005) (Saito et al., 1998)

Measure Hilbert Phase Wavelet Phase Evolution Map Instantaneous Period GFS

p-value 0.25 0.079 0.13 0.091 0.13

References (Lachaux et al., 1999) (Rosenblum et al., 2002) (Koenig et al., 2001)

Measure st ρ

p-value 0.13 0.025
∗

References (Dauwels et al., 2007)

Table D.2
Sensitivity of average synchrony for prediction of MCI: corrected p-values (Correc-
tion Scheme 2); * indicates p < 0.05.
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Quiroga Q. R., Rosso O., Schürmann M., and Basar E., 2001. Wavelet entropy
in event-related potentials: a new method shows frequency tuning of EEG-
oscillations. Biological Cybernetics 84, 291–299.

Quiroga R. Q., Kraskov A., Kreuz T., and Grassberger P., 2002. Performance of
different synchronization measures in real data: a case study on EEG signals.
Physical Review E 65.

Rosenblum M. G., Cimponeriu L., Bezerianos A., Patzak A., and Mrowka R., 2002.
Identification of coupling direction: application to cardiorespiratory interaction.
Physical Review E 65.

Rossini P. M., Del Percio C., Pasqualetti P., Cassetta E., Binetti G., Dal Forno
G., Ferreri F., Frisoni G., Chiovenda P., Miniussi C., Parisi L., Tombini M.,
Vecchio F., and Babiloni C., 2006. Conversion from mild cognitive impairment
to Alzheimer’s disease is predicted by sources and coherence of brain electroen-
cephalography rythms. Neuroscience 143, 793–803.

Saito N., Kuginuki T., Yagyu T., Kinoshita T., Koenig T., Pascual-Marqui R. D.,
Kochi K., Wackermann J., and Lemann D., 1998. Global, regional and local mea-
sures of complexity of multichannel EEG in acute, neuroleptic-naive, first-break
schizophrenics. Society of Biological Psychiatry. 43:794–802.
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