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We extend the Blahut-Arimoto algorithm to continuous memoryless chan-

nels by means of sequential Monte Carlo integration in conjunction with

gradient methods. We apply the algorithm to a Gaussian channel with an

average- and/or peak-power constraint.

INTRODUCTION

We consider the problem of computing the capacity

C(X; Y )
△

= sup
p(x)

∫

x

∫

y

p(x)p(y|x) log
p(y|x)

p(y)
dxdy

△

= sup
p(x)

I(X; Y ) (1)

between the input X and the output Y of a memoryless channel p(y|x) with p(y)
△

=
∫

x
p(x)p(y|x)dx. Both X and Y may be discrete or continuous. If x is discrete,

∫

x
g(x)dx stands for the summation of g(x) over its support.

For memoryless channels with finite input and output alphabets X and Y respec-

tively, the capacity (1) can be computed by the Blahut-Arimoto algorithm [1] [2].

Recently, Matz et al. proposed two Blahut-Arimoto-type algorithms that often

converge significantly faster than the standard Blahut-Arimoto algorithm [3].

Moreover, the Blahut-Arimoto algorithm was recently extended to channels with

memory and finite input alphabets and state spaces [4].

For memoryless channels with continuous input and/or output alphabets, the

Blahut-Arimoto algorithm is not directly applicable. In this paper, we propose

an algorithm for computing the capacity of such channels. It is similar in spirit as

the algorithm we proposed in [5] for computing information rates of continuous

channels with memory; the key idea is again the use of sequential Monte-Carlo in-

tegration methods (a.k.a “particle filters”) [6]. In those methods, probability dis-

tributions are represented as lists of samples (“particles”). In the proposed algo-

rithm, the lists of samples are recursively updated in two steps: first, the weights



of the particles are computed by the Blahut-Arimoto algorithm; then, one deter-

mines the corresponding output distribution p(y), and moves the particles x̂ in the

input space with the aim of increasing the relative entropy D(p(y|x)‖p(y)) (which

is a function of x) between p(y|x) and p(y); this can be done by several iterations

of some gradient method such as steepest descent or the Newton method [9].

The proposed algorithm is related to the algorithm proposed in 1988 by Chang et

al. [7], where, after the weight updates, one determines all local maxima x̂max of

the relative entropy D(p(y|x)‖p(y)); those maxima are then appended to the list

of samples. That algorithm is rather impractical: finding all local maxima of a

function is often infeasible, especially in high dimensions. In addition, there may

be an infinite number of local maxima. Lafferty et al. [8] proposed an alternative

algorithm based on Markov-chain-Monte-Carlo methods. Its complexity grows

quadratically in the number of iterations, whereas the complexity of our algorithm

depends linearly on the number of iterations.

This paper is structured as follows. First, we briefly review the Blahut-Arimoto

algorithm [1] [2] and two recently proposed extensions [3]. We then outline our

particle-based algorithm and shortly discuss a few numerical examples.

REVIEW OF BLAHUT-ARIMOTO-TYPE ALGORITHMS

The Blahut-Arimoto algorithm [1] [2] is an alternating-maximization algorithm

for computing the capacity (1). One starts with an arbitrary probability func-

tion p0(x). At each iteration k, the probability function p(k)(x) is obtained as

p(k)(x) =
1

Z(k)
p(k−1)(x) exp

(

D
(

p(y|x)‖p(k−1)(y)
))

, (2)

where the expression p(k)(y) is defined as

p(k)(y)
△

=

∫

x∈X

p(k)(x)p(y|x)dx, (3)

and Z(k) is a scaling factor

Z(k) △

=

∫

x∈X

p(k−1)(x) exp
(

D
(

p(y|x)‖p(k−1)(y)
))

dx. (4)

If after n iterations

max
x∈X

D
(

p(y|x)‖p(n)(y)
)

− I(n) < ε, (5)



with

I(n) △

=

∫

x∈X

p(n)(x)D
(

p(y|x)‖p(n)(y)
)

dx, (6)

and ε a “small” positive real number (e.g., ε = 10−5), then one concludes with

the estimate Ĉ = I(n).

In 2004, Matz et al. [3] proposed two related algorithms for computing the ca-

pacity of memoryless channels, i.e., the so-called “natural-gradient-based algo-

rithm” and the “accelerated Blahut-Arimoto algorithm”; they often converge

significantly faster than the standard Blahut-Arimoto algorithm.

In the natural-gradient-based algorithm, the density p(k)(x) is recursively updated

by the rule

p(k)(x) = p(k−1)(x)
[

1 + µ(k)
(

D
(

p(y|x)‖p(k−1)(y)
)

− I(k−1)
)]

, (7)

where µ(k) is a step-size parameter. Note that p(k)(x) in (7) is guaranteed to

be normalized. In the accelerated Blahut-Arimoto algorithm, the update rule is

given by:

p(k)(x) =
1

Z(k)
p(k−1)(x) exp

(

µ(k)D
(

p(y|x)‖p(k−1)(y)
))

, (8)

where Z(k) is a normalization constant.

Many channels have an associated expense of using each of the input symbols. A

common example is the power associated with each input symbol. A constrained

channel is a channel with the requirement that the average expense be less than

or equal to some specified number E. The capacity at expense E is defined as [2]

C(X; Y )
△

= sup
p(x)∈PE

∫

x

∫

y

p(x)p(y|x) log
p(y|x)

∫

x
p(x)p(y|x)

△

= sup
p(x)∈PE

I(X; Y ), (9)

where

PE
△

=

{

p : K
m → R :

∫

x

p(x)dx = 1, p(x) ≥ 0,

∫

x

p(x)e(x)dx ≤ E

}

, (10)

and K = R or C. The Blahut-Arimoto can be extended to constrained channels

by replacing recursion (2) by

p(k)(x) =
1

Z(k)
p(k−1)(x) exp

(

D
(

p(y|x)‖p(k−1)(y)
)

− se(x)
)

, (11)



with s a positive real number [2], that is adjusted after each Blahut-Arimoto

update (11) to keep the average expense smaller or equal to E. The two Blahut-

Arimoto-type algorithms of [3] can similarly be extended to constrained memo-

ryless channels.

A PARTICLE-BASED BLAHUT-ARIMOTO ALGORITHM

When X and Y are discrete, the Blahut-Arimoto-type algorithms reviewed in the

previous section are practical. Otherwise, the Blahut-Arimoto updates (cf. (2), (7),

and (8)) can not be carried out as such. We propose the following algorithm to

compute the capacity of continuous memoryless channels:

1. Start with some initial list L(0)
X of particles x̂(0) ∈ X with uniform weights w(0).

2. Compute the weights w(k) of the particles x̂(k) by running a Blahut-Arimoto-

type algorithm [2]–[3] (until convergence) with the particles x̂(k) as input

alphabet.

3. Determine the output distribution p(k)(y) corresponding to the list L(k)
X of

particles x̂(k) with weights w(k).

4. Move the particles x̂(k) in order to increase the relative entropy D(p(y|x)‖p(y))

between p(y|x) and p(k)(y) while keeping p(k)(y) fixed; this may be carried

out by several iterations of steepest descent or the Newton method [9].

5. Iterate 2–4 until convergence or until the available time is over.

After n iterations, an approximation for the capacity (1) may be obtained by

numerical integration (w.r.t. Y ):

Ĉ = I(n) △

= h
∑

x̂(n),ŷ

w(n)p
(

ŷ|x̂(n)
) [

log p
(

ŷ|x̂(n)
)

− log p(n)(ŷ)
]

, (12)

where ŷ ∈ Y are quantization levels. The output distribution p(n)(y) is then

approximated by a histogram with bins of width h, centered at the quantiza-

tion levels ŷ. Note that numerical integration is only feasible for low-dimensional

systems. Alternatively, the capacity (1) may be computed by Monte Carlo inte-

gration, which is also applicable to high-dimensional systems:

Ĉ = I(n) △

=
∑

x̂(n),ŷ(n)

w(n)
[

log p
(

ŷ(n)|x̂(n)
)

− log p(n)(ŷ(n))
]

, (13)



where ŷ(n) are samples from the conditional pdfs p(y|x̂(n)). The output distri-

bution p(n)(y) is then represented as a list of samples. The required evaluation

of p(n)(y) may be performed based on some continuous approximation of p(n)(y)

such as a density tree [10] generated from the samples ŷ(n). The relative entropies

occurring in the Blahut-Arimoto-type updates of Step 2 (cf. (2), (7), and (8)) may

also be computed by numerical or Monte Carlo integration (w.r.t Y ).

If one makes sure that the relative entropy D(p(y|x)‖p(y)) does not decrease

while moving the particles in Step 4 (by using the Armijo rule [9] for example for

determining the step size), then the sequence I(n) is non-decreasing, i.e., I(n+1) ≥

I(n), and the list of particles converges to stationary points of the (non-convex)

relative entropy D(p(y|x)‖p(y)). In the limit of an infinite number of particles,

the sequence I(n) converges to the channel capacity.

NUMERICAL EXAMPLE: GAUSSIAN CHANNEL

By means of the above algorithm, we computed the capacity of a Gaussian channel

described by the equation

Yk = Xk + Nk, (14)

where Xk, Yk, and Nk ∈ R; Nk is independent of Xk and is drawn independently

and identically (IID) from a zero-mean Gaussian distribution with variance σ2
0

Nk ∼ IIDNR(0, σ2
0). (15)

We considered the average-power constraint E[X2] ≤ P and the peak-power

constraint Pr[|X| > A] = 0.

In the simulations, we used 100 particles x̂ and between 100 and 1000 main it-

erations (Step 5), depending on the SNR; each such iteration consisted of 1000

Blahut-Arimoto iterations (Step 2) and 20 steepest descent updates (Step 4).

Other settings of the parameters could be chosen, we spent only little effort in

optimizing the algorithm. Since the problem is one-dimensional, we used numer-

ical integration (w.r.t. Y ) to compute the integrals involved in Step 2 and in the

evaluation of the capacity (cf. (12)). In the future, we plan to tackle higher-

dimensional problems by combining Monte-Carlo integration with density trees,

as explained in the previous section.

The capacity C (in bits) of the Gaussian channel with average-power constraint

is well-known:

C =
1

2
log2

(

1 +
P

σ2
0

)

. (16)



Fig. 1(a) shows the expression (16) together with the capacity values computed

by our algorithm. We defined the signal-to-noise ratio (SNR) as

SNR[dB]
△

= 10 log10

(

P

σ2
0

)

. (17)

The capacity-achieving input distribution is a zero-mean Gaussian distribution NR(0, P )

with variance P . In Fig. 1(b), this distribution is shown together with the particle-

based approximation. Notice that in Fig. 1(a) and Fig. 1(b), the exact and the

numerical results are practically coinciding. The deviation between the numerical

and the exact values of the capacity is about 10−5 bits/channel use. The accuracy

could in fact be improved by increasing the number of particles and iterations.

Fig. 2 and Fig. 3 show the results for the peak-power constrained Gaussian chan-

nel (A = 1). Fig. 2(a) shows the capacity of the channel for several SNR-values,

where the SNR is now defined as SNR[dB]
△

= 10 log10

(

A2

σ2
0

)

. The capacity-

achieving input distribution for this channel is discrete (see e.g., [11] and ref-

erences therein). Note that in our algorithm, we did not (need to) exploit the

fact that the input distribution is discrete. Fig. 2(b) shows the input probability

mass function for several SNR levels: the dots are the constellation points, their

probability mass is encoded in the grayscale (white: p = 0; black: p = 0.5).

As an illustration, the capacity-achieving cumulative input distribution F (x) is

depicted in Fig. 3(a) for SNR = 13dB. Fig. 3(b) shows how the particles explore

the input space during the iterations: initially, the particles are uniformly dis-

tributed in the interval [−1, 1]; they gradually move towards the signal points of

the capacity achieving input distribution.

Fig. 4 shows the results for the average- and peak-power constrained Gaussian

channel (A = 1 and P = 0.5). Fig. 4(a) shows the channel capacity for several

SNR-values, where the SNR is given by (17). In Fig. 4(b), the capacity-achieving

input constellations are depicted.

We also have numerical results for some optical channel models (e.g., Poisson

channel).
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Figure 1: Gaussian channel with average-power constraint.
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Figure 2: Gaussian channel with peak-power constraint.
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Figure 3: Gaussian channel with peak-power constraint (SNR = 13dB).
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Figure 4: Gaussian channel with average- and peak-power constraint.


