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Abstract. A method is proposed to determine the similarity of a col-
lection of time series. As a first step, one extracts events from the time
series, in other words, one converts each time series into a point process
(“event sequence”); next one tries to align the events from those different
point processes. The better the events can be aligned, the more similar
the original time series are considered to be. The proposed method is
applied to predict mild cognitive impairment (MCI) from EEG and to
investigate the dynamics of oscillatory-event synchrony of steady-state
visually evoked potentials (SSVEP).

1 Introduction
The problem of detecting correlations between neural signals (“neural synchrony”)
has recently attracted much attention in the neuroscience community (e.g., [1]).
For instance, it has frequently been reported that abnormalities in neural syn-
chrony lie at the heart of brain disorders such as Alzheimer’s disease (e.g., [2]).

In this paper, we present a method to quantify dynamical interdependen-
cies between a collection of time series (e.g., spike data, EEG or MRI signals;
see Fig. 1). As a first step, we extract “events” from each time series, in other
words, we transform each time series into a point process, i.e., a sequence of
events. Next we try to align the events of each of those point processes. The bet-
ter the point processes can be aligned, the more similar the point processes and
hence the original time series are considered to be. In our method, the similarity
may vary over time.

Our approach is inspired by the “stochastic event synchrony” measures (SES)
of [3], which are also based on event alignment. However, those measures are
only applicable to pairs of signals, in addition, they are not time-dependent.
As a result, they cannot be applied to study the dynamics of neural synchrony.
The proposed technique can deal with collections of signals, moreover, it treats
the similarity parameters as stochastic processes; therefore, it may be used to
investigate how the synchrony of a collection of neural signals evolves over time.

The proposed method makes use of so-called “exemplars”, which are events
that serve as representatives of each cluster; it is related to exemplar-based ap-
proaches for clustering such as affinity propagation [4] and the convex clustering
algorithm of [5]. The exemplar-based formulation allows us to extend the pair-
wise similarity measures of [3] to multivariate similarity measures.



We will use our method to predict mild cognitive impairment (MCI) from
EEG. This application was also investigated in [3], however, the method of [3]
only considers pairwise synchrony; we will quantify the synchrony of multiple
brain areas simultaneously, which improves the sensitivity of EEG to diagnose
MCI and leads to a more detailed understanding of the abnormalities in EEG
synchrony in MCI patients. As a second application, we study the dynamics of
oscillatory-event synchrony of steady-state visually evoked potentials (SSVEP).

This paper is organized as follows. In the following section, we outline the
exemplar-based statistical model for synchrony; in Section 3 we describe how to
perform inference in that model, and we characterize the underlying combina-
torial problem. As an illustration, we apply our method to detect MCI induced
perturbations in EEG synchrony (Section 4), and to analyze the neural syn-
chrony of steady-state visually evoked potentials (Section 5).
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(b) Bump models.

Fig. 1. Similarity of 3 EEG signals (N = 3); from their time-frequency transforms (left),
one extracts bump models (right), which are then aligned by the proposed algorithm.
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Fig. 2. Five bump models on top of each other (N = 5; each model has a different
color); the dashed boxes indicate clusters, the dashed ellipses correspond to exemplars.

2 Exemplar-Based Statistical Model

We consider N signals S1, . . . , SN from which we extract point processes X1, . . . , XN

by some method. Each point process Xi is a list of ni points (“events”) in a given
multi-dimensional set S ⊆ R

M , i.e., Xi = {Xi,1, Xi,2, . . . , Xi,ni
} with Xi,k ∈ S

for k = 1, . . . , ni and i = 1 . . .N . Let us consider the example of bump models [6]
extracted from the time-frequency maps of EEG signals (see Fig. 1). The time-
frequency (“wavelet”) transform of each EEG signal is approximated as a sum of
half-ellipsoid basis functions, referred to as “bumps” [6]; each bump is described
by five parameters: time T , frequency F , width ∆T , height ∆F , and amplitude
W . (In this paper, we use precisely the same procedure and same parameter
settings as in [6] to extract bumps.) How similar are the N resulting bump mod-
els Xi = ((Ti,1, Fi,1, ∆Ti,1, ∆Fi,1, Wi,1), . . . , (Ti,ni

, Fi,ni
, ∆Ti,ni

, ∆Fi,ni
, Wi,ni

))



(with i = 1, 2, . . . , N)? Intuitively speaking, N bump models Xi may be con-
sidered well-synchronized if bumps appear in all models (or almost all) simul-
taneously, potentially with some slowly varying offset in time and frequency. In
other words, if one overlays N more or less resembling bump models (cf. Fig. 2
with N = 5), and removes the potential offsets in time and frequency, bumps
naturally appear in clusters that contain precisely one bump from all (or almost
all) bump models. In the example of Fig. 2, cluster 1, 5 and 6 contain bumps
from all 5 models Xi, cluster 2, 4 and 7 contains bumps from 3, 4, and 2 models
respectively, and cluster 3 consists of a single bump.

This intuitive concept of similarity may readily be translated into a gener-
ative stochastic model. In that model, the N point processes Xi are treated as
independent noisy observations of a hidden “mother” process X̃. An observed
sequence Xi is obtained from X̃ by the following three-step procedure:

1. COPY: generate a copy of the mother bump model X̃,
2. DELETION: delete some of the copied mother bumps,
3. PERTURBATION: alter the position and shape of the remaining mother

bump copies, amounting to the bump model Xi.

As a result, each sequence Xi consists of “noisy” copies of a non-empty subset
of mother bumps. The point processes Xi may be considered well-synchronized
if there are only few deletions (cf. Step 2) and if the bumps of Xi are well
aligned with the corresponding mother bumps (cf. Step 3), apart from some
slowly varying offset in time and frequency. One way to determine the synchrony
of given point processes Xi is to first reconstruct the hidden mother process X̃,
and next to align the point processes Xi with the mother process X̃. Inferring
the mother process is a high-dimensional estimation problem, the underlying
probability distribution typically has a large number of local extrema. Therefore,
we will use an alternative procedure: as in [4], we will assume that each cluster
contains one identical copy of a mother bump, the other bumps in that cluster are
noisy copies of that mother bump. The identical copy, referred to as “exemplar”,
plays the role of “center” or “representative” of each cluster (see Fig. 2).

The exemplar-based formulation amounts to the following inference problem:
given the point processes Xi, we need to identify the bumps that are exemplars
and the ones that are noisy copies of some exemplar. Obviously, this inference
problem also has potentially many locally optimal solutions, however, in contrast
to the original (continuous) inference problem, we can in practice find the global
optimum by integer programming (see Section 3).

We now discuss the above exemplar-based statistical model in more detail.
The number M of mother events X̃m is geometrically distributed with parameter
λ vol(S). Each mother event X̃m for m = 1, . . . , M is uniformly distributed in S.

The noisy copies are modeled as follows. The number Cm of copies is modeled
by a prior p(cm|θc), parameterized by θc, which in turn has a prior p(θc). We
consider as prior for Cm a binomial distribution Bi(ps) with N − 1 trials and
probability of success ps. We adopt a conjugate prior for the parameters ps,
i.e., the beta distribution B(κ, λ). Conditional on the number Cm of copies,
the copies are attributed uniformly at random to other signals Xj, with the



constraints of at most one copy per signal and j 6= i(m); since there are
(

N−1
cm

)

possible attributions Am ⊆ {1, . . . , i(m) − 1, i(m) + 1, . . . , N} with |Am| = cm,

the probability mass of an attribution Am is p(Am|cm) =
(

N−1
cm

)−1
.

The process of generating a noisy copy Xi,r from a mother bump X̃m is
described by a conditional distribution px(xi,r |x̃m; θx

i ). The vectors θx
i may be

treated as random vectors with non-trivial priors p(θx
i ). In the case of bump

models (cf. Fig. 2), we generate copies by shifting the mother bump center while
the other parameters (width, height, and amplitude) are drawn from some prior
distribution, independently for each copy. The center offset may be modeled as a
Gaussian random variable with mean vector (δt,i, δf,i) and diagonal non-isotropic
covariance matrix Vi = diag(st,i, sf,i), and hence, θx

i = (δt,i, δf,i, st,i, sf,i). The
model allows an average offset (δt,i, δf,i) between bump models; even if the
average offset is zero, there may still be random offsets between the exemplars
and their copies (see Fig. 2). We will assume that st,i = st and sf,i = sf for all i.
We adopt improper priors p(δt,i) = 1 = p(δf,i) for δt,i and δf,i respectively, and
conjugate priors for st and sf , i.e. scaled inverse chi-square distributions.

The parameters θ = (θc, θx) might be constant or time-varying. In the latter
case, we make the reasonable assumption that the parameters θ vary smoothly
over time. The prior on θ(t) can then be chosen as:

p(θ(t)) =
1

Z(β)

∏

j

exp

[

βj

∫ T

0

(

d2θj

dt2

)2

dt

]

, (1)

where Z(β) is a normalization constant and βj (for j=1,2,. . . ) is a real positive
number. For later convenience, we will introduce some more notation. The exem-
plar associated to mother event X̃m is denoted by Xi(m),k(m), it is the event k(m)
in point process Xi(m). We denote the set of pairs (i(m), k(m)) by Iex. A noisy

copy of X̃m is denoted by Xj(m),ℓ(m), it is the event ℓ(m) in point process Xj(m)

with j(m) ∈ Am. We denote the set of all pairs (j(m), ℓ(m)) associated to X̃m

by Icopy
m , and furthermore define Icopy △

= Icopy
1 ∪· · ·∪ Icopy

M and I = Iex∪ Icopy;
the latter contains the indices of all exemplars and their copies. In this notation,
the exemplar-based probabilistic model may be written as:

p(X̃, X, I, θ) = p(θc)p(θx)(1 − λ vol(S))λMN−M

M
∏

m=1

δ
(

xi(m),k(m) − x̃m

)

· p(cm|θc)

(

N − 1

cm

)−1
∏

(i,j)∈I
copy
m

px(xi,j |x̃m, θx). (2)

If the point processes X = (X1, . . . , XN ) are well-synchronized, almost all
processes Xi contain a copy of each mother bump X̃m; the sets Icopy

m are either
of size N − 1 or are slightly smaller. In the case of bump models, the variances
st and sf are then small. Note that I specifies the exemplars and their copies,
and as a result, from I one can deduce various properties of the clusters, e.g.,
average number of bumps per cluster; the parameters st and sf are part of the
parameter vector θ. Therefore, given point processes X = (X1, . . . , XN), we wish
to infer I and θ, since those variables contain information about similarity.



3 Statistical Inference

A reasonable approach to infer (I, θ) is maximum a posteriori (MAP) estimation:

(Î, θ̂) = argmax
(I,θ)

log p(X̃, X, I, θ). (3)

There is no closed form expression for (3), therefore, we need to resort to nu-
merical methods. A simple technique to try to find (3) is coordinate descent: We

first choose initial values θ̂(0), and then perform the following updates for r ≥ 1
until convergence:

Î(r) = argmax
I

log p(X̃, X, I, θ̂(r−1)) (4)

θ̂(r) = argmax
θ

log p(X̃, X, Î(r), θ). (5)

3.1 Integer Program

We can write the update (4) as an integer program, i.e., a discrete optimization
problem with linear objective function and linear (equality and inequality) con-
straints; we will omit the details here due to space constraints, and will merely
discuss some general observations. The update (4) is for N = 2 equivalent to bi-

partite maximum weighted matching optimization, a problem that can be solved
in polynomial time, for instance by using the LP relaxation of the corresponding
IP formulation, or by the max-product message-passing algorithm detailed in [3].
We have shown that for N > 2, the combinatorial problem (4) is equivalent to
weighted k-dimensional matching optimization, an NP-hard problem in the gen-
eral case. Therefore, the extension from 2 time series to more than 2 is far from
trivial. In practice (see the applications of Section 4 and 5), we were often able
to solve the corresponding integer program very efficiently (using CPLEX). For
integer programs with more than 10’000 variables and 5’000 constraints, the so-
lution of a given was obtained in less than 1 second on a fast processor (3GHz).
The total running time of the algorithm (iterations of equations (14) and (15)
until convergence) was under 7 seconds on average.

3.2 Parameter Estimation

We now consider the update (5), i.e., estimation of the parameters θ = (θx, θc).

First we treat constant parameters θ. The estimate θ̂(r+1) = (θ̂x(r+1)

, θ̂c(r+1)

) (5)
is often available in closed-form. This is in particular the case for the parametriza-

tion θx
i = (δt,i, δf,i, st, sf ). The point estimates δ̂

(r+1)
t,i and δ̂

(r+1)
f,i are the (sample)

mean of the timing and frequency offset respectively, computed between all noisy

copies in Xi and their associated exemplars. The estimates ŝ
(r)
t and ŝ

(r)
f are ob-

tained similarly. The expression for the parameter ps of the binomial prior for
the number of copies Cm is also straightforward. Now we treat time-varying

parameters θ (cf. (1)). The estimate θ̂(r+1)(t) =
(

θ̂x(r+1)

(t), θ̂c(r+1)

(t)
)

(5) are
usually not available in closed-form. Let us again consider the parametrization

θx
i = (δt,i, δf,i, st, sf ). The point estimates δ̂

(r+1)
t,i are given by:



δ̂
(r)
t,i = argmin

δt,i

∑

k,i′,k′

b̂
(r)
i,k,i′,k′

(

Ti,k − Ti′,k′ − δt,i(Ti′,k′)
)2

ŝ
(r)
t (Ti′,k′)

+ βδt

∫ T

0

(

d2δt,i

dt2

)2

dt,

(6)

where b̂
(r)
i,k,i′,k′ equals one if, according to Î(r) (4), bump Xi,k is considered as

“noisy” copy of the exemplar Xi′,k′ and zero otherwise. Similarly we have:

ŝ
(r)
t,i = argmin

st,i

∑

k,i′,k′

b̂
(r)
i,k,i′,k′

[

log st(Ti′,k′) +

(

Ti,k − Ti′,k′ − δ̂
(r)
t,i (Ti′,k′)

)2

st(Ti′,k′)

]

+ βst

∫ T

0

(

d2st,i

dt2

)2

dt. (7)

Note that the updates (6) and (7) are coupled. The processes δ̂
(r)
t,i and ŝ

(r)
t,i

may be determined jointly by coordinate descent: with an initial guess for ŝ
(r)
t,i one

determines δ̂
(r)
t,i (6), with the resulting estimate δ̂

(r)
t,i one updates ŝ

(r)
t,i through (7),

and so on, until convergence. A similar procedure can be applied to jointly deter-

mine δ̂
(r)
f,i and ŝ

(r)
f,i . The updates (6)–(7) may be solved by a variational approach,

in particular, by solving the associated Euler-Lagrange equations numerically.
However, it is well known that the unique solution of optimization problems of
the form (6) over the space of twice differentiable functions are smoothing cubic
splines [8]. As a result, the expression (6) can be found by cubic-spline smoothing.
This does not apply, however, to the updates (7), since it involves non-quadratic
terms. One option is to solve this expression by numerically integrating the as-
sociated Euler-Lagrange equations, as we pointed out earlier. Alternatively, one
may determine the second-order Taylor expansion of the first term in (7). This
results in quadratic approximations, known as saddle-point or Laplace approx-
imation, of the non-quadratic terms. The solutions of those relaxed variational

problems are smoothing cubic spline. In other words, the expressions ŝ
(r)
t,i and

ŝ
(r)
f,i can be found approximately by cubic-spline smoothing. The latter is much

faster than numerically solving the associated Euler-Lagrange equations, which
is a major advantage. One can derive similar variational problems for the pa-
rameter ps of the binomial prior, which in turn can also be solved practically by
cubic-spline smoothing.

4 Diagnosis of MCI from EEG

As a first application, we consider the problem of diagnosing mild cognitive
impairment (MCI) from EEG. For the sake of comparison, we used the same
EEG data as in [3], i.e., rest eyes-closed EEG data recorded from 21 sites on
the scalp based on the 10–20 system [9] with sampling frequency of 200Hz and
band-pass filter between 4 and 30Hz. The subjects consist of two groups: (i)
22 patients suffering from mild cognitive impairment (MCI), who subsequently
developed mild AD; (ii) a control set of 38 age-matched, healthy subjects who
had no memory or other cognitive impairments. Pre-selection was conducted to



ensure that the data were of a high quality, as determined by the presence of at
least 20s of artifact free data. We aggregated the 21 bump models in five regions
(frontal, temporal left and right, central, occipital) by means of the aggregation
algorithm described in [6], resulting in a bump model for each of those five
regions (N = 5).

A large variety of classical synchrony measures (more than 30 in total) have
in [3] been applied to both data sets with the aim of detecting MCI induced
perturbations in EEG synchrony; none of those classical measures except full
frequency Directed Transfer Function (ffDTF) [7], which is a Granger causality
measure, was able to detect significant loss of EEG synchrony in MCI patients;
note that since we considered many methods simultaneously, we need to apply
Bonferroni postcorrection: the p-values need to be multiplied by the number
of measures. On the other hand, the stochastic-event-synchrony measure ρspur,
proposed in [3], resulted in significant differences between both subject groups
(p = 2.1·10−4). This seems to indicate that there is an increase of unsynchronized
activity in MCI patients.

The results from our exemplar-based approach are summarized in Table 1; we
adopted constant parameters, because time-varying parameters for spontaneous
EEG. We studied the following statistics: posterior distribution p(cm = i|X) =
pc

i of the number of copies of each exemplar cm, parameterized by (pc
0, p

c
1, . . . , p

c
4);

c̄m: average number of copies per cluster; st: variance in time domain (“time jit-
ter”); sf : variance in frequency domain (“frequency jitter”); ∆T̄ : average width
of bumps; ∆F̄ : average height of bumps; F̄ : average frequency of bumps. We
also consider the linear combination hc of all parameters pc

i that optimally sep-
arates both subject groups. Interestingly, the latter statistic amounts to about
the same p-value as the index ρspur of SES [3]. The posterior p(cm|X) mostly
differs in pc

1, pc
2 and pc

4: in MCI patients, the number of clusters of size five (pc
4)

significantly decreases; on the other hand, the number of clusters of size one (pc
1)

and two (pc
2) significantly increases. This explains and confirms the observed

increase of ρspur in MCI patients [3]. Combining hc with ffDTF and ∆T̄ allows
to separate the two groups quite well (more than 90% correctly classified); this
is far better than what can be achieved by means of classical similarity measures
(about 75% correctly classified). Classification rates between 80 and 85% can
be obtained by combining two features. (The classification rates were obtained
through crossvalidation, i.e., the leave-one-out procedure.)

We also verified that the measures pc
i , c̄m, hc, and st are not correlated with

other synchrony measures, e.g., Pearson correlation coefficient, magnitude and
phase coherence, phase synchrony etc. (Pearson r, p > 0.10). In contrast to the
classical measures, they quantify the synchrony of oscillatory events instead of
more conventional amplitude or phase synchrony, therefore, they provide com-

plementary information about EEG synchrony.

Stat. pc
0 pc

1 pc
2 pc

3 pc
4 c̄m hc st sf ∆T̄ ∆F̄ F̄

p-value 0.016 2.9.10−4∗∗
0.089 0.59 0.0054∗ 1.10−3∗∗ 1.10−4∗∗ 0.46 0.28 2.3.10−4∗∗

0.023∗ 2.10−3∗∗

Table 1. Sensitivity of multivariate SES for diagnosing MCI (p-values for Mann-
Whitney test; * and ** indicate p < 0.05 and p < 0.005 respectively).



5 Dynamics of Oscillatory Event Synchrony in SSVEP
As an application of the exemplar-based statistical model with time-varying

parameters, we investigate how EEG synchrony evolves in response to a visual
stimulus. In particular, human scalp EEG was recorded in a dark room while a
subject was exposed to flickering light. The stimulus was a single flashing white
square that flickers at 16Hz during 4 sec, and produces a steady-state response
of the human visual system at the same frequency, referred to as “steady-state
visually evoked potentials” (SSVEP). In total 50 trials were recorded with a
baseline period of 3 sec, stimulation during 4 sec, and a post-stimulation period
of 3 sec during which EEG resumed to the baseline activity. EEG data was
recorded from 64 sites on the scalp, based on the extended 10-20 standard system,
with a sampling frequency of 2048Hz; the EEG was high-pass filtered off-line
with cut-off frequency of 3Hz (Butterworth forward and reverse), next it was
downsampled by a factor of 8. A Biosemi system with average reference was
used. As in Section 4, we aggregated the electrode sites into separate zones (here
9 instead of 5, since we used 64 instead of 21 channels), and extracted a bump
model from each zone by means of the algorithms of [6]. The time-frequency
maps were restricted to the frequency range of SSVEP, i.e., 15–17Hz.

Fig. 3 shows that the timing jitter significantly decreases during stimulation
(t ∈ [3s, 7s]); also the average number of bumps per cluster clearly increases. The
parameters βδt

, βδf
, βst

, and βsf
(cf. (6)(7)) were determined by cross-validation.
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Fig. 3. Time-varying parameters (solid line: average; dashed lines: ± one standard
deviation over the 50 trials).
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