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Abstract. A variety of (dis)similarity measures for one-dimensional point
processes (e.g., spike trains) are investigated, including the Victor-Purpura
distance metric, the van Rossum distance metric, the Schreiber et al.

similarity measure, the Hunter-Milton similarity measure, the event syn-
chronization proposed by Quiroga, and the stochastic event synchrony
measures (SES) recently proposed by Dauwels et al.

By analyzing surrogate data, it is demonstrated that most measures are
not able to distinguish timing precision and event reliability, i.e., they
depend on both aspects of synchrony. There are two exceptions: with
appropriate choice of parameters, event synchronization quantifies event
reliability, independently of timing precision; the two SES parameters
quantify both timing precision and event reliability separately. Before
one can apply the (dis)similarity measures (with the exception of SES),
one needs to determine potential lags between the point processes. On
the other hand, SES deals with lags in a natural and direct way, and
therefore, the SES similarity measures are robust to lags.
As an illustration, neuronal spike data generated by the Morris-Lecar
neuron model is considered.

1 Introduction

In the last years, the problem of detecting correlations between neural signals
has attracted quite some attention in the neuroscience community (e.g., [14]).
Several studies have related neural synchrony to attention and cognition (e.g.,
[2]); recently, it has been demonstrated that patterns of neural synchronization
flexibly trigger patterns of neural interactions [18]. Moreover, it has frequently
been reported that abnormalities in neural synchrony lie at the heart of a variety
of brain disorders such as Alzheimer’s and Parkinson’s disease (e.g., [15]).

In this paper, we focus on the synchrony of pairs of spike trains. We con-
sider two different aspects of synchrony: timing precision and reliability. Those
concepts can be understood from the following analogy; when you wait for a
train in the station, the train may come at the station or it may not come at all,
for example, it may be out of service due to some mechanical problem. If the
train comes, it may or may not be on time. The former uncertainty is related to
reliability, whereas the latter is related to precision.

We will compare and assess a variety of classical and recently proposed spik-
ing synchrony measures, including the Victor-Purpura distance metric [17], the
van Rossum distance metric [16], the Schreiber et al. similarity measure [12], the



Hunter-Milton similarity measure [7], the event synchronization measure pro-
posed in [10], and the stochastic event synchrony measures (SES) proposed by
Dauwels et al. [3].

We assess those measures by means of surrogate data, which allows us to
investigate the statistical properties of those measures; such study, albeit im-
portant, does not seem to have been carried out before. Next we apply those
measures to quantify the spiking synchrony of Morris-Lecar neurons. (This pa-
per summarizes some of the results, we refer to [4] for a longer manuscript.)

This paper is organized as follows. In the next section, we review the (dis)similarity
measures for one-dimensional point processes considered in this study. In Sec-
tion 3 we investigate the robustness and reliability of those (dis)similarity mea-
sures by means of surrogate data. In Section 4 we apply those measures to
quantify the firing reliability of Morris-Lecar type I and type II neurons. We
offer some concluding remarks in Section 5.

2 Review of Similarity Measures

In this section, we review the (dis)similarity measures considered in this paper.
All measures are applied to pairs of point processes x and x′. For the sake of
definiteness, we will consider point processes in time, e.g., spike trains.

2.1 Victor-Purpura Spike Train Metric

The distance metric DV of [17] defines the distance between two point processes
as the minimum cost of transforming one point process into the other. This
transformation is carried out by combining three basic operations: event inser-
tion, event deletion, and event movement. The cost of deleting or inserting of an
event is set to one, whereas the cost of moving an event in time is proportional
to the time shift. The inverse of the proportionality constant CV , denoted by
τV = 1/CV , defines the time scale of distance metric DV . If and only if the point
processes x and x′ are identical, the distance metric DV = 0.

2.2 Van Rossum Similarity Measure

In the approach of [16], the two point processes are converted into continuous
time series. In particular, each event of x is convolved with an exponential func-
tion exp(t−xk/τR) (with t > xk), resulting in the time series s(t). Likewise each
event of x′ is convolved with this exponential function, leading to the time series
s′(t). From the time series s(t) and s′(t), the van Rossum distance measure [16]
is computed as:

DR =
1

τR

∫

t

[s(t) − s′(t)]2 dt. (1)

Note that DR(σS) = 0 if and only if x and x′ are identical. The time scale of
this distance measure is determined by the time constant τR.

2.3 Schreiber et al. Similarity Measure

Also in the approach proposed in [6] and [12], the two point processes x and
x′ are first convolved with a filter, resulting in time series s(t) and s′(t). The



filter may for example be exponential [6] or Gaussian [12], and it has a certain
width τS . Next the pairwise correlation between the time series s(t) and s′(t) is
computed:

SS =

∫

t
s(t)s′(t) dt

√

∫

t
s2(t) dt

√

∫

t
s′2(t) dt

. (2)

It is noteworthy that the width τS of the filter defines the time scale of interaction
between the two point processes. We also wish to point out that if and only if x
and x′ are identical, we have SS = 1.

2.4 Hunter-Milton Similarity Measure

An alternative similarity measure was proposed in [7]. For each event xk, one
identifies the nearest event x′

k′(k) in the point process x′. The degree of coinci-

dence between those two events is determined as d(xk) = exp(−|xk−x′
k′(k)|/τH).

Along the same lines, one identifies for each x′
k′ the nearest event xk(k′) in the

point process x, and determines the degree of coincidence d(x′
k′ ). The similarity

SH between x and x′ is then computed as:

SH =
1
N

∑N

k=1 d(xk) + 1
N ′

∑N ′

k′=1 d(x′
k)

2
. (3)

The parameter τH sets the time scale for event coincidence. If x and x′ are
identical, we have SH = 1.

2.5 Event Synchronization

Event synchronization [10] defines similarity in terms of coincident events. Two
events are considered to be coincident if their timing offset is smaller than a max-
imum lag τQ. This lag can be extracted automatically from the point processes
x and x′:

τQ(k, k′) = min(xk+1 − xk, xk − xk−1, x
′
k′+1 − x′

k′ , x′
k′ − x′

k′−1)/2. (4)

One computes the number of times an event appears in x shortly after an event
appears in x′ :

d(x|x′) =

N
∑

k=1

N ′

∑

k′=1

Jkk′ , (5)

where

Jkk′ =







1 if 0 < xk − x′
k′ ≤ τQ

1/2 if xk = x′
k′

0 else.
(6)

Similarly one can define d(x′|x), and eventually, event synchronization is
determined as:

SQ =
d(x|x′) + d(x′|x)√

NN ′
. (7)

If and only if all events in x and x′ are coincident, we have SQ = 1.



2.6 Stochastic Event Synchrony

Stochastic event synchrony (SES) [3] considers two point processes x and x′

as synchronous if they are identical apart from: (i) a time shift δt; (ii) small
deviations in the event occurrence times; (iii) a few event insertions and/or
deletions.

At the heart of SES lies a statistical model p(x, x′, δt, st) that describes how
the two point processes x and x′ may be generated, as illustrated in Fig. 1:
one first generates a point process v of length ℓ, next one makes two identical
copies of v and shifts those over −δt/2 and δt/2 respectively; the events of the
resulting point process are randomly shifted (with variance st/2), and some
of those events are deleted, independently with probability pd (indicated by
minus sign), resulting eventually in x and x′. As a result of those deletions (or
equivalently, insertions), some events in x are non-coincident (marked in red),
i.e., they can not be associated to an event in x′ and vice versa.

More specifically, SES is defined as the triplet (δt, st, ρ), where ρ is the
percentage of non-coincident events. We will denote the standard deviation of
the (event) timing jitter by σt, and hence st = σ2

t . The SES parameters are
computed by conducting statistical inference in the model p(x, x′, δt, st), more
precisely, by coordinate descent and dynamic programming [3].

T0

x

v

z′

x′

δt

2

δt

2

z

0

Fig. 1. Stochastic event synchrony: procedure relating x to x′.

2.7 Discussion

It is noteworthy that the above mentioned approaches do not discretize the time
axis; therefore they avoid the tricky issue of choosing the bin width.

Most of the above measures depend on a parameter that defines the time scale
of the interaction between the point processes. Event synchronization, however,
adapts its time scale automatically, the user does not need to specify it. The
same holds for SES: the time scale is determined by the parameter st, which is
computed by the inference algorithm, and does not need to be specified a priori.

There might be a delay between the two point processes x and x′. Before
the above mentioned measures (except SES) can be applied, one first needs to
estimate potential delays, and shift the point processes accordingly. On the other
hand, SES directly handles delays, and it does not require a separate procedure
to estimate delays.

3 Analysis of Surrogate Data

In order to benchmark the different measures, we apply them to surrogate data.
We randomly generated 10’000 pairs of one-dimensional point processes (x, x′)



according to the procedure depicted in Fig. 1. We considered several values of
the parameters ℓ, pd, δt and st (σt). More specifically, the length ℓ was chosen
as ℓ = ℓ0/(1 − pd), where ℓ0 ∈ N0 is a constant. With this choice, the expected
length of x and x′ is ℓ0, independently of pd. We considered the values ℓ0 = 100,
pd = 0, 0.1, . . . , 0.4, δt = 0ms, 25ms, 50ms, and σt = 10ms, 30ms, and 50ms.

The constant CV of the Victor-Purpura metric was set to 0.001ms−1, and the
time constants τR, and τS , τH , and τQ were set of 20ms. Those values seemed to
yield the most reasonable results. In order to assess the (dis)similarity measures,
we compute for each above mentioned parameter setting and for each measure S
the expectation E{S} and normalized standard deviation σ{S} = σ{S}/E{S}.
Those statistics are computed by averaging over 10’000 pairs of point processes
(x, x′). Some of the results are summarized in Fig. 2. In particular, that figure
contains results for SES, the Victor-Purpura metric, and the Schreiber et al.

measure; the other measures of Section 2 lead to similar results as the Schreiber
et al. measure. Note that Fig. 2(a) to Fig. 2(d) show curves for δt = 0ms, 25ms,
50ms; the curves are practically coincident, except in Fig. 2(b). For the sake of
clarity, the other figures only contain curves for δt = 0ms, the curves for different
δt are not coincident.
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Fig. 2. Results for SES, Victor-Purpura metric DV and Schreiber et al. measure SS .

From this study of surrogate data, we can conclude the following:

– The measures considered in this paper are reliable in the sense that their
statistical fluctuations are relatively small; their normalized standard de-
viation is typically below 30%, and often even below 20%.

– Most measures depend on both pd and st, and therefore, they are not

able to separate the two key aspects of synchrony, i.e., timing precision
and event reliability. There are two exceptions: the distance metric DV

grows with pd independently of st (cf. Fig. 2(e)). The same holds for the
SES parameter ρ (cf. Fig. 2(c)); both DV and ρ are measures of event
reliability. Note that ρ is robust to lags δt, in contrast to DV . The SES
parameter st is largely independent of pd (cf. Fig. 2(a)), it is a robust
measure for timing dispersion.



– SES is insensitive to lags: the curves in Fig. 2(a) and 2(c) for different
values of δt are coincident. The other measures strongly depend on δt

(see Fig. 3(a)), the similarity (dissimilarity) substantially decreases (in-
creases) with δt; therefore, one needs to estimate potential lags before
they can be applied.

– There exists a classical procedure to estimate the timing dispersion based
on the Schreiber et al. measure SS (see, e.g., [14]). One computes SS for a
range of values of τS . The value of τS at which SS = 0.5 is considered as an
estimate σS of the timing dispersion. It is important to realize, however,
that since the Schreiber et al. measure SS significantly depends on pd, also
the resulting estimates of timing dispersion will significantly depend on pd

(see Fig. 3(b)). In contrast, the estimate ŝt of the SES parameter st does
not suffer from those shortcomings (see Fig. 2(a)).
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Fig. 3. Sensitivity of the Schreiber et al. measure SS to δt and pd.

4 Firing Reliablity of a Neuron
In this section, we use the (dis)similarity measures to quantify the firing reliabil-
ity of neurons. We consider the Morris-Lecar neuron model [9], which exhibits
properties of type I and II neurons [5]. The spiking behavior differs in both
neuron types, as illustrated in Fig. 4.

In our experiments, the input current of the Morris-Lecar neuron consists
of a baseline, a sinusoidal component, and zero-mean additive white Gaussian
noise. The sinusoidal component forces the neuron to spikes regularly, however,
the precise timing varies from trial to trial due to the Gaussian noise (see Fig. 4).
Our objective is to investigate how the noise affects the spike timing and the
tendency to drop spikes. We are especially interested in how the effect of noise
differs in both neuron types. In type II neurons, the timing jitter is small, but
spikes tend to drop out. In type I neurons, on the other hand, fewer spikes drop
out, but the dispersion of spike times is larger. In other words, type II neurons
prefer to stay coherent or to be silent, on the other hand, type I neurons follow
the middle course between those two extremes [11].

We computed the similarity measures for each pair of 50 trials. Next we
averaged those parameters over all pairs; since there are 50 trials, we have 1225
such pairs in total. A similar approach was followed in [12, 7].

SES results in the estimates (st, ρ) = ((15.2ms)2, 0.029) and (st, ρ) = ((2.7ms)2,
0.27) for type I and type II neurons respectively. This agrees with our intuition:
since in type II neurons spikes tend to drop out, ρ should be large. On the other
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Fig. 4. Raster plots of spike trains from type I (top) and type II (bottom) neurons.

hand, since the timing dispersion of the spikes in type I is large, we expect st to
be large in those neurons.

The results for the other measures are summarized in Fig. 5; it can be seen
that the similarity measures SS and SH are larger for type II neurons than for
type I neurons for small time constants τS and τH , whereas for large time con-
stants, the opposite holds. This can be explained as follows: since the timing
dispersion in type I neurons is fairly large, many spikes of type I neurons will be
treated as non-coincident (non-overlapping) for small τS and τH . On the other
hand, for large time constants, most spikes of type I neurons will be considered
as coincident (overlapping). In contrast, type II neurons have high timing pre-
cision, and therefore, the similarity measures SS and SH grow quickly with the
time constants τS and τH . However, the measures converge to relatively small
values: due to the large number of drop-outs in spike trains of type II neurons,
a substantial amount of spikes are treated as non-coincident; therefore, as the
time constants grow, the similarity measures SS and SH attain smaller values
than in type I neurons.

The results of the Victor-Purpura distance metric DV and the van Rossum
distance metric DR (not shown here) can be understood along the same lines.

As we pointed out earlier, SES adjusts its time scale automatically. The
same holds for event synchronization [10]: one may adapt the time constant τQ

according to (4). With this adaption rule for τQ, we obtained SQ = 0.96 for
type I neurons and SQ = 0.83 for type II neurons. This can be understood as
follows: since for the data at hand, the adaptive time constant τQ is typically
about 50ms or larger, the value of SQ is the lowest in type II neurons due to the
frequent drop-outs.
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Fig. 5. (Dis)similarity of spike trains of type I/II Morris-Lecar neurons.



This analysis underlines an important issue: most classical measures depend
on a time constant, and in many practical situations, it is not obvious how to
choose the “optimal” value of those time constants. Indeed, Fig. 5 suggests that
one should compute the measures for a range of values of the time constants. As
a result, one obtains not just one single measure of similarity, but a similarity
function S(τ). Such function may not always be easy to interpret, compare, or
manipulate in practice. As we pointed out earlier, event synchronization and
SES do not suffer from this shortcoming, since they automatically determine the
appropriate time scale.

5 Conclusions

We compared various classical and recently proposed measures for spike syn-
chrony. We have shown that most measures are not able to distinguish timing
precision and event reliability, with two notable exceptions: with appropriate
choice of parameters, event synchronization quantifies event reliability, indepen-
dently of timing precision; the two SES parameters quantify both timing preci-
sion and event reliability separately. Moreover, all measures require the separate
procedures to estimate potential lags between the point processes, except SES,
which deals with lags in a natural and direct way, and consequently, the SES
similarity measures are robust to lags.
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