
ETH Series

in Diss. ETH No. 16365

Information

Theory

and its

Applications

Volume 17

Hartung

Gorre

Konstanz Hartung-Gorre Verlag, Konstanz, May 2006

On Graphical Models

for Communications and

Machine Learning:

Algorithms, Bounds, and

Analog Implementation

A dissertation submitted to the

Swiss Federal Institute of Technology, Zürich

for the degree of

Doctor of Sciences ETH Zürich

presented by

Justin H. G. Dauwels
ir.

born on November 2, 1977

citizen of Belgium

accepted on the recommendation of

Prof. Dr. Hans-Andrea Loeliger, examiner

Prof. Dr. Shun-ichi Amari, co-examiner

Prof. Dr. Marc Moeneclaey, co-examiner

Dr. Jonathan Yedidia, co-examiner

6HULHV�LQ�6LJQDO�DQG�,QIRUPDWLRQ�3URFHVVLQJ��������������� 9RO����

(GLWRU��+DQV�$QGUHD�/RHOLJHU

%LEOLRJUDSKLF�,QIRUPDWLRQ�SXEOLVKHG�E\�'LH�'HXWVFKH�%LEOLRWKHN

'LH�'HXWVFKH�%LEOLRWKHN�OLVWV�WKLV�SXEOLFDWLRQ�LQ�WKH�'HXWVFKH
1DWLRQDOELEOLRJUDILH��GHWDLOHG�ELEOLRJUDSKLF�GDWD�LV�DYDLODEOH
LQ�WKH�LQWHUQHW�DW�KWWS���GQE�GGE�GH�

&RS\ULJKW����������E\�-XVWLQ�'DXZHOV
)LUVW�(GLWLRQ�����
+$5781*�*255(�9(5/$*�.2167$1=
,661 ��������;
,6%1 �������������

Man muss noch Chaos in sich haben
um einen tanzenden Stern gebären zu können.

(F. Nietzsche)

Science is the belief in the ignorance of experts.
(R. P. Feynman)

Acknowledgments

Above all, I would like to express my deepest gratitude to my “Dok-
torvater” Andi Loeliger. It’s hard not to get infected by Andi’s extra-
ordinary drive and passion for research and his good taste for research
problems. Andi was a great advisor to me, but I’m sure I will never
attain his level of clear thinking. I also wish to thank Andi for giving
me the opportunity to attend numerous international conferences and
workshops and to visit other research groups.

I’m strongly indebted to Jonathan Yedidia for the wonderful time I had
as an intern at MERL under his guidance. I really enjoyed our numerous
discussions at the white board. I also thank Jonathan for sharing with
me his deep insight in the connections between inference and statistical
physics.

Many thanks go to Marc Moeneclaey for giving me several times the
chance to visit his research group. The generous and competent feedback
from Marc and his co-workers has strongly influenced this thesis. In
particular, I would like to thank Henk Wymeersch for sharing with me
his ideas on phase synchronization and channel estimation in general,
and for taking me out to the better restaurants in Gent.

I’m very grateful to Shun-ichi Amari for having agreed to serve as co-
examiner for this doctoral thesis, and for accepting me as a post-doctoral
researcher in this research lab. Domo arigato gozaimashita.

I would like to thank Neil Gershenfeld for arranging my stay at MIT,
introducing me to his extraordinary research group, and for his warm
hospitality.

v

vi Acknowledgments

It was also a great pleasure to share my office with several visitors of our
lab, in particular, Li Ping, Mehdi Molkaraie, and Frank Kschischang.
I’m grateful to Li Ping for patiently explaining to me his inspiring and
truly innovative ideas. I thank Mehdi Molkaraie for the many inter-
esting discussions on statistical physics, and for feeding me with Swiss
chocolate every time I was about to run out of energy. I’m grateful to
Frank Kschischang for his generous advice, his continued support and
encouragement, and his great sense of humor.

I wish to thank Hagit Messer-Yaron for her constructive comments on
this thesis and for pointing out some important references, and Dave
Forney for his encouraging and inspiring feedback on our projects related
to factor graphs.

This thesis strongly benefited from the generosity and wit of my friends
and colleagues. I’m grateful to Sascha Korl for the numerous fruitful
coffee-break discussions, where many ideas of this thesis initiated (and
many others ended in the garbage bin). Special thanks go to Volker
Koch for persistently reminding me of the wise words “In der Ruhe liegt
die Kraft!”—Volker, I will get the point one day— and for the pleasant
time we spent together in and outside the lab. I would like to thank
Ralf Kretzschmar for guiding me through the culinary life of Zurich and
for our interesting discussions on the theory and practice of neural net-
works, Markus Hofbauer for continuously updating me with the hippest
salsa dance steps and grooviest bongo rythms, and all other members of
the Signal and Information Processing Laboratory (ISI) at ETH for be-
ing great colleagues, in particular, Dieter Arnold, Jonas Biveroni, Murti
Devarakonda, Matthias Frey, Qun Gao, Daniel Hoesli, Junli Hu, To-
bias Koch, Patrick Merkli, Natalia Miliou, Stefan Moser, Maja Ostojic,
Stephan Tinguely, Pascal Vontobel, Michèle Wigger, and Daniel Zennaro.

I also would like to thank the staff of the ISI, in particular, Max Duenki
and Patrick Strebel for keeping the UNIX system up and running smoothly,
Bernadette Roeoesli for organizing my traveling, Thomas Schaerer for
patiently and competently answering my silly questions on electronics,
and Francesco Amatore for his kind support in arranging my office.

I’m grateful to my parents for their support and love throughout my life;
without them, none of this would have been possible.

At last, a big kiss to my wife Shoko for too many reasons to list here.

Abstract

This dissertation is about a specific problem and about general methods.
The specific problem is carrier-phase synchronization, which appears in
the context of digital communications. The general methods are message-
passing algorithms operating on graphical models, in particular, factor
graphs. We consider applications of such algorithms in the context of
statistical inference (as in communications, signal processing, and ma-
chine learning), statistics, information theory, and the theory of dynami-
cal systems (such as analog electronic circuits).

The primary motivation for this work was (1) to analyze the degrada-
tion of digital communications systems due to oscillator non-idealities;
(2) the development of synchronization algorithms that minimize this
performance degradation.

Clocks are ubiquitous in digital communications systems; real-life clocks
are noisy, i.e., their signals are not perfectly periodic, which often leads to
a significant degradation of the performance of communications systems.

In the early days of communications, this source of degradation was
only of secondary concern. Communications systems used to operate
far from the ultimate performance bound, i.e., channel capacity. The
main concern was therefore to develop error-correcting techniques that
could close the gap between the performance of practical communications
systems and channel capacity.

With the recent advent of iterative decoding techniques, communications
systems nowadays most often operate close to the ultimate performance
limits; issues such as synchronization, which were earlier only of secon-
dary importance, have now become the mayor (remaining) bottlenecks

vii

viii Abstract

in the design of communications systems.

In this dissertation, we focus on carrier-phase synchronization, i.e., the
alignment of the phase of the local oscillator in the receiver to the phase
of the incoming carrier. The questions we address are:

a) Which physical mechanisms are responsible for phase noise? How
can phase noise be modeled?

b) How can carrier-phase estimation algorithms systematically be deri-
ved?

c) What are the ultimate limits for communication over channels with
phase noise? In particular:

i) How much does the information rate of a communications
channel decrease due to phase noise?

ii) How well can the (noisy) carrier phase be estimated?

In contrast to earlier and parallel work, our aim is not the design and
optimization of fully operating communications systems. In this thesis,
various tools are developed that lead (or may lead) to an answer to the
above questions (and many other related questions).

We give a detailed analysis of phase noise in free-running clocks and
PLLs (Question 1). We propose a simple intuitive model for phase noise
in free-running oscillators. We describe two simple models for passband
communications channels. The models take phase offsets into account
between the received carrier and the local carrier in the receiver, but
disregard timing offsets. In the first model, the phase is constant, in the
second, the phase performs a random walk. We investigate under which
conditions the two models are valid. Most methods of this thesis will be
illustrated by means of both channel models.

Most methods we propose in this dissertation are based on graphical
models, more precisely, factor graphs. Factor graphs are used to visua-
lize the structure of the system at hand. They represent the factoriza-
tion of multivariate functions. Each edge in the graph corresponds to a
variable, each node corresponds to a factor. Factor graphs can represent
any function, in particular, probabilistic models, error-correcting codes,
block diagrams and other common models in communications, signal
processing and beyond.

Abstract ix

We show how factor graphs can be used as a tool to develop practi-
cal estimation and detection algorithms. Our techniques can be applied
to model-based signal processing (e.g., phase estimation) and machine
learning. In particular, we formulate several standard signal-processing
and machine-learning algorithms as message passing on factor graphs,
e.g., particle methods, gradient methods, decision-based methods, and
expectation maximization. In all those algorithms, local rules are applied
at the nodes in a factor graph. In other words, the (global) estimation
and detection problem is tackled by a divide-and-conquer strategy: the
global computation is carried out by multiple (simple) local computa-
tions. The local message-update rules may be used as building blocks
for novel estimation and detection algorithms. By listing the possible
update rules at each node in the factor graph, one can systematically
explore novel algorithms. We demonstrate this idea by deriving phase
estimation algorithms for the constant-phase model and the random-walk
phase model (Question 2). We also show how the back-propagation algo-
rithm for the training of feed-forward neural networks follows by apply-
ing generic message-passing rules. We elaborate on the computation of
kernels in the light of message passing on factor graphs.

We demonstrate how message-passing algorithms for inference can be
implemented as dynamical systems, in particular, as clock-free analog
electronic circuits. Those systems operate in continuous time, and do
not require a digital clock; therefore, they circumvent the problem of
timing synchronization.

We present a numerical algorithm to compute the information rate of
continuous channels with memory (Question 3.a). The algorithm is an
extension of the methods proposed earlier for discrete channels with
memory. Also here, factor graphs and the summary-propagation algo-
rithm are key ingredients. We apply the method to the random-walk
phase model. The algorithms we propose for computing Cramér-Rao-
type bounds open the door to exciting applications of information geo-
metry, such as (1) natural-gradient-based algorithms; (2) the computa-
tion of Fisher kernels.

We propose a numerical algorithm for computing the capacity (or lower
bounds on capacity) of continuous memoryless channels (Question 3.a).
We present numerical results for the Gaussian channel with average-
power and/or peak-power constraints. We outline how the algorithm
can be extended to continuous channels with memory (e.g., channels

x Abstract

with phase noise) by means of message-passing techniques.

We propose message-passing algorithms to compute Cramér-Rao-type
bounds. Cramér-Rao-type bounds are lower bounds on the minimum
mean square estimation error; the bounds may be used to asses the
performance of practical (message-passing) estimation algorithms, in parti-
cular, our phase-estimation algorithms (Question 3.b). The algorithms
we propose for computing Cramér-Rao-type bounds open the door to ex-
citing applications of information geometry, such as (1) natural-gradient-
based algorithms; (2) the computation of Fisher kernels.

Keywords: graphical models, summary-propagation, belief propaga-
tion, message passing, expectation maximization, EM, steepest descent,
particle filter, MCMC, particle methods, Gibbs sampling, importance
sampling, decision-based estimation, iterative conditional modes, ICM,
carrier phase estimation, phase noise, clock jitter, synchronization, Blahut-
Arimoto algorithm, information rate, channel capacity, Cramér-Rao bound,
information matrix, kernel methods, Fisher kernel, product kernel, proba-
bilistic kernel, neural networks, back-propagation algorithm, analog elec-
trical circuits, linear feedback shift register, LFSR.

Kurzfassung

Diese Dissertation beschreibt einerseits ein spezifisches Problem
und andererseits allgemeine Methoden. Das spezifische Problem ist
Trägerphasensynchronisation, welches im Kontext der digitalen Kommu-
nikation auftritt. Die allgemeinen Methoden sind sogenannte “message-
passing” Algorithmen, welche auf graphischen Modellen angewandt wer-
den, insbesondere auf Faktorgraphen. Wir betrachten Anwendungen sol-
cher Algorithmen im Kontext von statistischer Inferenz (wie z.B. in der
digitalen Kommunikation, in der Signalverarbeitung oder im maschi-
nellen Lernen), Statistik, Informationstheorie und der Theorie dynami-
scher Systeme (wie z.B. analoge elektrische Schaltungen).

Die primäre Motivation für diese Arbeit war (1) den Leistungsverlust
digitaler kommunikationssysteme infolge nicht-idealen Oszillatoren zu
untersuchen; (2) die Entwicklung von Algorithmen, welche diesen Leis-
tungsverlust minimieren.

Oszillatoren sind allgegenwärtig in digitalen Kommunikationssystemen;
Signale praktischer Oszillatoren sind verrauscht, d.h., die Oszillator-
signale sind nicht exakt periodisch, was oft zu einem bedeutenden Leis-
tungsverlust der Kommunikationssysteme führt.

In den frühen Tagen der Kommunikation war diese Art von Leistungsver-
lust eher von sekundärer Bedeutung. Die Kommunitionssysteme operier-
ten zu diesen Zeiten weit entfernt von der theoretischen Leistungsgrenze,
d.h., die Kanalkapazität. Die Hauptsache war deswegen Fehlerkorrigie-
rende Methoden zu entwickeln, welche die Lücke zwischen der Leistung
praktischer Kommunikationssysteme einerseits und der Kanalkapazität
andererseits schliessen könnten.

xi

xii Kurzfassung

Mit der jüngsten Entwicklung iterativer Dekodierungsmethoden arbei-
ten die heutigen Kommunikationsysteme nahe an der theoretischen
Leistungsgrenze; Probleme wie Synchronisation, welche zuvor eher von
sekundärer Bedeutung waren, sind heute die wichtigsten (letzten)
Engpässe beim Entwurf von Kommunikationssystemen geworden.

In dieser Dissertation konzentrieren wir uns auf Trägerphasensynchroni-
sation. Darunter versteht man das Synchronisieren der Phase des lokalen
Empfängersoszillators mit der Phase des empfangenen Signals.

Die Fragen welche wir betrachten sind:

a) Welche physikalische Mechanismen sind verantwortlich für Phase-
rauschen? Wie kann Phaserauschen modelliert werden?

b) Wie können Trägerphasenschätzungsalgorithmen systematisch her-
geleitet werden?

c) Was sind die theoretischen Leistungsgrenzen für Kommunikation
über Kanäle mit Phaserauschen, insbesondere:

i) Wieviel nehmen die Informationsraten infolge Phaserauschen
ab?

ii) Wie gut kann die (verrauschte) Tragerphase geschätzt wer-
den?

Im Gegensatz zu früheren und parallelen Arbeiten ist unser Ziel nicht
der Entwurf und die Optimierung von vollfunktionierenden Kommuni-
kationssystemen. In dieser Arbeit werden verschiedene Werkzeuge ent-
wickelt, welche zu Antworten auf die obenstehenden Fragen (und vielen
anderen verwandten Fragen) führen (oder führen könnten).

Wir beschreiben eine detaillierte Analyse von Phasenrauschen in freilau-
fenden Oszillatoren und PLLs (Frage 1). Wir schlagen ein einfaches intui-
tives Modell für Phaserauschen in freilaufenden Oszillatoren vor. Wir be-
schreiben zwei einfache Modelle für Bandpass-Kommunikationskanäle.
Die Modelle berücksichtigen Offsets zwischen der Phase des Empfan-
gersoszillators und der Phase des empfangenen Signals; die Modelle
vernachlässigen aber Timing-Offsets. Im ersten Modell ist der Phase-
Offset konstant, im zweiten Modell wird der Phase-Offset modelliert als

Kurzfassung xiii

ein Random-Walk Prozess. Wir untersuchen unter welchen Bedingun-
gen beide Modelle gültig sind. Die meisten Methoden dieser Dissertation
werden anhand beiden Modellen illustriert.

Viele (wenn nicht alle) Methoden dieser Arbeit sind basiert auf graphi-
schen Modellen, insbesondere Faktorgraphen. Faktorgraphen werden u.a.
verwendet um die Struktur des betrachteten Systems zu visualisieren.
Sie stellen die Faktorisierung multivariater Funktionen dar. Jede Kante
des Graphens entspricht einer Variable, jeder Knoten des Graphens ent-
spricht einem Faktor. Faktorgraphen können beliebige Funktionen dar-
stellen, insbesondere probabilistische Modelle, fehlerkorrigierende Codes,
Blockdiagramme und andere Modelle welche oft in der Kommunikation,
in der Signalverarbeitung und in anderen Gebieten verwendet werden.

Wir zeigen wie Faktorgraphen als ein Werkzeug verwendet werden
können, um praktische Schätz- und Detektionsalgorithmen zu entwi-
ckeln. Unsere Techniken können auf modellbasierte Signalverarbeitung
(z.B. Phaseschätzung) und auf machinelles Lernen angewandt werden.
Wir formulieren verschiedene Standard-algorithmen der Signalverarbei-
tung und des machinellen Lernens als message passing auf Faktorgra-
phen, z.B. Partikelmethoden, Gradientenverfahren, entscheidungsbasier-
te Methoden, und expectation maximization (EM). In diesen Algorith-
men werden lokale Regeln an den Knoten des Faktorgraphen angewandt.
Mit anderen Worten, die globale Schätzaufgabe (oder Detektionsaufga-
be) wird anhand einer teile-und-herrsche Strategie angepackt: die globale
Berechnung wird durch viele (einfache) lokale Berechnungen ersetzt. Die
lokale Regeln können als Bausteine für neue Schätz- und Detektionsal-
gorithmen verwendet werden. Durch dem Auflisten von den möglichen
Aufdatierungsregeln an jedem Knoten des Faktorgraphen kann man sys-
tematisch neue Algorithmen entwicklen. Wir demonstrieren diese Idee für
das konstante-Phasemodell und das Random-Walk Phasemodell (Frage
2). Wir zeigen auch wie der back-propagation Algorithmus für das Trai-
nieren von feed-forward neuronalen Netzwerken als das Anwenden von
generischen Aufdatierungsregeln auf einem geeigneten Faktographen auf-
gefasst werden kann. Wir beschreiben Kernels im Kontext von message
passing auf Faktorgraphen.

Wir zeigen wie message-passing Algorithmen für Inferenz als dynamische
Systeme implementiert werden können, insbesondere als Uhr-freie ana-
loge elektrische Schaltungen. Diese Systeme arbeiten zeitkontinuierlich
and brauchen deswegen keine digitale Uhr; deshalb vermeiden sie das

xiv Kurzfassung

Problem von Zeitsynchronisation.

Wir schlagen eine nummerische Methode vor, um Informationsraten von
kontinuierlichen Kanälen zu berechnen (Frage 3.a.). Der Algorithmus ist
eine Erweiterung einer Methode welche zuvor für diskrete Kanäle vor-
geschlagen wurde. Auch hier sind Faktorgraphen zusammen mit dem
summary-propagation Algorithmus ein wichtiger Bestandteil. Wir wen-
den die Methode auf das random-walk Phasemodell an.

Eine nummerische Methode für die Berechnung von Kapazitäten (oder
den unteren Grenzen für die Kapazität) von kontinuierlichen Kanälen
ohne Gedächtnis (Frage 3.a) wird vorgeschlagen. Wir bieten nummerische
Ergebnisse für den Gauss’schen Kanal mit mittleren- und maximalen-
Leistungsbedingungen an. Wir skizzieren wie der Algorithmus mit Hilfe
von message-passing Methoden auf Kanäle mit Gedächtnis (z.B. Kanäle
mit Phaserauschen) erweitert werden kann.

Wir schlagen message-passing Algorithmen für die Berechnung von
Cramér-Rao-Typ Grenzen vor. Cramér-Rao-Typ Grenzen sind untere
Grenzen für den minimalen mittleren quadratischen Schätzfehler; diese
Grenzen können verwendet werden um praktische (message-passing)
Schätzalgorithmen zu bewerten, insbesondere unsere Phaseschätzer (Fra-
ge 3.b). Die Algorithmen für die Berechnung von Cramér-Rao-Typ Gren-
zen welche wir vorschlagen könnten zu neuen interessanten Anwendungen
der Informationsgeometrie führen, wie z.B. (1) natürlicher-gradienten-
basierte Algorithmen; (2) die Berechnung von Fisher-Kernels.

Stichworte: Graphische Modelle, summary-propagation, belief pro-
pagation, message passing, expectation maximization, EM, steepest
descent, Partikelfilter, MCMC, Partikelmethoden, Gibbs sampling, im-
portance sampling, entscheidungsbasiertes Schätzen, iterative conditio-
nal modes, ICM, Trägerphasenschätzung, Phasenrauschen, clock jitter,
Synchronisation, Blahut-Arimoto Algorithmus, Informationsrate, Kanal-
kapazität, Cramér-Rao Grenze, Informationsmatrize, Kernel-Methoden,
Fisher-Kernel, Produkt-Kernel, probabilistischer Kernel, neuronale Netz-
werke, back-propagation Algorithmus, analoge elektrische Schaltungen,
LFSR.

Contents

Abstract vii

Kurzfassung xi

1 Introduction 1
1.1 Motivation . 1
1.2 How to read this thesis? 4
1.3 Outline . 4

2 Channel Model 9
2.1 Digital Communications System 9
2.2 The Communications Channel 13

2.2.1 Baseband System 13
2.2.2 Passband System 16

2.3 Constant-Phase Model . 20
2.4 Phase Noise . 20

2.4.1 Phase Noise in Free-Running Clocks 27
2.4.2 Phase Noise in Phase-Locked Loops 36
2.4.3 Heuristic Models for Phase Noise 40

2.5 Random-walk Phase Model 41

3 Factor Graphs and Summary Propagation 43
3.1 Factor Graphs . 44
3.2 Summary-Propagation Algorithm 48

3.2.1 Summary Propagation on Factor Trees 48
3.2.2 Summary Propagation on Cyclic Factor Graphs . . 53

3.3 Factor-graph Transformation: Clustering 55

4 Phase-Estimation Algorithms 59

xv

xvi Contents

4.1 Introduction . 60
4.2 Factor Graphs of the System 63
4.3 Sum-Product Message Update Rules 65
4.4 Scheduling . 69
4.5 Numerical Integration . 71

4.5.1 General Idea . 71
4.5.2 Application . 72
4.5.3 Summary . 74

4.6 Particle Methods . 75
4.6.1 General Idea . 75
4.6.2 Gibbs Sampling . 80
4.6.3 Importance Sampling 83
4.6.4 Particle Filtering 86
4.6.5 Markov-Chain Monte-Carlo Methods (MCMC) . . 90
4.6.6 Simulated Annealing 92
4.6.7 Application . 94
4.6.8 Summary . 96

4.7 Adaptive Quantization . 97
4.7.1 General Idea . 97
4.7.2 Application . 99
4.7.3 Summary . 100

4.8 Gradient Methods . 100
4.8.1 General Idea . 100
4.8.2 Iterative Conditional Modes 109
4.8.3 Stochastic Approximation 110
4.8.4 Application . 113
4.8.5 Summary . 119

4.9 Expectation Maximization 120
4.9.1 General Idea . 120
4.9.2 Table of EM update rules 139
4.9.3 EM and compound nodes 143
4.9.4 Hybrid EM . 145
4.9.5 Extensions of EM 162
4.9.6 Gradient EM . 163
4.9.7 Application . 168
4.9.8 Summary . 173

4.10 Results and Discussion . 175
4.10.1 Performance . 176
4.10.2 Convergence . 178
4.10.3 Robustness . 178

Contents xvii

4.10.4 Complexity . 180
4.11 Summary . 187

5 Computing Cramér-Rao-Type Bounds 189
5.1 Introduction . 189
5.2 Overview of Cramér-Rao-Type Bounds 192

5.2.1 Standard Cramér-Rao Bound 193
5.2.2 Bayesian Cramér-Rao Bounds 197
5.2.3 Hybrid Cramér-Rao Bounds 206
5.2.4 Summary . 209

5.3 Cramér-Rao-Type Bounds From Joint Densities 210
5.3.1 Standard Unconditional BCRBs 210
5.3.2 Conditional BCRBs 217
5.3.3 Alternative Unconditional BCRBs 218
5.3.4 Standard CRBs . 219
5.3.5 Hybrid CRBs . 224
5.3.6 Estimation in State-Space Models 226
5.3.7 Cyclic Graphical Models 238
5.3.8 Cramér-Rao-type Update Rules Revisited 252

5.4 Cramér-Rao-Type Bounds From Marginal Densities . . . 261
5.4.1 Standard CRB . 261
5.4.2 Standard Unconditional BCRB 263
5.4.3 Conditional BCRB 265
5.4.4 Alternative unconditional BCRB 265
5.4.5 Hybrid BCRB . 266
5.4.6 Parameter Estimation in State-Space Models . . . 268
5.4.7 Code-Aided Channel Estimation 274

5.5 Summary . 282
5.6 Outlook . 283

6 Computing Information Rates of Continuous Channels
with Memory 287
6.1 Introduction . 287
6.2 Review of Basic Method 288
6.3 A Particle Method . 290
6.4 A Numerical Example . 292
6.5 Summary . 294

7 Capacity of Continuous Memoryless Channels 295
7.1 Introduction . 295
7.2 Review of the Blahut-Arimoto Algorithm and Extensions 297

xviii Contents

7.3 A Particle Method . 300
7.4 Numerical Example: Gaussian Channel 304
7.5 Summary . 309
7.6 Outlook . 309

8 Analog Electronic Circuit for PN-Synchronization 311
8.1 Introduction . 312
8.2 Noisy LFSR Sequences . 313
8.3 ML Estimation, Trellis, and Factor Graphs 314
8.4 The Soft LFSR . 316
8.5 A Continuous-Time Pseudo-Random Generator 320
8.6 A Circuit that Locks onto the Pseudo-Random Signal . . 322
8.7 Some Measurements . 324
8.8 Summary . 328
8.9 Outlook . 328

9 Conclusions and Outlook 331
9.1 Summary . 331
9.2 Outlook . 333

A Estimation and Decision Theory 335
A.1 Estimation theory . 335
A.2 Decision theory . 342

B Notions from Information Theory 347
B.1 Definitions and theorems 348
B.2 Channel capacity . 354

B.2.1 Memoryless channels 354
B.2.2 Channels with memory 356

C Coding Theory 357

D Kernel Methods 361
D.1 Introduction . 361
D.2 Feature Space Interpretation 363

D.2.1 Regression . 363
D.3 Support Vector Machines 365
D.4 On Kernels . 366
D.5 Kernels from Graphical Models 367

D.5.1 Probabilistic Kernel 368
D.5.2 Product Kernel . 368

Contents xix

D.5.3 Fisher Kernel . 369
D.5.4 Discussion . 369

E Neural Networks 373
E.1 Multi-Layer Perceptron 373
E.2 Back-Propagation of Derivatives 377
E.3 Back-Propagation of Derivatives

as Message Passing . 379

F Some Distributions 391
F.1 The Gauss distribution . 391
F.2 The inverted gamma distribution 392

G Gaussian Densities and Quadratic Forms 393

H Kalman Filtering and Related Topics 397
H.1 Introduction to Kalman Filtering 397
H.2 Kalman Filtering: Vector Case 402

I Differentiation under the Integral Sign 407

J Derivation of the EM Update Rules 409
J.1 Mean Estimation . 409

J.1.1 The Scalar Case 409
J.1.2 The Vector Case 410

J.2 Variance Estimation . 410
J.2.1 The Scalar Case 410
J.2.2 The Vector Case 411
J.2.3 Special Forms of V 412

J.3 Coefficient Estimation . 412
J.3.1 The Scalar Case 412
J.3.2 The Vector Case 413
J.3.3 The AR Case . 414

J.4 Joint Coefficient and Variance Estimation 417
J.4.1 The Scalar Case 417
J.4.2 The AR Case . 419

J.5 Finite State Machine . 420
J.6 Computing the expectations

of Table 4.2 . 421
J.6.1 Scalar case . 422
J.6.2 Vector case . 423

xx Contents

K Mathematical Background of Chapter 5 425

L Alternative Message Update Rules for the Soft LFSR 447
L.1 Sum-Product LFSR for Likelihood Ratio Representation . 447
L.2 Max-Product (Max-Sum) Soft LFSR 448
L.3 Analog LFSR by Gershenfeld and Grinstein 449

Abbreviations 451

List of Symbols 453

Bibliography 457

Index 475

About the Author 491

List of Figures

2.1 Digital data transmission over a noisy channel. 10
2.2 Example of a channel diagram. 12
2.3 Baseband signal. 14
2.4 Baseband communications channel. 15
2.5 Timing synchronization in a baseband receiver. 16
2.6 Passband communications channel. 17
2.7 Non-offset modulation. 18
2.8 Carrier and timing synchronization in a passband receiver. 19
2.9 Sampling error due to timing jitter. 22
2.10 Interchannel interference. 23
2.11 Perturbation of the stable orbit. 29
2.12 Timing jitter. 33
2.13 Phase-locked loop. 36
2.14 Phase error in a PLL. 38

3.1 Factor graph of function with/without structure. 45
3.2 An example factor graph. 46
3.4 Equality constraint. 47
3.5 Summary-propagation for computing f(x5). 50
3.6 Summary-propagation for computing f(x2). 50
3.7 The SPA computes two messages along each edge. 50
3.8 Message along a generic edge. 51
3.9 Message out of a leaf node. 51
3.10 Clustering transformation. 57

4.1 Realization of Y in the constant-phase. 61
4.2 Random-walk phase model. 62
4.3 Factor graph of LDPC code and the channel model. . . . 64
4.4 Factor graph of the constant-phase model. 65

xxi

xxii List of Figures

4.5 Factor graph of the random-walk phase model. 65

4.6 Nodes in the graph of the phase models. 67

4.7 Multiply and mapper node. 68

4.8 Message update schedule. 70

4.9 Rectangular integration rule. 71

4.10 Quantized message. 72

4.11 Quantized messages in constant-phase model. 73

4.12 Quantized messages in the factor graph of the random-
walk phase model. 74

4.13 A probability density function f and its representation as
a list of particles. 75

4.14 Message along a generic edge. 76

4.15 Gibbs sampling as message passing. 81

4.16 Gibbs sampling at a generic edge Y 82

4.17 Grouping in the context of Gibbs sampling. 84

4.18 Importance sampling as message passing. 85

4.19 Particle filtering as message passing. 86

4.20 Smoothing by particle methods. 88

4.21 Computing µU
k by importance sampling. 88

4.22 Application of the Metropolis-Hastings algorithm at a generic
edge Y . 91

4.23 Particle filtering in the factor graph of the constant-phase
model. 94

4.24 Particle filtering in the factor graph of the random-walk
phase model. 95

4.25 Adaptive quantization by shrinkage. 98

4.26 A probability density function and its approximation by
a Dirac delta located at its mode xmax. 101

4.27 ML estimation of the phase Θ from non-modulated obser-
vations. 103

4.28 Factor graph of f(θ) = fA(θ)fB(θ). 104

4.29 Generic nodes. 105

4.30 Deterministic mapping h. 108

4.31 ICM at a generic edge Y 110

4.32 Gradient methods for estimating Θ. 111

4.33 SA gradient method for filtering. 112

4.34 SA gradient method for smoothing. 113

4.35 Gradient descent (of sum-product messages) in the factor
graph of the constant-phase model: standard approach. . 114

List of Figures xxiii

4.36 Gradient descent (of sum-product messages) in the factor
graph of the constant-phase model: SA algorithm. 116

4.37 Gradient descent (of sum-product messages) in the factor
graph of the random-walk phase model: standard approach.116

4.38 Gradient descent (of sum-product messages) in the factor
graph of the random-walk phase model: SA algorithm. . . 118

4.39 Factor graph of (4.173). 125
4.40 Factor graph of (4.214). 126
4.41 Factor graph corresponding to (4.183). 129
4.42 The message µ↑(θ) for several values of σ with y = 1. . . . 130
4.43 The (positive) mode θmax of the message µ↑(θ) as a func-

tion of σ2 (with y = 1). 131
4.44 Factor graph of Θ1 = Θ2 = . . . = Θn. 135
4.45 h-message out of a generic node. 137
4.46 h-message out of a node g(x, z, θ) = δ(z − f(x, θ)). 139
4.47 Eliminating variables before applying EM. 146
4.48 Combining the node g(x, z, θ) = δ(z−f(x, θ)) with a conti-

nuous node h. 147
4.49 Hybrid EM. 148
4.50 Hybrid E-rule applied to a deterministic node g(x, z, θ) =

δ(z − f(x, θ)). 149
4.51 A simple hybrid EM algorithm. 150
4.52 Hybrid EM. 155
4.53 A simple hybrid EM algorithm operating on a cyclic sub-

graph fB(x, θ). 156
4.54 State transition node for scalar AR coefficient estimation. 159
4.55 Autoregression. 161
4.56 Factor graph of (4.339) and (4.340). 164
4.57 Steepest descent as summary propagation. 165
4.58 Gradient EM: stochastic approximation. 166
4.59 Generic node g. 167
4.60 Venn diagram depicting the stationary points (SP) of f(θ),

fixed points (FP) of EM, hybrid EM (HEM), and gradient
EM (GEM); for cycle-free subgraph fB(x, θ). 168

4.61 Venn diagram depicting the stationary points (SP) of f(θ)

and f̂(θ), fixed points (FP) of EM, hybrid EM (HEM), and
gradient EM (GEM); for cycle-free and cyclic subgraphs
fB(x, θ). 169

4.62 EM in the constant-phase model. 170
4.63 Steepest descent-EM in the random-walk phase model. . . 172

xxiv List of Figures

4.64 MSE for the constant-phase model. 179
4.65 MSE for the random-walk phase model with σ2

W = 10−4 rad2.180
4.66 FER for the constant-phase model. 181
4.67 FER for the random-walk phase model with σ2

W = 10−4 rad2.181
4.68 Frame error rate for the random-walk phase model with σ2

W

= 10−4 rad2 for the SP-SD-based algorithm, the NI-based
algorithm and the modified NI-based algorithm, where the
upward Θk-messages are represented by a single value. . . 182

4.69 Histograms of the phase estimates θ̂ for the constant-phase
model. 183

4.70 Initial estimate θ̂(0) (obtained by the M-law) vs. (final)

estimate θ̂ obtained after 20 iterations of the EM-based
phase estimator (constant-phase model). 184

4.71 FER of EM-based approach as a function of the iteration
number. 184

4.72 FER of NI-based algorithm as a function of the iteration
number. 185

4.73 FER of the NI-based estimator (for the random-walk phase
model) as a function of the number of quantization levels N .185

4.74 FER as a function of the step size λ (random-walk phase
model). 186

4.75 MSE as a function of the value σR (constant-phase model). 186

5.1 Factor graph of (5.87). 213
5.2 Summary propagation for computing BCRB. 213
5.3 Summary propagation. 216
5.4 Generic node. 220
5.5 Computing the CRB (5.15) by message passing. 221
5.6 Computing the standard unconditional BCRB (5.44) by

message passing. 222
5.7 Computing the CRB for estimating a constant phase. . . 223
5.8 Periodic sawtooth function s(θ) with period 2π; one period

is shown. 224
5.9 Generic node. 225
5.10 Factor graph of (5.173). 228
5.11 Gkk

k · σ2
W as a function of σW 229

5.12 BCRBs for unmodulated random-walk phase model. . . . 230
5.13 BCRB for the MSE averaged over a block of length N = 100.231
5.14 State space model with freely evolving state. 232
5.15 General state-space model. 233

List of Figures xxv

5.16 Factor graph of (5.201)–(5.202). 235

5.17 Factor graph of (5.218) (5.219). 237

5.18 Estimation of (constant) parameters of a state-space model.240

5.19 Estimation of (time-dependent) parameters of a state-space
model. 250

5.20 BCRB update rule. 253

5.21 BCRB update rule (5.327): example. 255

5.22 Factor graph of (5.337)–(5.338). 258

5.23 Clustering and boxing. 259

5.24 Tree representing the AR-model (5.337)–(5.338). 259

5.25 Unconditional BCRB for estimating (constant) parame-
ters of a state-space model. 269

5.26 Unconditional BCRB for estimating (time-dependent) pa-
rameters of a state-space model. 271

5.27 Computing Gaussian messages (along the edges Xk) in
a forward and backward Kalman recursion, for a given
observation vector y, and given parameters a, σ2

W , and σ2
U . 272

5.28 Standard CRB for a with known (dashed) and unknown
(solid) σ2

U and σ2
W . 274

5.29 Standard CRB for a with unknown σ2
U and σ2

W (solid)
together with the MSE of the grid-based algorithm of [100]
(dashed). Also shown is the standard CRB for a with
known σ2

U = 0.1 and σ2
W = 0 (dashed-dotted line). 275

5.30 Hybrid CRB (dashed) and standard CRB (solid). 275

5.31 Standard CRB for σ2
U . 276

5.32 Standard CRB (solid) for σ2
U together with the MSE of

the grid-based algorithm of [100]. 276

5.33 Hybrid CRB (dashed) and standard CRB (solid) for σ2
W . 277

5.34 Standard CRB for σ2
W . 277

5.35 Standard CRB (solid) for σ2
W together with the MSE of

the grid-based algorithm of [100]. 278

5.36 Code-aided channel estimation. 279

5.37 Lower and upper bounds on the BCRB for the modulated
random-walk phase model. 280

5.38 Modified BCRBs for the modulated random-walk phase
model. 281

6.1 Computation of p(yn) by message passing through the fac-
tor graph of (6.2). 289

xxvi List of Figures

6.2 Information rates for the channel (4.1)–(4.2) with i.u.d.
4-PSK input symbols. 293

6.3 Î(X ;Y) as a function of the iteration number k for ten
runs of the particle method (dashed) and ten runs of the
quantization method. 293

7.1 Gaussian channel with constraint E[X2] ≤ 1. 305
7.2 Gaussian channel with constraints E[X2] ≤ 0.5 and Pr[|X | >

1] = 0. 306
7.3 Gaussian channel with constraint Pr[|X | > 1] = 0. 307
7.4 Gaussian channel with Pr[0 ≤ X ≤ 1] = 1. 308

8.1 LFSR sequence observed via a noisy channel. 314
8.2 Factor graph (Forney-style) corresponding to the trellis of

the system in Fig. 8.1. 315
8.3 Forward-only message passing through the factor graph of

Fig. 8.2. 315
8.4 Factor graph corresponding directly to Fig. 8.1. 317
8.5 Computation of messages in Fig. 8.4 by a “soft LFSR”. . 317
8.6 1−Psync(k) for the LFSR withm = 15 (ℓ = 1) at SNR = 0 dB.319
8.7 1 − Psync(k) for the LFSR with m = 31 (ℓ = 3). 319
8.8 1 − Psync(k = 100) vs. SNR for the LFSR with m = 15

(ℓ = 1). 321
8.9 Continuous-time analog to Fig. 8.1 with low-pass filters

instead of delay cells. 321
8.10 Top: example of pseudo-random signal X(t) generated by

the circuit of Fig. 8.9. Middle: noisy signal Y (t) as in
Fig. 8.9 at SNR = 0 dB. Bottom: measured output signal
X̂(t) of the circuit of Fig. 8.11 fed with Y (t). 322

8.11 Continuous-time analog of Fig. 8.5. 323
8.12 Differential transistor pair. 324
8.13 Average squared error vs. time after switching the trans-

mission on. 326
8.14 Average squared error in steady state vs. SNR. 326
8.15 Resynchronization example. 327

A.1 Estimation problem. 335

C.1 Example of a simple linear code. 359

E.1 Two-layer perceptron . 374

List of Figures xxvii

E.2 Sigmoid (left) and tanh (right). 375
E.3 Factor graph representing a feed-forward neural network. 384
E.4 Training of a feed-forward neural network viewed as an

estimation problem. 385
E.5 Additional nodes. 385
E.6 Pre-processing by message passing. 386

E.7 Computing the derivative of the weight W
(2)
ij 386

E.8 Backpropagation as message passing: bottom-top sweep. . 387
E.9 Backpropagation as message passing: top-bottom sweep. . 387
E.10 Backpropagation as message passing: bottom-top sweep

inside the feed-forward neural-network. 388
E.11 Backpropagation as message passing: top-bottom sweep

inside the feed-forward neural-network. 389

H.1 Linear state-space model driven by white Gaussian noise
and observed through AWGN channel. 398

H.2 Backward message in chain rule model. 402
H.3 Use of the composite-block rules of Table H.3. 405

J.1 Factor graph node for a Gaussian distribution with un-
known mean. 409

J.2 Factor graph node for a Gaussian distribution with un-
known variance. 411

J.3 Factor graph of the state transition node for a linear state-
space model. 413

J.4 Factor graph of the state transition node for the vector case.414
J.5 Factor graph of the state transition node for joint coeffi-

cient/variance estimation. 417
J.6 Factor graph node of the state transition node for the finite

state machine. 420

Chapter 1

Introduction

1.1 Motivation

This dissertation is about:

• a particular problem, i.e., carrier-phase synchronization, which ap-
pears in the context of digital communications.

• general methods, i.e., message-passing algorithms operating on graphi-
cal models, in particular, factor graphs. We consider applications
in the context of statistical inference (as in communications, signal
processing, and machine learning), statistics, information theory,
and the theory of dynamical systems (such as analog electronic
circuits).

The primary motivation for this work was (1) to analyze the degrada-
tion of digital communications systems due to oscillator non-idealities;
(2) the development of synchronization algorithms that minimize this
performance degradation.

Clocks are ubiquitous in digital communications systems; real-life clocks
are noisy, i.e., their signals are not perfectly periodic, which often leads to
a significant degradation of the performance of communications systems.

1

2 Chapter 1. Introduction

In the early days of communications, this source of degradation was
only of secondary concern. Communications systems used to operate
far from the ultimate performance bound, i.e., channel capacity. The
main concern was therefore to develop error-correcting techniques that
could close the gap between the performance of practical communications
systems and channel capacity.

With the recent advent of iterative decoding techniques, communications
systems nowadays most often operate close to the ultimate performance
limits; issues such as synchronization, which were earlier only of secon-
dary importance, have now become the mayor (remaining) bottlenecks
in the design of communications systems.

In this dissertation, we focus on carrier-phase synchronization, i.e., the
alignment of the phase of the local oscillator in the receiver to the phase
of the incoming carrier. The questions we address are:

a) Which physical mechanisms are responsible for phase noise? How
can phase noise be modeled?

b) How can carrier-phase estimation algorithms systematically be deri-
ved?

c) What are the ultimate limits for communication over channels with
phase noise? In particular:

i) How much does the information rate of a communications
channel decrease due to phase noise?

ii) How well can the (noisy) carrier phase be estimated?

In contrast to earlier and parallel work, our aim is not the design and
optimization of fully operating communications systems. In this disser-
tation, various tools are developed that lead (or may lead) to an answer
to the above questions (and many other related questions).

Most of the methods we propose in this dissertation are based on graphi-
cal models, more precisely, factor graphs [119] [103] [66]. Factor graphs
are used to visualize the structure of the system at hand. They repre-
sent the factorization of multivariate functions. Each edge in the graph
corresponds to a variable, each node corresponds to a factor. Factor
graphs can represent any function, in particular, probabilistic models,

1.1. Motivation 3

error-correcting codes, block diagrams and other common models in com-
munications, signal processing and beyond.

Factor graphs can be used for statistical inference, i.e., detection and
estimation. Statistical inference is performed by sending messages along
the edges of the graph (“summary propagation” or “message passing”).
Different algorithms are obtained by different message types or different
message-update schedules. We will derive various phase-estimation algo-
rithms within this framework (Question 2). We show how various exis-
ting algorithms can be interpreted as message passing on factor graphs,
e.g., particle methods, decision-based methods, the backpropagation al-
gorithm for the training of feedforward neural networks, etc.

We demonstrate how message-passing algorithms for inference can be
implemented as dynamical systems, in particular, as clock-free analog
electronic circuits. Those systems operate in continuous time, and do
not require a digital clock; therefore, they circumvent the problem of
timing synchronization.

A different application of factor graphs is the computation of informa-
tion rates of (discrete) channels with memory (Question 3.a). As has
been shown in [12], information rates for such channels can be com-
puted by forward-only messaging on the graph of the state-space model
that represents the channel. In this dissertation, we extend this result
to continuous channels. Moreover, we investigate how the capacity of
continuous channels can be computed.

In this dissertation, we will also present an entirely novel application of
factor graphs: the computation of Cramér-Rao-type bounds, which are
lower bounds on the mean squared estimation error. We will compute
those bounds for a communications channel with phase noise (Question
3.b). The algorithms we propose for computing Cramér-Rao-type bounds
open the door to exciting applications of information geometry, such
as (1) natural-gradient-based algorithms; (2) the computation of Fisher
kernels.

Many of the tools we propose in this dissertation are applicable to a much
wider variety of problems than merely phase estimation, i.e., they are not
only applicable to synchronization or other estimation/detection pro-
blems in digital communications, but also to problems in signal process-
ing and machine learning.

4 Chapter 1. Introduction

1.2 How to read this thesis?

This dissertation may be of interest to:

• communications engineers, who want to learn more about (1) algo-
rithmic and information-theoretic aspects of carrier-phase estima-
tion or the problem of channel estimation in general; (2) the design
of clock-free analog circuits for pseudo-noise synchronization, or,
more generally, the implementation of message-passing algorithms
by means of dynamical systems.

• researchers in signal processing and machine learning, who want to
learn more about (1) message-passing algorithms for estimation; (2)
the computation of performance bounds for estimation algorithms;
(3) the connection between, on the one hand, message passing on
graphical models and, on the other hand, neural networks, infor-
mation geometry and kernel machines.

Each chapter of this thesis concerns a specific aspect of the problem at
hand, and can, to a great extend, be read independently of the others.
We provide an introduction to factor graphs and the sum(mary)-product
algorithm in Chapter 2. We recommend the reader who is not familiar
with factor graphs and the sum(mary)-product algorithm to start with
Chapter 2 before reading any following chapter. In the next section, we
outline the content of this thesis and mention our contributions.

1.3 Outline

Channel Model (Question 1)

We give a detailed analysis of phase noise in free-running clocks and
PLLs. We propose a simple intuitive model for phase noise in free-
running oscillators. The model is an alternative to the more sophisticated
analysis by Demir et al. [54] [57] based on Floquet-theory.

We describe two simple models for passband communications channels.
The models take phase offsets into account between the received carrier

1.3. Outline 5

and the local carrier in the receiver, but disregard timing offsets. In the
first model, the phase is constant, in the second, the phase performs a
random walk. We investigate under which conditions the two models are
valid. Most methods of this thesis will be illustrated by means of both
channel models.

Factor Graphs and Summary Propagation

This chapter gives a brief introduction to factor graphs and the summary-
propagation algorithm.

Phase Estimation Algorithms (Question 2)

We show how factor graphs can be used as a tool to develop practical
estimation and detection algorithms. Our techniques can be applied to
model-based signal processing (e.g., carrier-phase estimation) and ma-
chine learning.

In particular, we formulate several standard signal-processing and machine-
learning algorithms as message passing on factor graphs, e.g., particle
methods, gradient methods, decision-based methods, and expectation
maximization. In all those algorithms, local rules are applied at the
nodes in a factor graph. In other words, the (global) estimation and de-
tection problem is tackled by a divide-and-conquer strategy: the global
computation is carried out by multiple (simple) local computations. The
local message-update rules may be used as building blocks for novel es-
timation and detection algorithms. By listing the possible update rules
at each node in the factor graph, one can systematically explore novel
algorithms.

We demonstrate this idea by deriving phase estimation algorithms for
the constant-phase model and the random-walk phase model.

Appendix E and D are strongly based on the results of this chapter.

In Appendix E, we show how the back-propagation algorithm for the
training of feed-forward neural networks follows by applying generic rules
on a suitable factor graph.

6 Chapter 1. Introduction

In Appendix D, we investigate how kernels can be extracted from graphi-
cal models by means of message passing on factor graphs.

The message-passing tools presented in this chapter were developed in
collaboration with Sascha Korl.

Computing Cramér-Rao-type Bounds (Question 3.b)

We propose message-passing algorithms to compute Cramér-Rao-type
bounds. Cramér-Rao-type bounds are lower bounds on the minimum
mean square estimation error; the bounds may be used to asses the
performance of practical (message-passing) estimation algorithms, in parti-
cular, our phase-estimation algorithms. The algorithms we propose for
computing Cramér-Rao-type bounds open the door to exciting applica-
tions of information geometry, such as (1) natural-gradient-based algo-
rithms; (2) the computation of Fisher kernels.

We wish to acknowledge Shun-ichi Amari, Sascha Korl, Frank Kschis-
chang, Amos Lapidoth, and Marc Moeneclaey for inspiring discussions
and useful feedback on the topics of this chapter.

Computing Information Rates of Continuous Channels with
Memory (Question 3.a)

We present a numerical algorithm to compute the information rate of
continuous channels with memory (Question 3.a). The algorithm is an
extension of the methods proposed earlier for discrete channels with
memory [12] [179] [160]. Also here, factor graphs and the summary-
propagation algorithm are key ingredients. We apply the method to the
random-walk phase model.

Capacity of Continuous Memoryless Channels (Question 3.a)

A numerical algorithm is presented for computing the capacity (or lower
bounds on capacity) of continuous memoryless channels. We present
numerical results for the Gaussian channel with average-power and/or
peak-power constraints. We outline how the algorithm can be extended

1.3. Outline 7

to continuous channels with memory (e.g., channels with phase noise) by
means of message-passing techniques.

We wish to acknowledge Sascha Korl and Frank Kschischang for inspiring
discussions on the topic of this chapter.

Analog Clockless Electronic Circuit for PN-Synchronization

This chapter does not address one of the three questions we listed in
the above. Its topic, however, is strongly related to (1) the problem of
synchronization; (2) message passing on factor graphs.

We present an analog electronic circuit that synchronizes to pseudo-noise
sequences. The circuit operates without a digital clock, and avoids there-
fore the problem of timing synchronization. We derive the circuit as mes-
sage passing on a suitable factor graph. In this fashion, we established a
connection between statistical state estimation and the phenomenon of
entrainment.

The results presented in this chapter are based on joint work with Matthias
Frey, Neil Gershenfeld, Tobias Koch, Patrick Merkli and Benjamin Vigoda.
My personal contribution concerns the statistical estimation aspect, and
not the hardware implementation or measurement of the circuit.

Conclusions and Outlook

The last chapter states some concluding remarks and suggestions for
future research.

Appendices

In the appendices, we provide background information concerning es-
timation and detection theory (Appendix A), information theory (Ap-
pendix B), coding theory (Appendix C), kernel methods (Appendix D),
neural networks (Appendix E), and Kalman filtering (Appendix H with
related material in Appendix F and Appendix G). In Appendix I, we
provide necessary conditions for differentiation under the integral sign,
an operation we will often carry out in this thesis.

8 Chapter 1. Introduction

Appendix D also contains some thoughts on how kernels can be derived
from graphical models, in particular, by message-passing methods.

In Appendix E, we in addition show how the back-propagation algo-
rithm for the training of feed-forward neural networks can be derived as
message-passing on factor graphs.

In the Appendices J–L, we provide detailed derivations of some results
presented in this thesis.

Appendix J contains the derivations of the EM update rules listed in
Section 4.9.2.

In Appendix K, we give proofs of lemmas and theorems stated in Chap-
ter 5.

In Appendix L, we derive alternative update rules for the soft-LFSR
presented in Section 8.4.

Chapter 2

Channel Model

In this chapter, we describe the two channel models we will use in this
thesis. The models are simple descriptions of a single-carrier passband
communications system: they take phase offsets into account between
the received carrier and the local carrier in the receiver, but disregard
timing offsets.

We organized this chapter as follows. First, we review some basic notions
from digital communications, with special emphasis on single-carrier
passband communications systems. We present our first model, in which
the phase offset is constant. We then investigate how noise sources such
as thermal and shot noise amount to random fluctuations in oscillator
and clock signals. At the end of this chapter, we formulate the second sig-
nal model, which incorporates random phase fluctuations, i.e., the phase
drift is modeled as a Gaussian random walk. We discuss under which
conditions both models are valid.

2.1 Digital Communications System

In this section, we review some basic concepts from digital communica-
tions. For a classical treatment of this subject, see e.g. [165]. We will
follow the exposition in [203].

9

10 Chapter 2. Channel Model

Channel

Channel
Decoding

Coding

Source
Decoding

Sink

Compressed Source (CS)

Source

Demodulation

Channel

Modulation

Noisy
Medium

Source
Coding

U V

Û Y

Figure 2.1: Digital data transmission over a noisy channel.

Assume that we are interested in transmitting data (such as images,
audio or video signals) from a point A to a point B or that we wish to
store some information that we would like to retrieve later on. In both
cases we desire that the received and the retrieved data is identical to
the data transmitted or stored, or, if errors cannot be avoided, that there
are as few errors as possible.

Fig. 2.1 shows the typical blocks of a model for digital data transmission
over a noisy channel:

• (Source/source coding)
The data we would like to transmit is produced by a source. Its
output can be compressed (losslessly or lossy) by a source coding
scheme to reduce the amount of data to be transmitted. The output
of such a compressed source may for example be modeled as a
binary i.i.d. source. By u = (u1, u2, . . . , uk), where ui ∈ U , we
denote the vector of k consecutive source output symbols.

• (Channel coding)
In order to increase the reliability of the transmission of the sig-
nal through the (noisy) channel, the channel encoder introduces
redundancy to the data coming out of the compressed source.

A trivial form of encoding is to repeat each source symbol m times,
where m is a positive integer. In non-trivial encoding schemes, the
source output vector u of length k is mapped to a vector v =
(v1, v2, . . . , vn) of length n where vi ∈ V . The art of channel coding
is to find a “good” subset C of Vn called codebook or, in short,
code; the elements of C, referred to as the codewords, should be as

2.1. Digital Communications System 11

far “apart” from each other as possible.

For more information on coding, we refer the reader to Appendix C.

• (Modulation/noisy medium/demodulation)
The noisy medium is the physical medium that is used to send the
data from the transmitter to the receiver. In wireless transmis-
sion, the data is transmitted in free space;1 other media are wire
lines, optical fiber cables, and magnetic materials (as, e.g., in hard
drives). The medium corrupts the signal by a variety of mecha-
nisms as for example (1) thermal noise and shot noise generated by
electronic devices; (2) interference with background signals, such
as signals stemming from other users or power-line signals.

Before the data v can be sent over the noisy medium, it must
be converted into analog waveforms that match the characteristics
of the medium; this is the task of the modulator. Typically, the
code symbols v are first converted into channel symbols x. This
conversion is generally referred to as line encoding. The channel
symbols x are modulated on analog waveforms. At the receiving
end of the communications system, the demodulator transforms
the received (analog) signal into a sequence y of symbols.

The concatenation of the three blocks modulation, noisy medium,
and demodulation is called the communications channel (or chan-
nel for short). A communications channel is characterized by the
channel law PY|X(y|x) which is the conditional probability of y
given x.

When the output yk of the channel solely depends on the current
input xk and is conditionally independent of previous inputs and
outputs, then the channel is called “memoryless”. The channel law
PY|X(y|x) can then be written as

PY|X(y|x)
△

=

n∏

k=1

PY |X(yk|xk), (2.1)

under the assumption that the channel is used without feedback.
The channel is thus fully characterized by the conditional proba-
bility function PY |X and can be represented by a diagram as in

1We remind the reader of the fact that free space is not a medium in the physical

sense. We use the word “medium” here in a more abstract sense, as is standard in
the communications literature.

12 Chapter 2. Channel Model

pY |X(yk|xk)

0

1

0′

1′

1′′

yk ∈ Y

pY |X(0′′|0)

pY |X(1′|0)

xk ∈ X

0′′

Figure 2.2: Example of a channel diagram.

Fig. 2.2. An example of memoryless channel model is the addi-
tive white Gaussian noise channel with binary (BI-AWGNC) or
continuous (C-AWGNC) inputs. The input to the BI-AWGNC is
±1, the output is a real number, and the quality of the channel is
characterized by the variance of the additive white Gaussian noise;
in the C-AWGN channel, the input is a real number.

The efficiency of the information transmission over the channel is
quantified by the transmission rate R (in bits per channel use)
defined as the ratio

R
△

=
log2 |C|
n

=
k log2 |U|

n
. (2.2)

We provide more information about the channel in Section 2.2.

• (Channel decoding)
The sequence y is passed to the channel decoder, which tries to
eliminate errors that might have occurred during transmission;
thereby, it exploits the redundancy contained in the received data.
Based on the observation y our estimate about u is û = (û1, . . . , ûk)
of length k with ûi ∈ U . Instead of estimating u, we are possi-
bly interested in an estimate v̂ = (v̂1, v̂2, . . . , v̂n) about v, where
v̂k ∈ V . Channel decoding is the art of finding a “good” and effi-
cient decoding algorithm for a given channel code and a given chan-
nel. By “good” we mean that the probability of error Pr[u 6= û]
should be as small as possible.

• (Source decoding/sink)
The source decoder uncompresses û and delivers the result to the
final destination (“sink”).

2.2. The Communications Channel 13

2.2 The Communications Channel

We defined the channel as the concatenation of modulation, the noisy
medium, and demodulation (see Fig. 2.1); the modulator transforms the
digital information into analog waveforms, which are transmitted over
the noisy medium, and converted back into a sequence of symbols by the
demodulator at the receiver side.

Two major classes of analog waveforms are baseband and passband
signals, each leading to substantially different transmitter and receiver
structures. Baseband signals are pulse trains, the information is encoded
in the amplitude of the pulses. They are used in applications such as Inte-
grated Services Digital Networks (ISDN), Local Area Networks (LANs),
and digital magnetic recording systems. In passband communications
systems, a baseband signal is modulated unto a sinusoidal carrier, such
that the resulting waveform fits into the frequency range available for
transmission. In radio, wireless and satellite communications systems,
information is transmitted by means of passband signals.

In the following, we briefly outline both classes of communications sys-
tems; we refer to [165] for more detailed information. We will assume
that the channel code C is binary. We will use the symbol b (instead
of v) for the encoded bits. We will also assume that the noisy medium
solely adds white noise n(t) to the transmitted signal s(t). The received
signal is then given by

r(t) = s(t− τC) + n(t), (2.3)

where τC is the delay of the channel.

2.2.1 Baseband System

A rudimentary block diagram of a baseband communications system is
depicted in Fig. 2.4.

Modulation
The line encoder maps sequences of log2M encoded bits bk to channel
symbols xk taking value in {±1,±3, . . . ,± (M − 1)}. The sequence x of
channel symbols passes through a linear filter (transmit filter) with im-
pulse response gT (t). The resulting (base-band) waveform (see Fig. 2.3)

14 Chapter 2. Channel Model

has the form

sBB(t) =
∑

k

xk gT (t− kT), (2.4)

where T is the inverse of the symbol rate. The signal sBB(t) is transmit-
ted over the noisy medium.

sBB(t)

t/T

k k+1

xk+1 = −1

xk = 1

Figure 2.3: Baseband signal.

Demodulation
The received signal is processed by a linear filter (receiver filter or

“matched filter”) whose impulse response gR is given by gR(t)
△

= gT (τR−
t), where τR is a chosen such that gT (τR − t) is a causal function.

In addition, the convolution h(t)
△

= [gT ⋆ gR](t − τR) often satisfies the
first Nyquist criterion

h(kT) =

{
1 for k = 0
0 for k 6= 0.

(2.5)

An extensively used class of functions that satisfy (2.5) are the raised
cosine pulses

h(t) =
sin(πt/T)

πt/T

cos(απt/T)

1 − 4α2t2/T 2
, (2.6)

where the parameter α is called the roll-off factor and satisfies 0 < α ≤ 1.

The output of the matched filter is sampled at a rate 1/T ; the line
decoder converts the samples in the sequence y, which will be further
processed by the channel decoder.

2.2. The Communications Channel 15

Channel
Noisy

Demodulation

Encoder
Transmit

Decoder
Line

Filter

Line

Receiver

Filter

Modulation

Y

X

Figure 2.4: Baseband communications channel.

We investigate the signals in the baseband receiver in more detail. The
received waveform r(t) is given by

y(t) =
∑

ℓ

xℓ gT (t− ℓ T − τC) + n(t), (2.7)

and the output of the receiver filter equals

ỹ(t) =
∑

ℓ

xℓ h(t− ℓ T − τC − τR) + ñ(t), (2.8)

where ñ(t)
△

= [n ⋆ gR](t). The signal ỹ(t) is sampled at the instances t =
τ̂ + kT resulting in the samples

yk =
∑

ℓ

xℓ h(τ + (k − ℓ)T) + nk, (2.9)

where nk = ñ(τ̂ + kT), yk
△

= ỹ(kT), and τ
△

= τ̂ − τR − τC is the timing
offset. If

τ̂ = τideal
△

= τR + τC , (2.10)

the timing offset τ equals 0, and as a consequence of the first Nyquist
criterion (2.5), the expression (2.9) simplifies to

yk = xk + nk. (2.11)

The sample yk then only depends on the channel symbol xk; otherwise,
it is (in principle) affected by all channel symbol c (cf. (2.9)), an effect
called “inter-symbol interference” (ISI). In many practical receivers, a

16 Chapter 2. Channel Model

timing-synchronization algorithm (see Fig. 2.5) tries to align the sam-
pler to the incoming signal in order to circumvent ISI. However, (small)
deviations between τ̂ and τideal are unavoidable. An alternative approach
is not to adjust τ̂ at all, but to use a free-running sample clock instead.
The timing offset τ is then estimated from the samples r, and the ISI is
compensated for by digital signal processing.

Filter
Receiver

Timing
Sync

Decoder
Line

Figure 2.5: Timing synchronization in a baseband receiver.

2.2.2 Passband System

Fig. 2.6 shows a basic block diagram of a (single-carrier) passband com-
munications system.

Modulation
Channel symbols x are passed through a linear filter gT (t); the resul-
ting baseband signal sBB(t) is modulated onto a sinusoid c(t) with fre-
quency fC

c(t)
△

= ej2πfC t, (2.12)

amounting to the passband signal sPB(t)

sPB(t) = Re
{
sBB(t)ej2πfC t

}
. (2.13)

Before the signal sPB(t) is transmitted over the communications channel,
it is fed into a bandpass filter.

Depending on the structure of the baseband signal sBB(t), one distin-
guishes two different classes of passband modulation schemes: non-offset
modulation and offset modulation. In non-offset modulation, the
baseband signal sBB(t) has the form

sBB(t) =
∑

k

xk gT (t− kT), (2.14)

2.2. The Communications Channel 17

Channel
Noisy

Encoder

Decoder
Line

Filter

Line

Receiver

×

Filter

Low-pass

Band-pass

Filter

Modulation

Demodulation

baseband

baseband

×

Transmit

Filter

Y

c(t)
X

cL(t)

Figure 2.6: Passband communications channel.

where gT (t) is the signaling pulse. Quadrature amplitude modulation
(QAM) and phase shift keying (PSK) are the two most wide-spread non-
offset modulation schemes. With QAM modulation, xk in (2.14) has the
form

xk = ak + jbk (2.15)

with ak and bk belonging to {±1,±3, . . . ,±(M − 1)}. With PSK, we
have

xk = ejαk , (2.16)

with αk ∈ {0, 2π/M, . . . , 2π(M − 1)/M}. In offset modulation, the
baseband signal sBB is given by

sBB(t) =
∑

k

akgT (t− kT) + j
∑

k

bkgT (t− kT − T/2). (2.17)

In offset quadriphase modulation (OQPSK), which is the most common
offset modulation scheme, ak and bk in (2.17) take values ±1 (as in 4-
QAM).

The encoded bits b can be mapped to (channel) symbols x in a number
of ways. The most common mapping is Gray encoding, where adja-
cent (M -ary) signal amplitudes differ by one binary digit, as illustrated
in Fig. 2.7. The most likely errors caused by noise involve the erroneous
selection of an adjacent amplitude to the transmitted amplitude xk. In
such a case, only a single-bit error occurs in the M -bit sequence.

Demodulation
The received signal is first processed by a pre-filter (not shown in Fig. 2.6)

18 Chapter 2. Channel Model

to eliminate out-of-band noise. Its output is down-converted to a base-
band signal: first, it is multiplied by a local carrier cL(t), then it is
passed through a low-pass filter. The output of this filter is processed by
a baseband-receiver.

00

10

11

01

ak

bk

11

10 00

01

ak

bk

Figure 2.7: Non-offset modulation.
(left) 4-PSK; (right) 4-QAM, a.k.a Q(uadrature) PSK.

We now have a closer look at the signal processing in the passband re-
ceiver. We consider non-offset modulation, the extension to offset modu-
lation is straightforward. We merely focus on carrier synchronization and
put aside timing synchronization, since it has been considered previously.

The output of the low-pass filter in Fig. 2.4 can be represented as the
complex signal

y(t) = ej(2πνt+θ)sBB(t) + ñ(t), (2.18)

where

• ñ(t) is low-pass noise, whose bandwidth is usually much wider than
the bandwidth of the baseband signal sBB(t).

• ν
△

= fR − fL is referred to as the carrier frequency offset,

• fL is the frequency of the local reference and fR is the frequency
of the incoming carrier; due to the Doppler effect and clock insta-
bilities2, the frequency fR may differ from fC , the frequency of the
transmitted carrier,

• θ
△

= θL − θR − 2πfR τ is a phase offset,

2We address clock instabilities in Section 2.4.

2.2. The Communications Channel 19

• θL and θR is the phase of the local reference and the incoming
carrier respectively,

• we assumed that the low-pass filter has a unity frequency response
for the low-pass signal components.

The output of the receiver filter ỹ(t) = [gR ⋆ y](t) is given by

ỹ(t)
△

=
∑

ℓ

xℓ

∫ ∞

0

ej(2πν(t−t′)+θ)gT (t− t′ − ℓ T − τC)

gT (τR − t′)dt′ + m̃(t), (2.19)

where m̃(t)
△

= [gR ⋆ ñ](t). The expression (2.19) can be approximated as

ỹ(t) ≈ ej(2πνt+θ)
∑

ℓ

xℓ h(t− ℓ T − τC − τR) + m̃(t), (2.20)

as long as the phase θ(t)
△

= 2πνt+ θ varies only little over a time interval

of length T . Sampling ỹ(t) at the “ideal” instances t = τideal + kT
△

=
τR + τC + kT yields

yk = ej(2πν(τideal+kT)+θ)xk + nk, (2.21)

where nk = ñ(τideal + kT). Note that carrier offsets (in contrast to
timing offsets) do not lead to inter-symbol interference, as long as the
phase offset remains small. Most passband receivers are equipped with
algorithms to track the carrier offsets ν and τ , as depicted in Fig. 2.8.3

In addition, they often contain algorithms to correct for timing offsets.

Decoder
Line

Filter
Receiver ×

Timing Carrier
SyncSync

Filter
Low-pass

Figure 2.8: Carrier and timing synchronization in a passband receiver.

3The picture shows one possible architecture; there is a large variety of classical
synchronization schemes, see [135] [136].

20 Chapter 2. Channel Model

2.3 Constant-Phase Model

We propose a first simple stochastic model for a single-carrier communi-
cations systems.

Constant-phase model:

Yk = Xke
jΘ +Nk (2.22)

with Θ ∈ [0, 2π) and
Nk ∼ N0,σ2

N
. (2.23)

The above model is a stochastic model, its variables (e.g., Θ) are random
variables. We use capital letters to denote random variables and small
letters for their realizations.

The model (2.22) (2.23) is valid if

a) a timing-synchronizer tracks the timing offsets, and hence the ex-
pression (2.21) is a good description of the received symbols yk,

b) the frequency offset ν = 0,

c) the phase offset θ
△

= θL − θR − 2πfR τ is constant.

The last assumption is typically not met. The phase offset often un-
dergoes random fluctuations. In the following section, we study how
noise sources such as thermal, shot and flicker noise amount to phase
instabilities. In Section 2.5, we present a simple model that takes those
instabilities into account.

2.4 Phase Noise

Clock and oscillator signals that occur in communications systems are
not perfectly periodic. Practical clocks, such as CMOS LC-oscillators for
example (see e.g., [98] [64] [215]), are affected by phase and frequency
instabilities called phase noise. This is even the case for high-precision

2.4. Phase Noise 21

frequency sources such as quartz oscillators, masers and passive atomic
frequency standards [135, p. 142].

Since we are interested in modeling the impact of phase offsets in pass-
band systems, it is of crucial importance to have a good understanding
of the random fluctuations in the phase of an oscillator. In this section,
we present several models for phase noise in free-running and forced os-
cillators.

The oscillator output is typically perturbed by short-term and long-term
instabilities. Long-term instabilities, also known as drifts or trends, may
be due to aging of the resonator material (e.g., in quartz oscillators).
These usually very slow changes are much less critical than the short-
term instabilities, caused by noise sources such as thermal, shot, and
flicker noise in electronic components. The oscillator output may also
interfere with other signals. For example, in highly integrated oscilla-
tor circuits, switching signals from the digital portion of the circuit can
couple with the clock signal through the substrate or power supply lines
(see e.g., [81]). This kind of interference can often be avoided by careful
system design.

Phase noise degrades the performance of communications systems, as
we illustrate by two examples. The transitions in an oscillator signal are
sometimes used as a time reference (e.g., the sampler clock in a baseband
receiver). The spacing between those transitions is ideally constant; in
practice, however, they will be variable due to phase noise (see Fig. 2.12).
The randomness in the transition times, called timing jitter , has a harm-
ful effect on the sampling process, as illustrated in Fig. 2.9: the un-
certainty in the sampling times translates directly to uncertainty in the
sampled value.

Phase noise also has a deteriorating influence on the down-conversion in
passband receivers (see Fig. 2.10). The power spectral density of a peri-
odic signal (with period Ts) consists of Dirac deltas located at the har-
monics k/Ts (k = 1, 2, . . .). Due to phase noise, power “leaks” from the
harmonics to neighboring frequencies: the Dirac deltas becomes smooth
“bumps”, centered at the harmonics. As a consequence, background
signals in the frequency band adjacent to the incoming data signal are
down-converted and interfere with the desired baseband signal (2.18).
This phenomenon is called interchannel interference.

22 Chapter 2. Channel Model

t

s(t)

Timing jitter

Sampling error

Figure 2.9: Sampling error due to timing jitter.

Oscillators are omnipresent in communications and optical systems and
as a consequence, phase noise has been studied intensively in the past.
Nevertheless, a generally accepted model for phase noise does not seem
to exist. The same holds for flicker noise, despite of its ubiquity. The
modeling of phase noise, in fact, of noise in general, remains a very active
research field.

In the following, we briefly review the three most common noise sources:
thermal, shot and flicker noise. We derive a simple model for phase
noise in free-running oscillators, i.e., oscillators that are not locked unto
a reference. Our aim is to gain some insight, not to derive a complete
theory. We review some modeling approaches that have been proposed in
the literature, for free-running clocks and for phase-locked loops. At the
end of this section, we discuss simple heuristic models for phase noise.

Common noise sources

• (Shot noise)
Shot noise consists of random fluctuations of electric currents in re-
sistors, pn-junctions, transistors, and other electronic devices. The
fluctuations are due to the fact that an electric current is carried by
discrete charges (electrons and holes). The power spectral density
of this (additive) noise source is constant for a very large frequency
range (tens of hertz to gigahertz). It can be represented as a zero-

2.4. Phase Noise 23

f

f

f

Bandpass signal

Received signals

Interference

Adjacent signal

Desired signal

Desired signal

Local oscillator

fL ≈ fR

fR

Figure 2.10: Interchannel interference.

mean white noise source with spectral density

Sshot(f) = 2qI, (2.24)

where q is the electron charge, I the (average) current and f the fre-
quency. The expression (2.24) can be derived as follows.4 The flow
of electrical charges through some spatial section can be modeled as
a random pulse train. The corresponding (stochastic) current I(t)
is of the form:

I(t) =
∑

k

qδ(t− tk), (2.25)

where tk is the arrival time of the k-th carrier, and q is the charge
of each carrier. We model the arrival of the carriers as a Poisson
process with rate λ. The signal I(t) is an i.i.d. stochastic process
with mean

I
△

= E
[
I(t)

]
= λq. (2.26)

4We follow in part the exposition in [175]; a more detailed microscopic model can
be found in [218, pp. 54–68].

24 Chapter 2. Channel Model

The shot noise, i.e., the random fluctuations around the average
current I(t), is given by the zero-mean current Ĩ(t):

Ĩ(t)
△

= I(t) − I. (2.27)

The power spectral density of Ĩ(t) follows from Carson’s theo-
rem [218, pp. 22–23].

Theorem 2.1. (Carson’s theorem)
Let x(t) be defined as follows:

X(t) =
∑

k

Ak g(t− tk), (2.28)

where Ak are i.i.d. random variables, the function g(t) (“pulse”)
has the Fourier transform G(f), and the number of pulses in a
given time interval is Poisson distributed with rate λ. The power
spectral density of X(t) is given by

Sx(f) = 2λE
[
A2
]
|G(f)|2 + 4πE2[x]δ(f). (2.29)

We apply Carson’s theorem to the signal Ĩ (2.27) with Ak = q and
G(f) = 1, and obtain:

Sx(f) = 2λq2 (2.30)

= 2qI, (2.31)

which is the spectral density (2.24).

• (Thermal noise)
A conductor in thermal equilibrium with its surroundings exhibits
random fluctuations even when no (average) current is flowing
through it. These fluctuations were first observed by Johnson in
1928 [92], and shortly afterwards, Nyquist proposed a theoretical
explanation [154]. This noise source is often called Johnson-Nyquist
noise (or “thermal noise”). The power spectral density of the open-
circuit voltage and closed-circuit current is given by

Sv,thermal(ω) = 4kBTR and Si,thermal(ω) = 4kBT/R (2.32)

respectively, where kB is the Boltzmann constant, T is the equi-
librium temperature and R is the resistance. In most standard

2.4. Phase Noise 25

accounts on noise, thermal noise and shot noise are treated as fun-
damentally different physical processes. Sarpeshkar and al. [175]
have shown that both noise sources are in fact the result of one
and the same physical mechanism, i.e., the discrete nature of charge
transfer; we shortly review the line of thought in [175].

If no voltage is applied across a resistor, electrons flow in the re-
sistor due to diffusion. The resulting forward and backward cur-
rent If (t) and Ib(t) can be modeled as Poisson processes. Both
currents cancel on the average, since the total average current is
assumed to be zero. If the currents If (t) and Ib(t) are statistically
independent, they generate shot noise with total power spectral
density Sshot(f) = 2q(If + Ib) (cf. (2.24)), where If and Ib are the
average forward and backward current respectively. The latter are
proportional to the concentration of the carriers n and to the area
of the cross section, and inversely proportional to the length L of
the resistor:

If = Ib = qDnA/L, (2.33)

where D is the so-called diffusion constant. By means of (2.33) and
Einstein’s relation D/µ = kT/q, where µ is the mobility constant,
the noise power can be written as:

Sshot(f) = 2q(If + Ib) (2.34)

= 4q2DnA/L (2.35)

= 4(qµn)kTA/L (2.36)

= 4kTσA/L (2.37)

= 4kT/R (2.38)

= Si,thermal(ω), (2.39)

where σ is the conductivity of the material. The key step in the
derivation is the use of Einstein’s relation (cf. (2.36)). We obtained
thus Johnson’s and Nyquist’s result (2.32) for the power spectral
density of short-circuit noise in a resistor. In other words, thermal
noise is nothing but shot noise, originating from the discreteness of
the forward and backward current.

• (Flicker noise)
In a large variety of unrelated systems, signals have a power spec-
tral density that is proportional to 1/f at low frequencies f . Such
signals are called “1/f noise” (or “flicker noise” or “pink noise”).

26 Chapter 2. Channel Model

Examples include music and speech, the current through ion chan-
nels, network and freeway traffic, currents and voltages in electronic
devices, etc. (see [95] and references therein). Whereas thermal
and shot noise are fairly well understood, there is still quite some
controversy around 1/f noise. Recently, Kaulakys et al. [95] [96]
proposed a simple and generic mathematical description for this
type of noise—in our opinion, the most plausible and promising
of all approaches we are aware of. Kaulakys et al. argue that the
origin of 1/f noise lies in Brownian fluctuations of the interevent
time of signal pulses. In the following, we briefly review Kaulakys’
model [95] [96].

We consider again a signal x(t) of the form (2.28). The pulse
shape g(·) mainly influences the high-frequency portion of the power
spectral density, and is not responsible for 1/f noise. Fluctuations
in the pulse amplitude ak usually result in white or Lorentzian
noise, but not 1/f noise. For the purpose of this analysis, we re-
strict ourselves to the noise due to correlations between the transit
times tk: we choose a Dirac delta as pulse shape and assume that
the pulse amplitude is constant, i.e., ak = a, for all k, resulting in
the signal x(t):

x(t) =
∑

k

aδ(t− tk). (2.40)

This model corresponds to the flow of identical point objects such as

electrons, photons, etc. Suppose now that the recurrence times τk
△

=
tk − tk−1 follow a first-order autoregressive model:

τk = τk−1 − γ(τk−1 − τ̄) + σnk, (2.41)

where σ (“noise variance”) and γ (“damping factor”) are “small”
positive real numbers, nk is an i.i.d. Gaussian random variable
with zero mean and unit variance, and τ̄ is the steady state value
of τk. Note that for large k the variance of the interevent time τk
converges to a finite value:

Var[τk] = σ2/(2γ). (2.42)

In [95] it is shown that the power spectral density of the sig-

nal x(t) (2.40) with interevent times (2.41) for t ≫ γ−1 and f2
△

=√
γ/(πσ) > f > f1

△

= γ3/2/(πσ) has the form

S(f) = I2α

f
, (2.43)

2.4. Phase Noise 27

where I = a/τ̄ and α is a dimensionless constant:

α =
2√
π
Ke−K2

, (2.44)

with K = τ̄
√
γ/σ. The model amounts to a 1/f spectrum in a wide

frequency range (f1, f2) with f2/f1 = γ−1. As a result of the non-
zero damping factor γ and, consequently, due to the finite variance
of the recurrence time τk, the model is free from the unphysical
divergence at f = 0. For f < f1 the power spectrum density is
Lorentzian [95]:

S(f) = I2 4τrel
1 + τ2

relω
2
, (2.45)

where ω = 2πf and τrel = σ2/(2τ̄γ2). For 0 ≤ f < 1/(2πτrel), the
power spectral density is flat, i.e., S(f) = 4I2τrel and S(0) is finite.

Recently, Kaulakys [96] proposed a non-linear stochastic differential
equation for the signal (2.40) with interevent times (2.41), and γ =
0:

dx

dt
=
σ2

a3
x4 +

σ

a3/2
x5/2n(t), (2.46)

where n(t) is zero mean white Gaussian noise with unit variance.
We refer to [96] for more details. A similar differential equation
for γ > 0 has not been derived yet.

We now investigate how noise sources such as thermal, shot and flicker
noise can generate phase noise. First we consider free-running clocks,
then phase-locked loops.

2.4.1 Phase Noise in Free-Running Clocks

A Simple Model

We consider a general autonomous (continuous-time) system described
by the first-order differential equation

dx

dt
= f(x), (2.47)

where x ∈ Rn is the state of the system and f : Rn → Rn. We assume
that f satisfies the conditions of the existence and uniqueness theorem

28 Chapter 2. Channel Model

for initial value problems, and that the system (2.47) has a non-trivial
Ts-periodic solution xs(t). The path Ps (or “orbit” or “limit cycle”) is
defined as

Ps = {x ∈ R
n : x = xs(t), t ∈ [0, Ts)}. (2.48)

The distance d(x, Ps) between a point x ∈ Rn and the path Ps is defined
as

d(x, Ps)
△

= min
x′∈Ps

|x− x′|. (2.49)

The solution xs(t) is assumed to be an attractor , which means that
there exists a number ε > 0 such that with each initial value x0 satis-
fying d(x0, Ps) < ε, there corresponds an asymptotic phase θ(x0) ∈ R

with the property

lim
t→∞

|x(t, x0) − xs(t+ θ(x0))| = 0, (2.50)

where x(t, x0) is the (unique) solution of (2.47) with attains the value x0

at t = 0. In other words, as soon all noise sources are “switched off”, the
state x(t) will return to the orbit Ps; deviations from the orbit (“ampli-
tude deviations”) are smoothed out by a control mechanism, but a phase
offset θ persists, even when no further perturbations occur!

The fact that the system (2.47) is supposed to have a stable periodic so-
lution immediately implies that f is a non-linear function. Indeed, linear
systems do not have stable (or “attracting”) limit cycles. This inherent
non-linearity makes the study of phase noise notoriously difficult.

We are interested in the response of the system (2.47) to a “small” ad-
ditive stochastic perturbation N(t); the perturbed system is given by

dx

dt
= f(x) +N(t). (2.51)

As a first step in our analysis, let us consider the response x(t) to a small
deterministic perturbation n0 ∈ R

n at t = 0, as illustrated in Fig. 2.11.
We assume that the state x(t) evolves along the path Ps before the pertur-

bation occurs, more precisely, x(t)
△

= xs(t) for all t ∈ [−t0, 0) with t0 > 0.
The response x(0) at t = 0+ equals:

x(0) = xs(0) + n0
△

= x0. (2.52)

Since the limit cycle Ps is an attractor, the state x(t) will return to Ps:

x(t) = xs(t+ θ(xs(0), n0)), (t≫ 0) (2.53)

2.4. Phase Noise 29

x(0) = x0

n0

xs(0)

x(t)
xs(t)

Figure 2.11: Perturbation of the stable orbit xs(t).

where the asymptotic phase shift θ(xs(0), n0) depends on the initial posi-
tion xs(0) and the perturbation n0. The form of the function θ(·) depends
on the function f(·) (cf. (2.47)). We consider now the Taylor-expansion
of θ(xs(0), n0) around n0 = 0:

θ(xs(0), n0) = θ(xs(0), 0) + ∇n0θ(xs(0), n0)|n0=0 · n0 + O(|n0|2)
(2.54)

= ∇n0θ(xs(0), n0)|n0=0 · n0 + O(|n0|2), (2.55)

where we have used the fact that θ(xs(0), 0) = 0. Since the perturba-
tion n0 is assumed to be small, one can (to a good approximation5) omit
the non-linear terms in (2.54):

θ(xs(0), n0) ≈ γ(xs(0)) · n0, (2.56)

5Hajimiri et al. have performed SPICE-simulations to verify the linearity assump-
tion. They concluded that the assumption holds as long as the perturbation is smaller
than 10% of the signal amplitude xmax = maxt |xs(t)| [78, p. 38]. We also investi-
gated the linearity assumption by means of simulations (i.e., by numerical integration
of (2.51)), and obtained similar results. The effective injected charges due to actual
noise and interference sources in practical circuits are typically of the order 10−4

of xmax or even smaller, hence the linearity assumption is usually valid.

30 Chapter 2. Channel Model

where

γ(xs(0))
△

= ∇n0θ(xs(0), n0)|n0=0 . (2.57)

Suppose now that the system is disturbed by multiple deterministic per-
turbations n1, n2, . . . , nM at the time instances t1, t2, . . . , tM respectively.
For simplicity, we assume that the time instances ti are “far” apart such
that the state x has reached the orbit Ps before each perturbation ni

occurs.6 The resulting asymptotic phase shift θ for t ≫ tM depends on
the states xs(t

−
i + θ(t−i)) at t−i and the perturbations ni (i = 1, . . . ,M).

Again, we assume that the perturbations are small and that θ depends
linearly on the disturbances ni

θ =

M∑

i=1

γ
(
xs(t

−
i + θ(t−i))

)
· ni. (2.58)

Since the time t uniquely determines the position of xs(t) along the
path Ps, we will from now on write γ(t−i + θ(t−i)) instead of γ

(
xs(t

−
i +

θ(t−i))
)
.

The same reasoning can be applied to the model (2.51), which results in
the following continuous-time phase model.

Continuous-time phase noise model:

Θ(t) =

∫ t

−∞

γ(t′ + Θ(t′)) ·N(t′)dt′. (2.59)

In words:

(Key property of phase noise)
Phase noise is intrinsically an accumulative process; it results from
integrating the system’s perturbations over time.

The phase Θ(t) (cf. (2.59)) is a random variable. Note that (2.59) is a
nonlinear stochastic differential equation.

6If this assumption does not hold, our theory is still valid, but the reasoning
becomes a bit more involved.

2.4. Phase Noise 31

Suppose now that the noise source N(t) is an i.i.d. process with (finite)
variance σ2

0 , as for example thermal and shot noise.7 We assume that t
is sufficiently large so that the initial condition has been “forgotten” and

the pdf pΘ(θ(t)) is uniform. The random variableK(t)
△

= γ(t+Θ(t))N(t)
has zero mean, and as a consequence of (2.59), the same holds for the
phase Θ(t). The variance Var[Θ(t)] of the phase grows linearly with time,
which can be shown as follows. Since N(t) is i.i.d.,

E
[
(Θ(t+ ∆t) − Θ(t))2

]
= σ2

0

∫ t+∆t

t

E
[

|γ(t′ + Θ(t′))|2
]

dt′, (2.60)

where ∆t is a “small” positive real number. The expectation in the RHS
of (2.60) does not depend on t (for large t):

E
[

|γ(t+ Θ(t))|2
]

△

= e0. (2.61)

As a consequence,

E
[
(Θ(t+ ∆t) − Θ(t))2

]
= σ2

0 e0 ∆t, (2.62)

and, therefore, the derivative of Var[Θ(t)] is constant:

dVar[Θ(t)]

dt

△

= lim
∆t→0

E
[
(Θ(t+ ∆t) − Θ(t))2/∆t

]
= σ2

0 e0. (2.63)

Assuming Var[Θ(0)] = 0, we obtain

Var[Θ(t)] = c0t, (2.64)

where c0
△

= σ2
0 e0. As a consequence of (2.64), spectrograms8 of the

phase Θ (measured over a large, but finite time interval) have the form

Sθ(f) ∝ 1/f2. (2.65)

For large t, Θ(t) is a Gaussian random variable. Indeed, the inte-

grand K(t)
△

= γ(t + Θ(t))N(t) in the RHS of (2.59) is a “weakly”-
dependent stationary process. One may therefore invoke the central limit

7A Gaussian i.i.d. process is strictly speaking not well-defined, since it has infinite
power (or variance). An arguably more precise formulation is the following: we
suppose that the power spectrum of N(t) is flat for all f < fc (with fc ≫ 1/Ts)
and decays to zero for f > fc, as for example in a Lorentzian spectrum with cut-off
frequency fc.

8The power spectral density of Θ(t) is not well-defined, since Θ(t) is not wide-sense
stationary.

32 Chapter 2. Channel Model

theorem (CLT) for such processes [126] [85] to conclude that Θ(t) is a
Gaussian random variable.

Note that phase jitter does not alter the total power in the oscillator
signal. If t is large and therefore pΘ(θ(t) = θ) = 1

2π for all θ, the power
of the noisy signal is identical to the power of the periodic signal xs(t):

E
[
x2

s(t+ Θ(t))
]

=
1

Ts

∫ Ts

0

x2
s(t)dt. (2.66)

The phase deviation Θ(t) does not change the total power, but it changes
the power spectral density, potentially leading to effects as interchan-
nel interference, as we pointed out earlier. If the noise sources are
i.i.d. Gaussian random processes, the power spectral density has the
shape of a Lorentzian around the carrier [54]; away from the carrier,
the white-noise sources contribute a term that has a 1/f2 frequency de-
pendence, and the colored-noise sources contribute terms that have a
frequency dependence as 1/f2 multiplied with the spectral density of the
colored-noise source [54]. In the case of flicker noise (FN), the most com-
mon colored-noise source, the dependency is therefore 1/f3. The power
spectral density of the output signal x(t) of a free-running clock with
nominal frequency f0 is usually of the form [110]:

Sx(f) = c/(f − f0)
2 + cFN/|f − f0|3, (2.67)

where the offset frequency ∆f
△

= |f − f0| is supposed to be sufficiently
large, and c and cFN are positive real numbers. A typical spectrogram
of the phase noise θ(t) in free-running clocks has the shape [110]:

Sθ(f) = d/f2 + dFN/f
3, (2.68)

where d and dFN are positive real numbers. Note that the 1/f2 behavior
in the RHS of (2.68) is in agreement with (2.65).

From (2.59) we can also gain more insight about timing jitter. As we
mentioned earlier, the effect of the phase deviation Θ(t) on a clock signal
is to create jitter in the zero-crossing or transition times (see Fig. 2.12).
Let us take one of the transitions of the signal as a time reference and
let us synchronize it with t = 0. In an ideal signal, the transitions occur
at t = kTs (k = 1, 2, . . .) as indicated by the arrows in Fig. 2.12. In a
signal with phase deviation Θ(t), the transitions appear at t = kTs +Θk,

where Θk
△

= Θ(kTs). The expression (2.59) leads to the following model
for the timing jitter Θk.

2.4. Phase Noise 33

θk θk+1 θk+2
t

t = kTs t = (k + 1)Ts t = (k + 2)Ts

Figure 2.12: Timing jitter; ideal signal (solid line) and signal perturbed
by phase noise (dashed line).

Discrete-time phase noise model:

Θk = Θk−1 +Nk,

with

Nk
△

=

kTs∫

(k−1)Ts

γ(t′ + Θ(t′))N(t′)dt′. (2.69)

The model holds generally for Θk
△

= Θ(k∆t), where ∆t is an arbitrary
positive real number (not necessarily equal to Ts, the period of xs(t)).

We again consider the case where N(t) is an i.i.d. process with (finite)
variance σ2

0 . From (2.69) it follows that Nk is a zero-mean i.i.d. random
process that is independent of Θk. The variance of Nk equals

Var[Nk] = E[N2
k], (2.70)

= σ2
0

kTs∫

(k−1)Ts

E
[
γ2(t′ + θ(t′))

]
dt′. (2.71)

The integral in the RHS of (2.71) does not depend on k, hence the
variance of Nk is constant:

Var[Nk]
△

= σ2
N . (2.72)

34 Chapter 2. Channel Model

Note that Nk will be (close to) Gaussian as a consequence of the CLT, as
we argued earlier [126] [85]. In summary, we derived the following model
for timing jitter in a free-running clock perturbed by white noise sources.

(Discrete-time model for phase noise due to white-noise
sources)

Θk = Θk−1 +Nk, (2.73)

with
Nk ∼ N0,σ2

N
.

In words: the timing jitter Θk undergoes a Gaussian random walk process.
The variance of Θk grows linearly with k, i.e.,

E
[
Θ2

k

]
= σ2

N k. (2.74)

This is in agreement with experimental results: McNeill observed the
linearly increasing variance for the timing of the transitions of a clock sig-
nal generated by an autonomous oscillator with white-noise sources [129].
On the other hand, if the oscillator also contains flicker-noise sources,
the jitter variance initially grows linearly over time (due to the white
noise), but after a sufficient amount of time, it increases quadratically
(due to the flicker noise) [114].

Literature on Phase Noise in Free-Running Clocks

A large variety of phase models has been proposed in the literature.9

Most of them are restricted to particular implementations, for example
CMOS LC-oscillators [87]. The more general models are usually based
on linear perturbation theory (see, e.g., [77] [104] [155]): the state z(t) of
the perturbed system is assumed to only slightly deviate from the state
of the unperturbed system xs(t):

X(t)
△

= xs(t) + Z(t), (2.75)

where Z(t) is “small”. The phase noise model is obtained by linea-
rizing (2.47) around xs(t). Unfortunately, the expansion (2.75) is invalid

9We refer to [131, pp. 11–19] for a detailed overview of existing phase noise models.

2.4. Phase Noise 35

for noisy oscillators, since N(t) grows unboundedly in time due to phase
drift [54]. Models derived from (2.75) are therefore rather problematic;
for example, they predict the power of the oscillator signal to be infinite,
which is clearly unphysical [54].

Hajimiri et al. [109] (see also [78]) analyzed phase noise starting from the
non-linear expansion

X(t)
△

= xs(t+ Θ(t)) + Z(t), (2.76)

where Θ(t) is the phase drift and Z(t) is supposed to be small, as
in (2.75). They propose the following model for Θ(t):

Θ(t) =

∫ t

−∞

γ(t′)N(t′)dt′, (2.77)

where N(t) stands for noise sources in the oscillator. The difference be-
tween the models (2.59) and (2.77) is subtle: in (2.59), the function γ(·)
depends on t+Θ(t), whereas in (2.77), γ(·) depends on t. Model (2.77) is
simpler than (2.59), but unfortunately invalid.10 It leads sometimes to in-
correct results: for example, it is not capable of predicting injection lock-
ing, whereas model (2.59) accurately describes this phenomenon [198].

Demir et al. investigated phase noise by means of Floquet theory, which
is a non-linear perturbation theory [54] [55] [57] [54] based on the expan-
sion (2.76). The Floquet-analysis of [54] amounts to the model (2.59),
which we derived previously in a rather intuitive manner. Demir et
al. [55] determined how γ(·) depends on the function f(·) (cf. (2.59)):
γ(·) turns out to be a so-called Floquet vector of f(·). In [57], also the
case where N(t) is colored stationary Gaussian noise is analyzed; it is
proved that for large t, the marginal pΘ(θ(t)) is a Gaussian pdf with
constant mean and variance

Var[Θ(t)] ∝
∫ t

0

(t− t′)RN (t′)dt′, (2.78)

where RN (·) is the autocorrelation function of N(t). In deriving (2.78),
it is assumed that the bandwidth of N(t) is much narrower than the

frequency ωs
△

= 1/Ts, or equivalently, it is assumed that the correlation
width of the colored noise source in time is much larger than the oscil-
lation period Ts = 2π/ωs. Demir et al. [54] [55] [57] formulated perhaps

10This can straightforwardly be verified by means of Fig. 2.11.

36 Chapter 2. Channel Model

the most sophisticated and rigorous theory for phase noise currently avai-
lable; nevertheless, many important questions remain unanswered. For
example, in the case of colored-noise sources, the theory predicts that
for large t the marginal pΘ(θ(t)) is a Gaussian pdf, but it is unclear
whether Θ(t) is a jointly Gaussian stochastic process. Generally spea-
king, the dependency between the phase drift Θ(t) at different time in-
stances remains largely unspecified. In the following, we consider phase
noise in phase-locked loops, which are oscillators that are driven by a
reference signal.

2.4.2 Phase Noise in Phase-Locked Loops

Phase-locked loops (PLL) are widely used in passband receivers for acqui-
ring and tracking the phase of the incoming carrier (cf. 2.2.2).11 They
contain a feedback loop (see Fig. 2.13) that tries to minimize the off-
set φ(t) between the phase of the local oscillator signal and the phase of
the incoming signal, i.e.,

φ(t)
△

= θR(t) − θL(t), (2.79)

where θR(t) and θL(t) is the phase of the incoming and local carrier
respectively. Usually, the incoming carrier is generated by a free-running
clock, and its phase θR(t) drifts as a random walk. A phase detector

Detector
Phase

VCO

Filter
Low-pass

θL(t)

θR(t) w(t)

u(t)

Figure 2.13: Phase-locked loop.

measures the phase offset φ(t); its output w(t) typically depends on φ(t)
in a non-linear fashion:

w(t)
△

= fPD(φ(t)). (2.80)

11We refer to [135] for an in-depth discussion of PLLs.

2.4. Phase Noise 37

The output of the phase detector w(t) is passed through a low-pass filter,
which is most often of first order. The resulting signal u(t) is fed into
a voltage-controlled oscillator (VCO), which generates a sinusoid whose
phase θL(t) depends on u(t) in the following way:

θL(t) = γu

∫ t

−∞

u(t′)dt′, (2.81)

where γu is a positive real number.12 In other words, the VCO tries to
decrease the phase error φ(t) by adjusting the phase θL(t) of the local
carrier according to the low-pass filtered error signal.

The non-linearity in the phase detector is responsible for the rather com-
plex behavior of PLLs. A typical realization of the phase error φ(t)
is shown in Fig. 2.14. When the PLL is switched on, it has no infor-
mation about the phase θR. The initial phase error is therefore large,
but it decreases steadily in a transient regime called acquisition. After
some time, the phase error has become small and the PLL is said to be
“locked” unto the incoming reference. Occasionally, this quasi-stationary
regime may be interrupted: due to some random disturbance, the PLL
may become unstable during a short amount of time, and then lock back
unto θL. Or, much worse, it may lock unto some neighboring stationary
point θL + k2π/M (k ∈ Z), where M is the alphabet size of the data
symbols modulated on the incoming carrier. This phenomenon, called
cycle slip, causes large phase errors, and can drastically increase the bit
(or word) error rates. Cycle slips occur with low probability in practical
systems, but they are unavoidable, especially at low SNR.

The non-linearity of the phase detector seriously complicates the analysis
of PLLs. As a consequence, few (exact) analytical results on phase noise
in PLLs are available. Mehrotra [132] proposed a rigorous mathemati-
cal model for PLLs, similar in spirit as the Floquet analysis of Demir
et al. [54] [57] for free-running oscillators. The approximate expres-
sion (2.83) is replaced by

ΘL(t) =

∫ t

−∞

[

γu

(
t′+ ΘL(t′)

)
U(t′)+ γn

(
t′+ ΘL(t′)

)
·M(t′)

]

dt′, (2.82)

where M(t) stands for the internal noise sources of the VCO. The ex-
pression (2.82) is a natural extension of the model (2.59); it is more a

12In the expression (2.83), the noise sources in the VCO are neglected; we will come
back to this issue later on.

38 Chapter 2. Channel Model

t
≀≀ ≀≀≀≀

locked

locked

locked

acquisition

cycle slip

cycle slip

φ(t)

2π/M

4π/M

Figure 2.14: Phase error in a PLL.

precise description of the dynamics of a VCO than (2.83). Unfortunately,
the resulting stochastic differential equations for the phase error φ(t) are
hard to solve. Mehrotra only obtained (partial) results for PLL with
white noise sources. We refer to [132] for more details.

It is more common to model PLL by means of nonlinear differential equa-
tions with additive noise sources. The expression (2.82) is approximated
by

ΘL(t) = M(t) + γu

∫ t

−∞

U(t′)dt′, (2.83)

where the stochastic process M(t) models the phase noise in the VCO.
The incoming signal is assumed to be a perfect periodic signal with ad-
ditive noise, i.e., the phase drift of the incoming signal is not taken into
account. It has been shown that, under the additional assumption of
white noise sources, the stationary distribution of the phase noise in a
locked PLL without low-pass filter (“first-order PLL”) is a Tikhonov dis-
tribution [202, Chapter 4]:

pΦ(φ) =
exp(αs cosφ)

2πI0(αs)
, (|φ| < π) (2.84)

where I0 is the zeroth-order Bessel function of the first kind, and αs is
a positive real number. No (exact) analytical results seem to exist for
PLLs with low-pass filters.13 Nevertheless, the distribution (2.84) seems

13PLLs with first-order low-pass filters (“second-order PLLs”) are most often used

2.4. Phase Noise 39

to be a good approximation of experimentally obtained histograms of
the phase error in such PLLs [202, pp. 112-117]. Note that the Tikhonov
distribution can be well approximated by a Gaussian distribution if αs

is sufficiently large.

A popular approximation method [135, Chapter 2 and 3] is to linearize
the phase detector characteristic fPD(φ), which is only valid as long as
the phase error φ(t) remains small. The PLL is described by linear
differential equations with additive noise sources, which can be solved by
standard linear systems theory [135, pp. 48–53] (see also [110] and [132]).
A key result from this analysis is that the spectrum of the phase noise is
given by

Sφ(s) = |H(s)|2SN (s) + |1 −H(s)|2SM (s), (2.85)

where SN (s) and SM (s) is the power spectral density of the additive

noise in the received signal and VCO respectively, andH(s)
△

= θL(s)
θR(s) is the

closed-loop transfer function, which is a low-pass filter. As a consequence
of (2.85), the variance of the phase error Var[φ(t)] converges to the (finite)
value:

Var[φ(t)] =
1

π

∫ ∞

0

Sφ(jω)dω (2.86)

=
1

π

∫ ∞

0

[

|H(jω)|2SN (jω) + |1 −H(jω)|2SM (jω)
]

dω.(2.87)

The expression (2.85) indicates that, under “normal” circumstances, the
phase error in a PLL is bounded, in contrast to the situation in free-
running clocks. It can also be seen from (2.85) that in order to minimize
the phase noise φ(t) due to N(t), the additive noise in the received signal,
the bandwidth of H(s) should be made as narrow as possible. On the
other hand, the bandwidth should be chosen wide in order to avoid the
phase noise due the VCO instabilities M(t). Both criteria are opposed to
one another, and one needs to make a compromise. It is common practice
to tune the parameters of the low-pass filter such that the steady-state
phase error variance (2.87) is as small as possible [135, pp. 150–153]. We
underline once more that the expression (2.87) only holds as long as the
PLL is locked and the phase error is small; the behavior of the PLL with
regard to cycle slips is also often taken into account in the PLL-design
process.

in practice.

40 Chapter 2. Channel Model

2.4.3 Heuristic Models for Phase Noise

As we have seen previously, a rigorous (tractable) model for phase noise is
currently not available. However, for practical purposes, heuristic models
may suffice. The phase jitter in PLLs is sometimes approximated by
low-pass Gaussian noise. An example of such a model is the following
first-order autoregressive (AR) process [108].

(First-order AR model for phase noise in a PLL [108])

Θk = aΘk−1 +Nk, (2.88)

where
Nk ∼ N0,σ2

N
,

and a < 1.

The phase fluctuations in a PLL usually also contain high-pass compo-
nents (cf. (2.85)). They are neglected in the above model. We pro-
pose the following higher-order autoregressive-moving average (ARMA)
process as a more accurate model for phase noise in PLLs.

(Higher-order ARMA model for phase noise in a PLL)

Ψk =

La∑

ℓ=0

aℓNk−ℓ +

Lb∑

ℓ=0

bℓΨk−ℓ (2.89)

Φk = Φk−1 + Zk (2.90)

Υk =

La∑

ℓ=0

aℓΦk−ℓ +

Lb∑

ℓ=0

bℓΥk−ℓ (2.91)

Ξk = Φk − Υk (2.92)

Θk = Ψk + Ξk, (2.93)

where

Nk ∼ N0,σ2
N
, (2.94)

Zk ∼ N0,σ2
Z
. (2.95)

2.5. Random-walk Phase Model 41

The process Ψk stands for the phase noise induced by the additive white
noise in the received signal (cf. the first term in (2.85)). It is generated
by passing the white noise process Nk through the low-pass filter

H(z)
△

=

∑La

ℓ=0 aℓz
k

∑Lb

ℓ=0 bkz
k
. (2.96)

The order of H(z) is given by the order of the low-pass filter in the PLL.
For example, to model first-order PLLs, which are the most widely used
PLLs, ARMA-processes of second-order (i.e., La = Lb = 2) are the most
suitable. The coefficients ak and bk can be determined by measurements
of the phase jitter. The random-walk phase drift of the VCO is modeled
by (2.90). The process Υk stands for the low-pass filtered VCO phase
noise, generated by passing Φk through H(z). The high-pass filtered
VCO phase noise (cf. the second term in (2.85)) is modeled by Ξk. It is
obtained by filtering Φk by 1 − H(z) (cf. (2.91) and (2.92)). The total
phase noise in the PLL is represented by Θk, the sum of the low-pass
phase noise Ψk and the high-pass phase noise Ξk.

The model does not incorporate flicker noise, since it is hard (if not
impossible) to represent flicker noise as an ARMA process (cf. (2.4)).
However, this is not really problematic. Only the high-pass components
of the VCO phase noise contribute to the PLL phase noise (cf. the second
term in (2.85)), hence the VCO’s flicker-noise sources are usually less
critical than its white-noise sources.

The model also disregards cycle slips, it only describes locked PLLs. By
combining it with a finite state machine that models cycle slips, a more
complete (heuristic) description for phase noise in a PLL can be obtained.

The random-walk process (2.73) (or equivalently (2.88), with a = 1)
is widely used as a model for phase noise in free-running clocks. We
will mostly use that model in this thesis. Note that the random-walk
phase model is valid if the oscillator only contains white-noise sources.
It should be straightforward to extend the results of this thesis to the
(more realistic) ARMA-model (2.89)–(2.93).

2.5 Random-walk Phase Model

We extend the model (2.22)–(2.23) with random phase fluctuations.

42 Chapter 2. Channel Model

Random-walk phase model:

Yk = Xke
jΘ +Nk, (2.97)

where
Θk = (Θk−1 +Wk) mod 2π, (2.98)

and

Nk ∼ N0,σ2
N
, (2.99)

Wk ∼ N0,σ2
W
. (2.100)

The model describes the received symbols yk accurately if

a) a timing synchronizer tracks the timing offsets and the variance σ2
W

is small (e.g. σW < 10−2); the expressions (2.21) and (2.21) are
then valid

b) the frequency offset ν = 0,

c) the fluctuations of the phase offset θ
△

= θL − θR − 2πfR τ can be
described as a random walk process.

The last assumption is for example met if the oscillators in the trans-
mitter and receiver are free-running clocks (perturbed by white-noise
sources), the frequency fR is approximately constant, and the relative
distance between the transmitter and receiver (and hence the channel
delay τ) is constant or fluctuates as a random walk.

Chapter 3

Factor Graphs and
Summary Propagation

This chapter aims at giving an introduction to factor graphs and the
summary-propagation algorithm on a generic level. Factor graphs are de-
fined in Section 3.1 as graphs (in the mathematical sense) that represent
the factorization of multivariate functions. One of the most important
operations that can be performed on factor graphs is marginalization,
i.e., the computation of marginals of probability functions. Marginali-
zation lies at the heart of many algorithms in signal processing, coding
and machine learning. As we will show, computing marginals amounts
to passing messages (“summaries”) along the edges in the factor graph
of the system at hand. This generic message-passing algorithm, called
the sum(mary)-product algorithm (SPA), is introduced in Section 3.2.

Literature

In the present and next chapter, we closely follow Loeliger’s tutorial
introduction about factor graphs and the summary-propagation algo-
rithm [119].

Factor graphs have their roots in coding theory; they were originally
introduced in [103], based on earlier ideas by Tanner [190] and Wiberg

43

44 Chapter 3. Factor Graphs and Summary Propagation

et al. [211] [210]. In this thesis, we use the refined notation proposed by
Forney [66] (there called “normal graphs”). We will refer to this notation
as Forney-style factor graphs, or short FFG.

Since the summary-product algorithm is very generic, it has repeatedly
been re-discovered in different scientific communities. The algorithm has
a long history in the context of error correcting codes: Gallager’s algo-
rithm for decoding low-density parity check (LDPC) codes [72] [73], the
BCJR-algorithm [15] and the Viterbi algorithm [65] can be regarded as
early versions of the summary-product algorithm. In the statistics and
machine-learning community, the algorithm is known under the name of
“probability propagation” or “belief propagation” [157] [68] and is usually
applied on Bayesian networks. Yet another instance of the same princi-
ple is the Bethe and Kickuchi method from statistical physics (see [223]
and references therein). Two standard techniques in signal processing,
i.e., hidden-Markov models and Kalman filtering, can also be seen as in-
stances of the summary-product algorithm. For a more detailed review of
the history of the summary-product algorithm within different scientific
fields, we refer to [103] [222].

3.1 Factor Graphs

Factor graphs belong to the family of graphical models. A graphical
model is—as the name suggests—a graphical representation of some
mathematical model; it visualizes interactions between variables in a
model. Examples of such models are error-correcting codes, mathema-
tical descriptions of communications channels, input-output systems as
for example in classical filter and control theory, electrical networks,
spin glasses (which are physical models of magnetic materials), ordi-
nary or partial differential equations, and statistical models of speech
signals, images or video sequences. There are various types of graphi-
cal models besides factor graphs, most importantly: Markov random
fields [213] (which are often used in machine vision, statistics and statis-
tical physics), Bayesian networks [157], and neural networks1 [22]. The
latter two originated in the machine learning community, but have mean-
while found their way to research fields as diverse as microbiology [80],

1We will encounter a specific type of neural network, the so-called feed-forward
neural network, in Appendix E.

3.1. Factor Graphs 45

particle physics [79] and geophysics [174].

Remark 3.1. (Advantages of factor graphs)
We decided to use factor graphs for the following reasons [119]:

• They allow hierarchical modeling (“boxes within boxes”).2

• They are compatible with standard block diagrams (see, e.g., Ap-
pendix H).

• The summary-product message update rule can most elegantly
be formulated on factor graphs, especially on Forney-style factor
graphs.

As already mentioned before, factor graphs represent functions. Let us
have a look at some first examples.

Example 3.1. (Factor graph of a function without structure)
The factor graph of the function f(x1, x2, x3) is shown in Fig. 3.1 (left):
edges represent variables, and nodes represent factors. An edge is con-
nected to a node if and only if the corresponding variable is an argument
of the corresponding function. �

X1

X2

X3
fA

X1 X2 X3
fA fB

Figure 3.1: Factor graph of function without structure (right) and a
function with structure (left).

The concept of factor graphs becomes interesting as soon as the function
to be represented has structure, i.e., when it factors.

2This feature is for example also available in commercial CAD-packages for archi-
tectural or VLSI design. The operation of “closing a box”, i.e., the marginalization of
the variables inside a box (subgraph), is at the core of statistical physics, whose aim is
to understand how systems of many interacting parts can display high-level simplicity
(e.g., the kinetic theory of gasses). We refer to [188] for an elaborated philosophical
account on this issue.

46 Chapter 3. Factor Graphs and Summary Propagation

Example 3.2. (Factor graph of a function with structure)
Let us assume that the function f(x1, x2, x3) of Example 3.1 factors as

f(x1, x2, x3)
△

= f(x1, x2)f(x2, x3); the factor graph of Fig. 3.1 (right)
represents this factorization. We call f the global function and f1 and f2
local functions. �

Example 3.3. The (global) function

f(x1, x2, x3, x4, x5, x6)
△

= fA(x1, x2)fB(x3, x4)fC(x2, x4, x5)fD(x5, x6)
(3.1)

is represented by the factor graph in Fig. 3.2 �

X1 X2

X3

X4

X5 X6
fA

fB

fC fD

Figure 3.2: An example factor graph.

More formally, a Forney-style factor graph (FFG) is defined as follows:

• Factor graph: An FFG represents a function f and consists of
nodes and edges. We assume that f can be written as a product
of factors.

• Global functions: The function f is called the global function.

• Nodes/local functions: There is a node for every factor, also
called local function.

• Edges/variables: There is an edge or half-edge for every variable.

• Connections: An edge (or half-edge) representing some variable
X is connected to a node representing some factor f if and only if
f is a function of X .

• Configuration: A configuration is a particular assignment of va-
lues to all variables. We use capital letters for unknown variables

3.1. Factor Graphs 47

X
X ′

X ′′
X

X ′ X ′′

X ′′′
X

X ′

X ′′

X ′′′

Figure 3.4: Equality constraint node used for variable replication.
(left) single node; (right) compound node; (middle) the
compound node as concatenation of single nodes.

and small letters both for particular values of such variables3 and
for known (observed) variables.

• Configuration space: The configuration space Ω is the set of all
configurations: it is the domain of the global function f . One may
regard the variables as functions of the configuration ω, just as we
would with random/chance variables.

• Valid configuration: A configuration ω ∈ Ω will be called valid
if f(ω) 6= 0.

Remark 3.2. (Cloning variables)
Implicit in the previous definition is the assumption that no more than
two edges are connected to one node. This restriction is easily cir-
cumvented by introducing variable replication nodes (also referred to
as “equality constraint nodes”). An equality constraint node represents
the factorization δ(x − x′)δ(x′ − x′′), and is depicted in Fig. 3.4 (left).
It enforces the equality of the variables X,X ′, and X ′′.4 The (single)
equality constraint node generates two replicas of X , i.e., X ′ and X ′′. If
more replicas are required, one can concatenate single nodes as shown
in Fig. 3.4 (middle); combining those single nodes (“boxing”) leads to a
compound equality constraint node (see Fig. 3.4 (right)).

Most graphical model are associated to a particular algorithm. For exam-
ple, feed-forward neural networks and the back-propagation algorithm
go hand in hand [22]; Markov random fields have strong ties to Gibbs
sampling. Traditionally, factor graphs are associated to the sum(mary)-
product algorithm. Throughout this thesis, however, it will become clear

3This imitates the notation used in probability theory to denote chance/random
variables and realizations thereof.

4The factor graph notation of [103] is obtained by replacing each equality constraint
node by a circle.

48 Chapter 3. Factor Graphs and Summary Propagation

that many other algorithms can conveniently be described by means of
factor graphs.5

3.2 Summary-Propagation Algorithm

In a wide variety of problems (e.g., in signal processing, coding, esti-
mation, statistical physics, and machine learning), one is interested in
marginal probabilities of certain variables in the system. We explain
now how such marginals can be computed by message passing on a fac-
tor graph.

3.2.1 Summary Propagation on Factor Trees

Example 3.4. (Marginalization of a factored function)
Let us consider again the global function f(x1, x2, x3, x4, x5, x6) of Exam-
ple 3.3. Suppose we are interested in the marginal function

f(x5)
△

=
∑

x1,x2,x3,x4,x6

f(x1, x2, x3, x4, x5, x6). (3.2)

With the factorization (3.1), we have:

f(x5) =
∑

x1,x2,x3,x4,x6

fA(x1, x2) · fB(x3, x4) · fC(x2, x4, x5) · fD(x5, x6)

=
∑

x2,x4

fC(x2, x4, x5)

(
∑

x1

fA(x1, x2)

)

︸ ︷︷ ︸

µfA→x2(x2)

·
(
∑

x3

fB(x3, x4)

)

︸ ︷︷ ︸

µfB→x4(x4)

·

︸ ︷︷ ︸

µfC→x5(x5)
(
∑

x6

fD(x5, x6)

)

︸ ︷︷ ︸

µfD→x5(x5)

. (3.3)

�

5Later on, we will clarify how both the back-propagation algorithm and Gibbs
sampling for example can be viewed as summary-propagation on factor graphs.

3.2. Summary-Propagation Algorithm 49

The idea behind (3.3) is to “push” the summations as much right as pos-
sible. For example, when summing w.r.t.X6, we can push the summation
sign to the right side of every factor except fD(x5, x6), since this factor
depends on X6. As a result, instead of carrying out a high-dimensional
sum, it suffices to carry out simpler ones (one- and two-dimensional in
our example). The intermediate terms µfj→xi

(xi) are functions of Xi.
The domain of such a functions is the alphabet of Xi. Their meaning
becomes obvious when looking at Fig. 3.5.

The intermediate results can be interpreted as “messages” flowing along
the edges of the graph. For example, the message µfA→x2(x2), which is
the sum

∑

x1
fA(x1, x2), can be interpreted as a message leaving node fA

along edge X2. If both µfA→x2(x2) and µfB→x4(x4) are available, the
message µfC→x5(x5) can be computed as the output message of node fC

towards edge X5. The final result of (3.3) is

f(x5) = µfC→x5(x5) · µfD→x5(x5). (3.4)

It is the product of the two messages along the same edge.

Each message can be regarded as a “summary” of what lies “behind”
it, as illustrated by the boxes in Fig. 3.5. Computing a message means
“closing” a part of the graph (“box”). The details inside such a box
are “summed out”, only a summary is propagated (hence the name
summary-propagation). In the first step, the dark shaded areas in Fig. 3.5
are boxed (resulting in µfA→x2(x2) and µfD→x5(x5)). Afterwards, the
lighter shaded box is closed (amounting to µfC→x2(x2)), until we arrive
at (3.4).

Half-edges (such as X1) do not carry a message towards the connected
node; alternatively, the edge may be thought of as carrying a message
representing a neutral factor 1. With this in mind, we notice that every
message (i.e., every intermediate result) of (3.3) is computed in the same
way. Consider the generic node depicted in Fig. 3.8 with messages arri-
ving along its edges X1, . . . , XN . The message towards edge y is com-
puted by the following rule.

Sum-product rule:

µf→y(y)
△

=
∑

x1,...,xN

f(y, x1, . . . , xN) ·

µx1→f (x1) · · ·µxN→f (xN) (3.5)

50 Chapter 3. Factor Graphs and Summary Propagation

X1 X2

X3

X4

X5 X6
fA

fB

fC fD

Figure 3.5: Summary-propagation for computing f(x5).

X1 X2

X3

X4

X5 X6
fA

fB

fC fD

Figure 3.6: Summary-propagation for computing f(x2).

X1 X2

X3

X4

X5 X6
fA

fB

fC fD

1©

1©

1©

2©
2©

2©

3©
3©

3©

4©

4©

4©

Figure 3.7: The SPA computes two messages along each edge. Those
messages are required for calculating the marginal func-
tions f(x1), f(x2), f(x3), f(x4), f(x5) and f(x6). The
circled numbers indicate the order of the message compu-
tations.

3.2. Summary-Propagation Algorithm 51

X1

XN

f
Y..

.

Figure 3.8: Message along a generic edge.

In words: The message out of a node f along the edge Y is the product
of the function f and all messages towards f along all other edges, sum-
marized over all variables except Y . This is the sum-product rule. In
general, messages are computed out of any edge, there is no preferential
direction. The message out of a leaf node f along edge Y is the function f
itself, as illustrated in Fig. 3.9.

f
Y

Figure 3.9: Message out of a leaf node.

The sums in (3.2), (3.3) and (3.5) can be replaced by any “summary ope-
rator”, e.g., the integral operator for continuous-valued variables or the
max operator for performing maximizations; this leads to the integral-
product rule and max-product rule respectively.

Integral-product rule:

µf→y(y)
△

=

∫

· · ·
∫

D

f(y, x1, . . . , xN) ·

µx1→f (x1) · · ·µxN→f (xN) dx1 · · · dxN (3.6)

Max-product rule:

µf→y(y)
△

= max
x1,...,xN

f(y, x1, . . . , xN) ·
µx1→f (x1) · · ·µxN→f (xN) (3.7)

The above rules can be considered as instances of the following single
rule.

52 Chapter 3. Factor Graphs and Summary Propagation

Summary-product rule: The message µf→y(y) out of a factor
node f(y, . . .) along the edge Y is the product of f(y, . . .) and all
messages towards f along all edges except Y , summarized over all
variables except Y .

We will encounter other examples of this general rule in Chapter 4. In
the same chapter, we will also consider different rules (i.e., the E-log rule
and extensions, cf. Section 4.9).

The following example shows how several marginals can be obtained
simultaneously in an efficient manner.

Example 3.5. (Recycling messages)
Suppose we are also interested in the marginal function f(x2) of the
global function f(x1, x2, x3, x4, x5, x6) of Example 3.3:

f(x2)
△

=
∑

x1,x3,x4,x5,x6

f(x1, x3, x4, x5, x6).

This marginal can be computed by the summary-propagation depicted
in Fig. 3.6. Note that we have already computed the messages µfA→x2(x2),
µfB→x4(x4), and µfD→x5(x5) in (3.3); they can be “re-used” for compu-
ting f(x2). Eventually, f(x2) is obtained as

f(x2) = µfA→x2(x2)µfC→x2(x2). (3.8)

�

From this last example, we learn that the two messages associated to an
edge are for the computation of each marginal the same. It is therefore
sufficient to compute each message once. The marginal f(y) of a certain
variable Y is the product of the two messages on the corresponding edge,
such as (3.4) and (3.8). In general, it is

f(y) = µfA→y(y) · µfB→y(y) (3.9)

where fA and fB are the two nodes attached to edge Y . For half edges,
the message coming from the open end carries a neutral factor “1”.
Therefore, the message from the node towards the edge is already the
marginal of the corresponding variable.

3.2. Summary-Propagation Algorithm 53

In its general form, the summary-propagation algorithm (SPA)
computes two messages on every edge. For factor graphs without loops
(factor trees), the marginals can obtained in an optimal number of com-
putations as follows.6 One starts the message computation from the
leaves and proceeds with nodes whose input messages become available.
In this way, each message is computed exactly once, as illustrated in Fig. 3.7.
When the algorithm stops, exact marginals, such as (3.9), are available
for all variables simultaneously.

In summary:

• Marginals such as (3.2) can be computed as the product of two
messages as in (3.9).

• Such messages are summaries of the subgraph behind them.

• All messages (except those out of terminal nodes) are computed
from other messages according to the summary-product rule.

Remark 3.3. (Scaling)
If one applies the rules (3.5) (or (3.6) and (3.7)), the values of the mes-
sages often quickly tend to zero and the algorithm becomes instable.
Therefore, it is advisable to scale the message: instead of the mes-

sage µ(.), a modified message µ̃(.)
△

= γµ(.) is computed, where the scale
factor γ may be chosen as one wishes. The final result (3.9) will then
be known up to a scaling factor, which is often not a problem. In some
applications, however, the scaling factors are of central importance (see
Chapter 6).

Remark 3.4. (Message update schedule)
A message update schedule says when one has to calculate what message.
For factor trees, there is an optimal message update schedule, as we
explained previously; for cyclic factor graphs, this is not the case.

3.2.2 Summary Propagation on Cyclic Factor Graphs

The situation becomes quite different when the graph has cycles. In
this case, the summary-propagation algorithm becomes iterative: a new

6The number of computations may be reduced by additional information about
the structure of the local node functions. This is the case when the factor nodes
themselves may be expressed by (non-trivial) factor trees.

54 Chapter 3. Factor Graphs and Summary Propagation

output message at some node can influence the inputs of the same node
through another path in the graph. The algorithm does not amount to
the exact marginal functions. In fact, there is even no guarantee that
the algorithm converges! Astonishingly, applying the summary-product
algorithm on cyclic graphs works excellently in the context of coding and
signal processing, and machine learning. In many practical cases, the
algorithm reaches a stable point and the obtained marginal functions are
satisfactory: decisions based on those marginals are often close enough
to the “optimal” decisions.

Summary-propagation on cyclic-graphs consists of the following steps

a) First, all edges are initialized with a neutral message, i.e., a fac-
tor µ(.) = 1.

b) All messages are then recursively updated according to some sche-
dule. This schedule may vary from step to step.7

c) After each step, the marginal functions are computed according
to (3.9).

d) One takes decisions based on the current marginal functions.

e) The algorithm is halted when the available time is over or when
some stopping criterion is satisfied (e.g., when all messages varied
less than some small ε over the last iterations).

Remark 3.5. (Understanding summary propagation on cyclic
graphs)
The theoretical understanding of summary propagation on cyclic graphs
is sparse. Some particular results are available, e.g., for factor graphs
with one loop [5] or, e.g., factor graphs representing jointly Gaussian
densities [209] [173]. Yedidia et al. have shown that the fixed-points of
the sum-product algorithm are in a one-to-one relationship with zero-
gradient points of a Bethe free energy associated to the underlying pro-
blem [223] (see also [127]). This result was later refined by Heskes,
who proved that the stable fixed-points of loopy belief propagation (i.e.,
iterative sum-product algorithm) are in fact minima of the Bethe free
energy [83]. These insights paved the road to alternative message-passing
algorithms such as generalized belief propagation [223], convex-concave-
procedure algorithms (CCCP) [225], and “fractional” (or “convexified”)
belief propagation [212] [205].

7For more details on scheduling, see [103].

3.3. Factor-graph Transformation: Clustering 55

3.3 Factor-graph Transformation: Cluster-

ing

In this section, we describe how the structure of a factor graph can
straightforwardly be modified by a technique called clustering [103]. For
alternative transformations such as stretching and the junction-tree method,
we refer to [103] and [6]. Let us have a look at the following example.

Example 3.6. We consider the (cyclic) factor graph of Fig. 3.10(a)
representing

f(x, y, z)
△

= fA(x)fB(x, y)fC(x, z)fD(y)fE(y, z)fF (z). (3.10)

By clustering the edges Y and Z and connecting the neighboring nodes of
both edges to the new clustered node, we obtain the factor graph shown
in Fig. 3.10(b); it represents the factorization

f ′(x, y, z)
△

= fA(x)f ′B(x, y, z)f ′C(x, y, z)f ′D(y, z)f ′E(y, z)f ′F (y, z). (3.11)

The node fE connecting Y and Z in the original factor graph appears
with just a single edge in the new factor graph. Note also that there
are two local nodes connecting X to (Y, Z), i.e., also the new factor
graph is cyclic. The local nodes in the new factor graph retain their
dependencies from the original factor graph. For example, f ′C(x, y, z)
is connected to X and the pair (Y, Z), but it actually does not depend

on Z, hence f ′C(x, y, z)
△

= fC(x, z). Similarly, f ′B(x, y, z)
△

= fB(x, y),

f ′C(x, y, z)
△

= fC(x, z), fD(y, z)
△

= fD(y), f ′E(y, z)
△

= fE(y, z) and f ′F (y, z)
△

= fF (z), and therefore f ′(x, y, z)
△

= f(x, y, z); both the original and the
new factor graph represent the same global function.

The cycle in the factor graph of Fig. 3.10(b) can be removed by clustering
the nodes f ′B(x, y, z) and f ′C(x, y, z)

f ′BC(x, y, z)
△

= f ′B(x, y, z)f ′C(x, y, z), (3.12)

resulting in the factor graph of Fig. 3.10(c); the new global function is

f ′(x, y, z)
△

= fA(x)f ′BC(x, y, z)f ′D(y, z)f ′E(y, z)f ′F (y, z), (3.13)

which is identical to the original global function (3.10). �

56 Chapter 3. Factor Graphs and Summary Propagation

Remark 3.6. (Removing cycles by clustering)
In the previous example, we have removed a cycle from the factor graph
by clustering edges and nodes. The resulting factor graph is cycle-free
and the sum-product algorithm may be applied to compute exact mar-
ginals. The complexity of the messages in the graph, however, has in-
creased. Let Y and Z have alphabets Ay and Az respectively; the alpha-
bet of the pair (Y, Z) is Ay×Az. The domain size of (Y, Z) is equal to the
product |Ay ||Az|, where |Ay | and |Az| denote the size of the alphabets Ay

and Az respectively. Therefore, if the messages are represented by a list
of their values (as is common practice when Y and Z take values in a fi-
nite set), the length of the messages of (X,Y) (e.g., the message from fC

to (X,Y)) is also equal to |Ay||Az |. This can imply a substantial cost in-
crease in computational complexity of the sum-product algorithm. If the
messages are represented in alternative ways however, as for example by
Gaussian distributions, the complexity does not necessarily increase ex-
ponentially; clustering may then be a practical solution to handle cycles.
We will demonstrate this idea in Section 5.3.7.

We end this chapter by formulating the general procedure to cluster edges
(variables) and nodes (factors) in a factor graph.

Clustering nodes: Nodes f1, f2, . . . , fn are clustered as follows

a) Delete f1, f2, . . . , fn and any incident edge from the factor
graph,

b) Introduce a new node representing the n-tuple (f1, f2, . . . , fn),

c) Connect this new node to nodes that were neighbors of
f1, f2, . . . , fn in the original graph.

Clustering edges: Edges X1, X2, . . . , Xn are clustered as follows

a) Delete X1, X2, . . . , Xn and any incident node from the factor
graph,

b) Introduce a replication node representing the n-tuple
(X1, X2, . . . , Xn),

c) Connect this new node to nodes that were neighbors of
X1, X2, . . . , Xn in the original graph.

3.3. Factor-graph Transformation: Clustering 57

fA

fB fC

fD fE fF

X

Y Z

(a) Original factor graph.

fA

f ′
B f ′

C

f ′
D f ′

E f ′
F

X

Y,Z

(b) Clustering Y and z.

fA

f ′
BC

f ′
D f ′

E f ′
F

X

Y, Z

(c) Clustering fB and fC .

Figure 3.10: Clustering transformation.

Chapter 4

Phase-Estimation
Algorithms

In this chapter, we develop code-aided carrier-phase-estimation algo-
rithms for single-carrier communications systems. In contrast to earlier
and parallel work, we mainly focus on how such algorithms can be derived
in a systematic fashion from the factor graph of the system at hand. The
starting point of our approach is to apply the sum-product algorithm on
that factor graph, which leads to intractable integrals. We consider seve-
ral methods to approximate those integrals; each method corresponds to
a certain message type and leads to a different phase-estimation algo-
rithm. We consider the following approximation methods:

• numerical integration,

• particle methods,

• adaptive quantization,

• gradient methods,

• expectation maximization (EM).

Before we apply each method to the particular application of carrier-
phase estimation, we will outline how each approximation method in

59

60 Chapter 4. Phase-Estimation Algorithms

general can be viewed as message passing on factor graphs. We will
also consider well-known instances of some of the methods (e.g., particle
methods such as Gibbs sampling, MCMC etc.).

The Appendices D and E are heavily based on material presented in
this chapter. In Appendix D, we outline how kernels can be derived
from graphical models, in particular, by the message-passing methods we
present in this chapter. In Appendix E, we demonstrate how the back-
propagation algorithm for the training of feed-forward neural networks
can be derived as message-passing in factor graphs.

This chapter may be of interest to readers who want to learn more about:

• code-aided carrier-phase estimation, or, code-aided channel esti-
mation in general;

• message-passing algorithms for estimation with applications to
model-based signal processing and machine learning.

The results on phase estimation we present in this chapter are based
on [47] [52] [48] [44]. The message-passing viewpoint presented in this
chapter was developed in collaboration with Sascha Korl.

4.1 Introduction

We consider channels of the form

Yk = Xke
jΘk +Nk, (4.1)

where Xk is the channel input symbol at time k ∈ {1, 2, . . . , L}, Yk is
the corresponding received symbol, Θk ∈ [0, 2π) is the unknown phase,
and Nk is complex white Gaussian noise with (known) variance 2σ2

N ,

i.e., σ2
N per dimension. We will use the notation X

△

= (X1, X2, . . . , XL),

Y
△

= (Y1, Y2, . . . , YL) and Θ
△

= (Θ1,Θ2, . . . ,ΘL). For the sake of definite-
ness, we assume that the channel input symbols Xk are M-PSK symbols
(cf. Fig. 2.7) and are protected by a binary low-density parity check
(LDPC) code.1 The coded channel input symbols Xk are transmitted in

1We refer to Appendix C for more information about LDPC-codes.

4.1. Introduction 61

frames of L symbols. We consider the two phase models we described
in Chapter 2, i.e., the constant-phase model and the random-walk phase
model.

Constant Phase: Θk = Θ0 ∈ [0, 2π), an unknown constant.

Random Walk:
Θk = (Θk−1 +Wk) mod 2π, (4.2)

where Wk is white Gaussian noise with known variance σ2
W .

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

Re[Yk]

Im
[Y

k
]

Figure 4.1: Realization of Y in the constant-phase model; the figure
depicts the symbols Yk in the complex plane (σN = 0.3,
θ = 0.3, L = 1000 and M = 4).

Fig. 4.1 depicts a realization of Y in the constant-phase model. A realiza-
tion of Θ and Y in the random-walk phase model is shown in Fig. 4.2(a)
and Fig. 4.2(b) respectively.

The algorithms we propose are approximations of the symbol-wise MAP
(maximum a posteriori) decoder (cf. Appendix A):

X̂MAP
k = argmax

xk

∫ 2π

0

. . .

∫ 2π

0

p(xk, y, θ) dθ (4.3)

= argmax
xk

∫ 2π

0

. . .

∫ 2π

0

∑

x with xk fixed

p(x, y, θ) dθ, (4.4)

The function p(x, y, θ) stands for the joint probability function of X ,
Y , and Θ; it is a probability density function (pdf) in θ and y and a

62 Chapter 4. Phase-Estimation Algorithms

100 200 300 400 500 600 700 800 900 1000

1

2

3

4

5

6

k

Θ
k

(a) Realization of Θ.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

Re[Yk]

Im
[Y

k
]

(b) Realization of Y ; the figure depicts
the symbols Yk in the complex plane.

Figure 4.2: Random-walk phase model (σN = 0.3, θ1 = 0.5, L = 1000,
M = 4, and σW = 0.05).

probability mass function (pmf) in x. Note that Equations (4.3) and (4.4)
involve averaging over the phase Θ.

As outlined already by Wiberg in ’96 [210], iterative (message-passing)
algorithms for joint decoding and channel estimation may be derived from
the factor graph of the code and the channel (see also [214]). We will
follow this principle to derive algorithms for carrier-phase estimation.
Message-passing algorithms to approximately compute (4.3) and (4.4)
may be obtained by the following procedure:

a) The probability function p(x, y, θ) is represented by a factor graph.

b) Message types are chosen and message-update rules are computed.

c) A message-update schedule is chosen.

In Step 2, finite-alphabet variables (such as Xk) are handled by the stan-
dard sum-product rule. For continuous-valued variables (such as Θk),
however, the sum-product rule leads to intractable integrals, which can
be approximated in several ways; each such approximation corresponds
to a certain message type and results in a different phase-estimation al-
gorithm. In some cases, we will obtain an approximation of the entire
posterior distribution p(θ| y); in other cases, we will obtain only an esti-

mate θ̂.

4.2. Factor Graphs of the System 63

Phase estimation is of course an old subject2 and several algorithms for
joint iterative decoding and phase estimation have recently appeared,
both for the constant-phase model as for the random-walk phase model.

• Constant-phase model:
A large number of synchronization algorithms for the constant-
phase model have been proposed. Some of the algorithms are ad-
hoc [28] [35] [27] [189], others are based on the expectation maxi-
mization algorithm [141] [143] [185] [144] [185] [122] [82] or the
sum-product algorithm [152] [153].

• Random-walk phase model:
In parallel work, Colavolpe et al. derived other phase estimators
from the factor graph of the random-walk model [36]. They appro-
ximated the sum-product messages by so-called “canonical dis-
tributions” such as the Gaussian and Tikhonov distribution. In
parallel work, Noels et al. [151] derived EM-based algorithms for
the random-walk model. A turbo-synchronization algorithm for an
other simple stochastic phase model was presented in [137].

This chapter is structured as follows. In Section 4.2, we explain the factor
graphs. We derive the sum-product message-update rules in Section 4.3.
We elaborate on the update schedule in Section 4.4. The various message-
passing algorithms are described in Section 4.5 through Section 4.9; in
each of those sections, we first describe the considered estimation method
as message passing on factor graphs, then we apply the method to the
carrier-phase estimation problem. Simulation results are presented in
Section 4.10. A summary of this chapter is given in Section 4.11.

4.2 Factor Graphs of the System

The system described in Section 8.1 is easily translated into the factor
graph of Fig. 4.3, which represents the factorization of the joint proba-
bility function of all variables in the system. The upper part of the
graph is the indicator function of the LDPC code, with parity check
nodes in the top row that are “randomly” connected to equality con-
straint nodes (“bit nodes”). The function f is the deterministic mapping

2See, e.g., [197] for one of the first studies on this subject.

64 Chapter 4. Phase-Estimation Algorithms

Z1 ZL

y1 yL

f f

X1 XL

{0, 1} B
(1)
1 B

(log2 M)
1 B

(1)
L B

(log2 M)
L

⊕⊕ ⊕

p(y1|z1) p(yL|zL)

= ===

. . .

.

. . .

phase model

“random” connections

Figure 4.3: Factor graph of LDPC code and the channel model.

f :
(

B
(1)
k , . . . , B

(log2 M)
k

)

7→ Xk of the (encoded) bits B
(1)
k , . . . , B

(log2 M)
k

to the (channel) symbolXk. The nodes labeled “f” (“bit mapper nodes”)
correspond to the factors

δf

(

b
(1)
k , . . . , b

(log2 M)
k , xk

)

(4.5)

,

{

1, if f
(

b
(1)
k , . . . , b

(log2 M)
k

)

= xk;

0, otherwise.
(4.6)

The bottom row of the graph represents the factors

p(yk|zk)
△

= (2πσ2
N)−1 e−|yk−zk|

2/2σ2
N . (4.7)

The “phase model” in Figure 4.3 is detailed in Figures 4.4 and 4.5. In

these figures, Sk is defined as Sk
△

= ejΘk and Zk is defined as Zk
△

=
XkSk. The top row of nodes (“multiply nodes”) in Figures 4.4 and 4.5

4.3. Sum-Product Message Update Rules 65

represents the factors δ(zk − xksk). The function g is the deterministic
mapping g : Θk 7→ Sk of the phase Θk to Sk; the nodes labeled “g” in
Figures 4.4 and 4.5 represent the factors δ(sk − ejθk). The compound
equality constraint node in Figure 4.4 imposes the constraint Θk = Θ, ∀k
(cf. Remark 3.2). In Fig. 4.5, the nodes labeled p(θk|θk−1) (“phase noise
nodes”) represent the factors

p(θk|θk−1)
△

= (2πσ2
W)−1/2

∑

n∈Z

e−((θk−θk−1)+n2π)2/2σ2
W . (4.8)

=

×× ×

. . .

Z1 Z2 ZL

Θ

gg g

X1 X2 XL

S1 S2 SL

Figure 4.4: Factor graph of the constant-phase model.

= =

×××
. . .

. . .

Z1 Z2 ZL

ggg

X1 X2 XL

S1 S2 SL

Θ1 Θ2 ΘLp(θ2|θ1) p(θL|θL−1)

Figure 4.5: Factor graph of the random-walk phase model.

4.3 Sum-Product Message Update Rules

We now apply the sum-product algorithm to the factor graph in Fig. 4.3,
where the factor graph of the phase model is detailed in Fig. 4.4 and Fig. 4.5.

66 Chapter 4. Phase-Estimation Algorithms

In this section, we compute the update rules; in Section 4.4, we explain
in which order the messages are updated.

The messages out of the nodes p(yk|zk) are the functions p(yk|zk) them-
selves. The computation of the messages out of the bit mapper nodes
and inside the graph of the LDPC code is standard [119]; we therefore
only consider the computation of the messages inside, and out of, the
graph of the two phase models.

Straightforward application of the sum-product algorithm to the graph
of the two phase models results in the following update rules :

• Equality Constraint Node (see Fig. 4.6(a))

µ =→Θ(θ) ∝
∫

θ′

∫

θ′′

δ(θ − θ′)δ(θ − θ′′)

·µΘ′→ = (θ′)µΘ′′→ = (θ′′)dθ′dθ′′ (4.9)

= µΘ′→ = (θ)µΘ′′→ = (θ), (4.10)

where Θ,Θ′, and Θ′′ ∈ [0, 2π). Note that the message µ =→Θ(θ) is
defined up to some scaling factor (cf. Remark 3.3). The messages
along the edges Θ′ and Θ′′ are computed analogously.

• Multiply Node (see Fig. 4.6(b))

µ×→S(s) ∝
∑

X

∫

z

µX→× (x)µZ→× (z)δ(z − xs)dz (4.11)

=
∑

X

µX→× (x)µZ→× (xs), (4.12)

µ×→X(x) ∝
∫

z

∮

unit circle

µS→× (s)µZ→× (z)δ(z − xs)dsdz (4.13)

=

∮

unit circle

µS→× (s)µZ→× (xs)ds, (4.14)

where X is an M-PSK symbol, Z ∈ C, S takes values on the unit
circle, and the line integral in the RHS of (4.14) is computed over
the unit circle.

4.3. Sum-Product Message Update Rules 67

• Phase Noise Node (see Fig. 4.6(c))

µp→Θ(θ) ∝
∫ 2π

0

µΘ′→p(θ
′)p(θ|θ′)dθ′, (4.15)

=

∫ 2π

0

µΘ′→p(θ
′)
∑

n∈Z

e−((θ−θ′)+n2π)2/2σ2
W dθ′, (4.16)

where Θ, and Θ′ ∈ [0, 2π). The message µp→Θ′(θ′) along the
edge Θ′ is computed analogously.

• Phase Mapper Node (see Fig. 4.6(d))

µg→S(s) = µΘ→g(arg s), (4.17)

µg→Θ(θ) = µS→g

(
ejθ
)
, (4.18)

where arg s stands for the argument of s, Θ ∈ [0, 2π) and S takes
values on the unit circle.

Θ =

Θ′

Θ′′

(a) Equality.

×

X

Z

S

(b) Multiply.

Θ′ Θ

p(θ|θ′)
(c) Phase Noise.

Θ
g S

(d) Phase Mapper.

Figure 4.6: Nodes in the graph of the phase models.

Since the messages µΘk→g and µSk→× in Figures 4.4 and 4.5 encode
the same information, there is no need to compute (and store) the mes-
sages µSk→× explicitly. The messages µ×→Xk

can directly be computed
from µΘk→g rather than from µSk→× , as illustrated in Fig. 4.7. The
corresponding update rule is obtained by clustering the multiply and
phase mapper nodes (cf. Section 3.3). The standard sum-product rule

68 Chapter 4. Phase-Estimation Algorithms

×

Zk

g

Xk

Sk

Θk

×

Zk

g

Xk

Θk

Figure 4.7: Multiply and mapper node. (left) the two nodes are
treated separately, and the messages along the edges Sk are
computed explicitly; (right) the two nodes are clustered.

is applied to the resulting (compound) node (dashed box in Fig. 4.7
(right)):

µ×→Xk
(xk) ∝

∫ 2π

0

∫

unit circle

∫

zk

δ(zk − xksk)δ
(
sk − ejθk

)

µΘk→g(θk)µZk→× (zk) dθk dsk dzk, (4.19)

=

∫ 2π

0

µΘk→g(θk)µZk→×

(
xke

jθk
)
dθk, (4.20)

∝
∫ 2π

0

µΘk→g(θk)e−|xkejθk−yk|
2/2σ2

N dθk, (4.21)

which is more practical to implement than (4.14). Similarly, one can
rewrite the update rule for the messages µg→Θk

(θk) out of the phase
mapper node along the Θk edges as

µg→Θk
(θk) ∝

∑

xk

µXk→× (xk)µZk→×

(
xke

jθk
)

(4.22)

∝
∑

xk

µXk→× (xk)e−|xkejθk−yk|
2/2σ2

N . (4.23)

According to the sum-product rule, the messages µΘk→g (θk) in Fig. 4.4
are computed as

µΘk→g (θk) ∝
∏

ℓ 6=k

µg→Θℓ
(θk) , (4.24)

i.e., the product of all messages arriving at the equality constraint node,
except the one that arrives along the edge Θk. However, it is more

4.4. Scheduling 69

convenient to approximate the messages µΘk→g (θk) by the product of
all messages arriving at the equality constraint node:

µΘk→g (θk) ≈
L∏

i=1

µg→Θi
(θk) (4.25)

∝ µ =→Θ (θk) , (4.26)

where µ =→Θ (θk) is the message leaving the equality node along the
Θ edge. The approximation (4.25)–(4.26) is in practice satisfactory, since
L, the number of messages in the product (4.24) and (4.25), is typically
large (between 100 and 10.000).

The integrals in the RHS of (4.15) and (4.21) are intractable. In the
following sections, we will describe several approximative integration
methods:

• numerical integration (Section 4.5),

• particle methods (Section 4.6),

• adaptive quantization (Section 4.7),

• gradient methods (Section 4.8),

• expectation maximization (Section 4.9).

Each approximation leads to a different message-passing algorithm for
code-aided phase estimation. Before we describe each algorithm indivi-
dually, we explain in which order the messages in Fig. 4.3 are updated,
since this order is common to all phase estimators. We treat the schedu-
ling inside the phase model (see Fig. 4.4 and Fig. 4.5) when we describe
the individual phase estimators.

4.4 Scheduling

The messages in the graph of Fig. 4.8 are updated in the following order:

1© The messages from the nodes p(yk|zk) towards the phase model.

70 Chapter 4. Phase-Estimation Algorithms

Z1 ZL

y1 yL

ff

X1 XL

⊕⊕ ⊕

p(y1|z1)

= ===

. . .

. . .

.

phase model

“random” connections

1©

2©

3©

4©

5©

6©

7©

Figure 4.8: Message update schedule. The circled numbers indicate
the order of the message computations.

2© One or more iterations in the graph of the phase model (Fig. 4.4
or Fig. 4.5).

3© The messages from the phase model towards the mapper nodes f .

4© The messages from the mapper nodes f towards the bit nodes.

5© One or more iterations of the LDPC decoder.

6© The messages from the bit nodes towards the mapper nodes f .

7© The messages from the mapper nodes f towards the phase model.

The updates 2©– 7© are iterated until convergence or until the available
time is over.

4.5. Numerical Integration 71

4.5 Numerical Integration

4.5.1 General Idea

Numerical integration (or “grid based integration” or “quantization”) is a
well-known technique to evaluate intractable integrals. Continuous vari-
ablesX are (uniformly) quantized, and the (intractable) integral-product
rule is replaced by a finite sum. If we apply the simplest numerical in-
tegration scheme, i.e., the rectangular rule, the integral-product rule is
evaluated as follows.

Integral-product rule evaluated by numerical integration:

µf→Y (y)
△∝

∑

i1,...,iN

f
(
y, x̂

(i1)
1 , . . . , x̂

(iN)
N

)
·

µX1→f

(
x̂

(i1)
1

)
· · ·µXN→f

(
x̂

(iN)
N

)
, (4.27)

where x̂
(ik)
k is the ik-th quantization level of Xk.

The integrand in the integral-product rule, i.e.,

g(y, x1, . . . , xN)
△

= f(y, x1, . . . , xN) · µx1→f (x1) · · ·µxN→f (xN) (4.28)

is approximated as a piecewise constant function (w.r.t. x1, . . . , xN), as
illustrated in Fig. 4.9. The messages µXk→f are represented by their

x

g(x)

Figure 4.9: Rectangular integration rule.

72 Chapter 4. Phase-Estimation Algorithms

function values at the quantization levels x̂
(ik)
k (see Fig. 4.10); we refer

to this message representation as quantized message.

x.

µ(x)

x̂(i) x̂(i+1)

Figure 4.10: Quantized message.

Remark 4.1. (Higher-order integration rules)
In (4.27) we used the rectangular integration rule, which approximates
the integrand by piecewise constant functions. One may apply more
accurate integration schemes based on higher-order polynomials [164] or
splines [196] . We verified experimentally that the rectangular rule (4.27)
suffices for our purposes (i.e., phase estimation): the performance gain
due to higher-order integration rules turns out to be negligible. This is
not necessarily the case for other estimation problems.

4.5.2 Application

Constant-Phase Model

The forward messages µF
k and downward messages µg→Θk

are quantized
messages (see Fig. 4.11). The messages µΘk→g (θk) are approximated by

the message µ =→Θ(θ)
△

= µF
L (cf. (4.25)–(4.26)). The latter is computed

in a forward sweep, as illustrated in Fig. 4.11, as a consequence, the
backward messages µg→Θk

are not required.

The update schedule is as follows:

1© The message µF
1 is initialized (cf. (4.23)):

µF
1 (θ(i)) = µg→Θ1(θ

(i)), (4.29)

4.5. Numerical Integration 73

where the quantization levels θ(i) are defined as θ(i)
△

= 2πi/N ,
and i = 1, . . . , N .

2© The messages µF
k are updated in a forward sweep:

µF
k (θ(i)) ∝ µF

k−1(θ
(i))µg→Θk

(θ(i)), (4.30)

for i = 1, . . . , N and k = 2, . . . , L.

3© The upward messages µ×→Xk
(xk) are computed from the mes-

sage µF
L (cf. (4.21)):

µ×→Xk
(xk)

△∝
N∑

i=1

µF
L (θ(i))µZk→×

(
xk exp(jθ̂(i))

)
. (4.31)

for k = 1, . . . , L.

1© 2©2©

3©

==

××× . . .

. . .
µF

1 µF
2 µF

L

Z1 Zk ZL

Θ

ggg

X1 X2 XL

Θ1 Θ2 ΘL

Figure 4.11: Quantized messages in the factor graph of the constant-
phase model.

Random-Walk Phase Model

All messages along the Θk edges (see Fig. 4.12) are quantized messages,
i.e., µpk→Θk−1

, µpk→Θk
, µΘk→g and µg→Θk

. The updates are scheduled
as follows:

1© The messages µpk→Θk
and µpk→Θk−1

are updated in a forward and
backward sweep respectively. At the phase noise nodes, one com-

74 Chapter 4. Phase-Estimation Algorithms

putes the forward messages as follows:

µpk→Θk
(θ̂(i))

△∝
N∑

j=1

µΘk−1→pk
(θ̂(j))pk(θ̂(i)|θ̂(j)), (4.32)

for all i = 1, . . . , N . The backward messages µpk→Θk−1
are com-

puted similarly. At the equality constraint nodes, the messages are
updated as in (4.30).

2© The upward messages µΘk→g are computed:

µΘk→g(θ
(i)) ∝ µpk−1→Θk

(θ(i))µpk→Θk
(θ(i)), (4.33)

3© The messages µ×→Xk
(xk) are obtained from the messages µΘk→g:

µ×→Xk
(xk)

△∝
N∑

i=1

µΘk→g(θ
(i))µZk→×

(
xk exp(jθ̂(i))

)
. (4.34)

for k = 1, . . . , L.

1©

1©

2©

3©

=

×××

. . .

. . .

Z1 Z2 ZL

ggg

X1 X2 XL

Θ1 Θ2
ΘL

p(θ2|θ1) p(θL|θL−1)

Figure 4.12: Quantized messages in the factor graph of the random-
walk phase model.

4.5.3 Summary

In the numerical-integration approach:

• Continuous variables are (usually uniformly) quantized.

4.6. Particle Methods 75

• Integrals are replaced by finite sums.

• Messages are represented by their function values evaluated at the
quantization levels (“quantized messages”).

4.6 Particle Methods

4.6.1 General Idea

A probability (density or mass) function f can be represented by a list of
samples (“particles”) from f , as illustrated in Fig. 4.13.3 This data type

x

f

x

f

Figure 4.13: A probability density function f and its representation
as a list of particles. The radius of the particles is pro-
portional to their weights. (left) uniform weights; (right)
non-uniform weights.

is the foundation of Monte-Carlo methods [171] (or “particle methods”).
Integrals are evaluated as (weighted) averages over lists of samples.

3It is sometimes useful to approximate a probability mass function by a list of
samples, especially, if the alphabet of the discrete random variable is large.

76 Chapter 4. Phase-Estimation Algorithms

Integral-product rule evaluated by particle methods:

µf→Y (y)
△∝

∑

i1,...,iN

f(y, x̂
(i1)
1 , . . . , x̂

(iN)
N) · w(i1)

1 · · ·w(iN)
N , (4.35)

where x̂
(ik)
k is the ik-th particle of the particle list that repre-

sents µXk→f , and w
(ik)
k is the weight of that particle.

In the update rule (4.35), samples from the sum(integral)-product mes-
sages µXk→f are required. We now investigate how such samples can
be obtained. Suppose we wish to draw samples from the sum(integral)-
product message µg→X out of the generic node g (see Fig. 4.14):

µg→X(x)
△

=
∑

z1,...,zN

g(x, z1, . . . , zN)µZ1→g(z1) · · ·µZN→g(zN), (4.36)

where
∑

stands for summation if Zk is discrete and for integration other-
wise. First we consider the case where the variables Zk are discrete, then

Z1

ZN

g
X..

.

Figure 4.14: Message along a generic edge.

we investigate the continuous case.

Discrete variables Zk

One may generate samples from µg→X by the following procedure:

a) For each k, draw a value ẑk of Zk with probability proportional
to µZk→g(ẑk).

b) Draw a sample x̂ from g(x, ẑ1, . . . , ẑN).

c) Iterate 1–2 until a sufficient number of samples are obtained.

Note that the resulting samples have uniform weights. We therefore refer
to the above sampling method (Step 1–3) as unweighted sampling.

4.6. Particle Methods 77

Alternatively, one may draw samples x̂ from g(x, ẑ1, . . . , ẑN) for each
valid configuration (ẑ1, . . . , ẑN). The weightw of sample x̂ is proportional
to

w ∝
N∏

k=1

µZk→g(ẑk). (4.37)

This sampling method is called weighted sampling. From the resulting
list of weighted samples, one can generate a list of uniform samples by
a technique called resampling: one draws samples x̂ from the weighted
list with probability proportional to the weights w; a particle with large
weight w may be drawn several times, whereas a particle with small
weight may not be drawn at all. Note that weighted sampling followed
by resampling leads to unweighted samples; hence, weighted sampling in
combination with resampling is an alternative to unweighted sampling.

Remark 4.2. (Drawing samples)
In weighted as well as unweighted sampling, we need to draw samples
from a function g(x, ẑ1, . . . , ẑN). Note that an explicit form of g is not
required. Samples x̂ can be obtained by simulating the node operation g
(“direct sampling”); in certain systems, e.g., discrete-time state-space
models, this may correspond to the integration of a stochastic differential
equation. If it is hard to sample from g directly, we may apply impor-
tance sampling or Markov-Chain Monte-Carlo methods (MCMC). We
will describe those two sampling techniques in Section 4.6.3 and 4.6.5
respectively.

Continuous variables Zk

If the variables Zk are continuous, we distinguish the following cases:

• If a closed-form expression of the integral (4.36) is available, one
may sample from µg→X by standard techniques (e.g., importance
sampling or MCMC).

• If µZk→g are quantized messages, one proceeds as in the case of
discrete variables Zk.

• If the messages µZk→g are lists of samples, the procedure is also
very similar to the one in the discrete case. The first step in the
unweighted sampling procedure is slightly modified: for each k, one

78 Chapter 4. Phase-Estimation Algorithms

draws a particle ẑk with probability proportional to its weight wk.
In weighted sampling, one draws a sample from g(x, ẑ1, . . . , ẑN),
for each N -tuple of particles (ẑ1, . . . , ẑN). The weight w of this
sample is proportional to

w ∝
N∏

k=1

wk, (4.38)

where wk is the weight of particle ẑk.

• If the incoming messages are single values ẑk, one draws samples
from g(x, ẑ1, . . . , ẑN).

• Combinations of the previous cases are possible.

Specific node functions

So far, we have considered generic node functions g. We now apply the
above generic rules to two important classes of node functions: deter-
ministic mappings and equality constraint nodes.

• (Deterministic mapping)
Suppose that the function g corresponds to a deterministic map-
ping, for example

g(x, z1, . . . , zN)
△

= δ(x− h(z1, . . . , zN)), (4.39)

where h maps the N -tuple (z1, . . . , zN) to x. Samples x̂ from
g(x, ẑ1, . . . , ẑN) are all identical, i.e., x̂ = h(ẑ1, . . . , ẑN).

• (Equality constraint node)
Suppose that the node g is an equality constraint node, i.e.,

g(x, z1, . . . , zN)
△

= δ(x− z1)

N−1∏

k=1

δ(zk+1 − zk). (4.40)

The outgoing message µg→X(x) is given by:

µg→X(x) ∝
N∏

k=1

µZk→g(x). (4.41)

4.6. Particle Methods 79

– If X is discrete, one draws a sample x̂ with probability pro-
portional to

∏N
k=1 µZk→g(x̂).

– If X is continuous, and closed-form expressions for the
incoming messages µZk→g are available, one may sample from
the product (4.41). This can be done in an elegant fashion by
importance sampling, as we will see later on.

– If the messages µZk→g are quantized messages, one pro-
ceeds as in the discrete case.

– If the messages µZk→g are represented as lists of samples, it
is not straightforward to draw samples from (4.41). One usu-
ally first generates a continuous representation such a density
trees or a mixture of Gaussian distributions for each of the in-
coming messages µZk→g. Efficient methods have been devised
to draw samples from products of such density approxima-
tions [88] . However, those methods are rather complicated,
and it is therefore recommendable to avoid products of par-
ticle lists. This is in practice often possible, as we illustrate
in Section 4.6.4 (cf. Remark 4.5).

– Also combinations of the previous situations are possible, as
we will illustrate in Section 4.6.3 by the example of importance
sampling.

– If the incoming messages are single values ẑk, there is no
reasonable way to draw samples from (4.41). However, one
may compute the outgoing message µg→X as the average of
the incoming estimates ẑk:

µg→X
△

=
1

N

N∑

k=1

ẑk. (4.42)

In the following, we describe five standard Monte-Carlo techniques as
instances of the above generic rules, i.e.,

• Gibbs sampling,

• importance sampling,

• particle filtering (“sequential Monte-Carlo filtering”),

• Markov-Chain Monte-Carlo methods,

• simulated annealing.

80 Chapter 4. Phase-Estimation Algorithms

4.6.2 Gibbs Sampling

Suppose we wish to draw samples from a multivariate probability func-
tion f(x1, x2, . . . , xN). This can be done by the following iterative algo-
rithm known as Gibbs sampling [171, p. 371–407]:

a) Choose an initial value (x̂1, x̂2, . . . , x̂N).

b) Choose an index k.

c) Draw a sample x̂k from

f(xk)
△

=
f(x̂1, . . . , x̂k−1, xk, x̂k+1, . . . , x̂N)

∑

xk
f(x̂1, . . . , x̂k−1, xk, x̂k+1, . . . , x̂N)

. (4.43)

d) Iterate 2–3 a “large” number of times.

The values x̂ from the first n iterations are typically discarded (e.g.,
n=100), since they depend more on the initial value x̂ than on the target
distribution f .

One may obtain all samples in a single run, i.e., one continues iterating
after the n initial iterations until a sufficient number of samples are
obtained. Alternatively, each sample (or a fraction of the samples) may
be generated in a separate run.

If the function f(x1, x2, . . . , xN) has “structure”, it may become easier
to generate samples x̂k (cf. Step 3). Let us have a look at a warming-up
example.

Example 4.1. (Gibbs sampling as message passing)
Suppose the global function f(x, y) factorizes as

f(x, y)
△

= fA(x, y)fB(y), (4.44)

as depicted in Fig. 4.15(a).

Gibbs sampling from (4.44) boils down to the iterative computation of
the following messages on the factor graph of Fig. 4.15(a):

a) Message µX(x) arriving at X edge:

µX(x)
△

= fA(x, ŷ) (4.45)

4.6. Particle Methods 81

X
µX µY

Y
fA fB

x̂ ŷ
(a) fB as closed box

X
µX µY

Y

fB

fA

x̂ ŷ

Z1

ZN

...h

(b) Opening the box fB

Figure 4.15: Gibbs sampling as message passing.

b) Message x̂ broadcast by X :
Sample x̂ from:

f(x)
△

=
µX(x)

∑

x µX(x)
. (4.46)

c) Message µY (y) arriving at Y edge:

µY (y)
△

= fA(x̂, y) (4.47)

d) Message ŷ broadcast by Y :
Sample ŷ from:

f(y)
△

=
fB(y)µY (y)

∑

y fB(y)µY (y)
. (4.48)

The node fB may in its turn have internal structure, as depicted in
Fig. 4.15(b). The message fB(y) is then a “summary” of the graph
behind it, computed by applying the generic sum-product rule (or some
approximation) to the incident node h. In particular, if Gibbs sampling is
applied in the “box” fB (dashed box in Fig. 4.15(b)), the message fB(y)
is given by:

fB(y) = h(y, ẑ1, . . . , ẑN), (4.49)

where ẑk (k = 1, . . . , N) is a sample from f(zk) defined as:

f(zk)
△

=
µh→Zk

(zk)µZk→h(zk)
∑

zk
µh→Zk

(zk)µZk→h(zk)
. (4.50)

�

82 Chapter 4. Phase-Estimation Algorithms

µ1 µN

µ̃1 µ̃M

Y

f1

X1 XM

fN

=

ŷŷ

.

. . .

Figure 4.16: Gibbs sampling at a generic edge Y .

The previous example can easily be extended to general factorizations f .
Gibbs sampling can be interpreted as a message-passing algorithm that
operates on a factor graph of f by iterating the following steps:

a) Select a variable (equality constraint node) Y in the factor graph
of f (see Fig. 4.16).

b) The equality constraint node Y generates the message ŷ by sam-
pling from:

f(y)
△

=
µ1(y) . . . · µN (y)

∑

y µ1(y) . . . · µN (y)
, (4.51)

and broadcasts ŷ to its neighboring nodes fk (k = 1, . . . ,M).

c) The nodes fk update their outgoing messages µ̃ by applying the
sum-product rule with as incoming messages the samples ŷ and x̂ℓ

(ℓ = 1, . . . ,M) (cf. (4.84)).

The message-passing algorithm of Example 4.1 is an instance of the above
generic scheme, as easily can be verified. In conclusion: Gibbs sampling
is equivalent to message passing on a factor graph, where each message is
represented by a single sample; obviously, one may apply Gibbs sampling
locally in a graph (and apply other approximation techniques in the other
parts of the graph).

Remark 4.3. (Gibbs sampling from joint densities)
In order to speed up the Gibbs sampling algorithm, one may group seve-
ral variables, i.e., one may sample several variables jointly [93, p. 201].

4.6. Particle Methods 83

For instance, one could sample xk and xk+1 from the joint probability
function

f(xk, xk+1)
△

=
f(x̂1, . . . , x̂k−1, xk, xk+1, x̂k+2, . . . , x̂N)

∑

xk
f(x̂1, . . . , x̂k−1, xk, xk+1, x̂k+2, . . . , x̂N)

. (4.52)

Note that this idea is only interesting if xk and xk+1 are dependent con-
ditioned on (x̂1, . . . , x̂k−1, x̂k+2, . . . , x̂N), i.e., if the edges xk and xk+1

are incident to a common node. Indeed, if xk and xk+1 are conditionally
independent (or equivalently, the corresponding edges are not incident to
the same node), the function f(xk, xk+1) factorizes as

f(xk, xk+1)
△

= f(xk)f(xk+1), (4.53)

and sampling from f(xk, xk+1) reduces to independent sampling from
the marginals f(xk) and f(xk+1). Grouping can naturally be expressed
graphically (see Fig. 4.17(a)). The pair (ŷ, ẑ) is drawn from the (nor-
malized) product of the function h(y, z) (dashed box) and the messages
arriving at the box h along the edges Y and Z. Note that the box h
may be a summary of a subgraph, as suggested in Fig. 4.17(a); the func-
tion h(y, z) is obtained by summarizing over the internal variables of the
box h. Sampling Y and Z jointly is equivalent to “standard” sampling
(cf. Step 2) of the clustered variable (Y, Z) (see Fig. 4.17(b)).

The extension of (4.53) to higher-order joint densities is straightforward.
As the order of the joint density increases, however, it often becomes
more difficult to sample from this density.

4.6.3 Importance Sampling

Suppose we wish to compute the expectation

Ef [g]
△

=
∑

x

f(x)g(x), (4.54)

but the naive computation of (4.54) is not tractable. If it is “easy” to

sample from f , one may generate a list samples
{
x̂(i)
}N

i=1
from f and

evaluate the expectation (4.54) as

Ef [g]
△

=
1

N

N∑

i=1

g
(
x̂(i)
)
. (4.55)

84 Chapter 4. Phase-Estimation Algorithms

...
...

Z

h

˜

Y

=

=

ŷ ŷ

ẑẑ

.

. . .

.

. . .

(a) Jointly sampling Y and Z

h (Y, Z)=

(ŷ, ẑ) (ŷ, ẑ)

(ŷ, ẑ)(ŷ, ẑ)

.

. . .

.

. . .

(b) Sampling the clustered variable (Y, Z)

Figure 4.17: Grouping in the context of Gibbs sampling; the vari-
ables X and Y are clustered.

4.6. Particle Methods 85

Suppose now that sampling from f is “hard”, and hence the approach

(4.55) is not feasible. One may then draw samples
{
x̂(i)
}N

i=1
from a

different function h with supp(f) ⊆ supp(h), and compute (4.54) as

Ef [g]
△

=
1

N

N∑

i=1

w(i)g
(
x̂(i)
)
, (4.56)

where the weights wi are given by

w(i) △

=
f
(
x̂(i)
)

h
(
x̂(i)
) . (4.57)

The approach (4.56)–(4.57) is called importance sampling [171, p. 90–
107]. We have applied this method in (4.35). Importance sampling is
particularly natural when f factorizes, e.g.,

f(x)
△

= f1(x)f2(x). (4.58)

One may draw samples
{
x̂(i)
}N

i=1
(“importance samples”) from f1 and

weight those samples by the function f2 (“importance function”):

w(i) △

= f2
(
x̂(i)
)
. (4.59)

A message-passing view of this procedure is suggested in Fig. 4.18. The

X

µ1

µ2

µ3

f1

f2

=

X

particle list
closed-form

particle list

f1

f2

=

Figure 4.18: Importance sampling as message passing.

message µ1 is represented by the list of samples
{
x̂(i)
}N

i=1
(with uni-

form weights). For the message µ2, a closed-form expression is available,

i.e., µ2
△

= f2. The outgoing message µ3 is the list of samples µ3
△

=
{
x̂(i), w(i)

}N

i=1
, where w(i) is defined in (4.59). Importance sampling

may be viewed as a particular instance of weighted sampling, where (1)

86 Chapter 4. Phase-Estimation Algorithms

the local node function g is an equality constraint node; (2) one of the
messages is a list of samples; (3) the other message is available in closed-
form.

Remark 4.4. (Importance sampling from f1 or f2)
If it is hard to directly sample from f1 and f2, one may use importance

sampling (4.56) (4.57) to obtain (weighted) samples µ1
△

=
{
x̂(i), w̃(i)

}N

i=1

from f1. The message µ3 is represented as a list of samples
{
x̂(i), w(i)

}N

i=1
,

where (cf. (4.58))

w(i) △

= w̃(i)f2
(
x̂(i)
)
. (4.60)

This method is the key to particle filtering, which is the subject of next
section.

4.6.4 Particle Filtering

Particle filtering (or “sequential Monte-Carlo integration”) stands for
forward-only message passing in a state-space model of the form

f(s0, s2, . . . , sN , y1, y2, . . . , yN)
△

= fA(s0)

N∏

k=1

fA(sk−1, sk)fB(sk, yk),

(4.61)
where (some of the) messages are represented by lists of samples [59]
(see Fig. 4.19). More precisely, the messages µk and µ̃k in Fig. 4.19 are

Sk

.
µk−1

µY
k

µkµ̃k

fA(sk−1, sk)

fB(sk, yk)

=

Figure 4.19: Particle filtering as message passing. One time slice of
the state-space model is shown.

represented as lists of samples. In the basic particle filter, the list µ̃k is
obtained from µk−1 by weighted sampling. The sampling-importance-
resampling particle filter (SIR) uses unweighted sampling instead. In

4.6. Particle Methods 87

both particle filters, the list µk is generated from µ̃k by importance sam-
pling (cf. Fig. 4.18): the message µ̃k, µY

k and µk in Fig. 4.19 correspond
to the message µ1, µ2 and µ3 respectively in Fig. 4.18.

Remark 4.5. (Smoothing by particle methods)
Along the same lines, particle methods can be used for smoothing in
state-space models, as depicted in Fig. 4.20. The forward messages (µF

k

and µ̃F
k), backward messages (µB

k and µ̃B
k), and upward messages µU

k are
represented as lists of samples. The forward and backward messages are
updated by applying the particle filter in a forward and backward sweep
respectively. There are several ways to obtain the upward messages µU

k .
One could generate them from the product of incoming particle lists µ̃F

k

and µB
k (by means of the methods of [88], see Section 4.6.1). We propose a

simpler alternative based on importance sampling. One possible scheme

is shown in Fig. 4.21(a). The importance samples are given by µB
k

△

=
{

ŝ
(i)
B,k, w

(i)
B,k

}N

i=1
, and the importance function equals:

f(sk)
△

= µ̃F
k (sk)µY

k (sk), (4.62)

where the message µ̃F
k (sk) is obtained by applying the sum-product

rule to the node fA(sk−1, sk) with as incoming message the particle

list µF
k−1

△

=
{

ŝ
(i)
F,k−1, w

(i)
F,k−1

}N

i=1
(cf. (4.35)), i.e.,

µ̃F
k (sk)

△

=

N∑

i=1

w
(i)
F,k−1fA(ŝ

(i)
F,k−1, sk). (4.63)

The message µU
k is the list of samples µU

k
△

=
{

ŝ
(i)
B,k, w

(i)
U,k

}N

i=1
, where

w
(i)
k,U

△

= w
(i)
B,kf(ŝ

(i)
B,k), (4.64)

∝ w
(i)
B,kµ

Y
k (ŝ

(i)
B,k)

N∑

j=1

w
(j)
F,k−1fA(ŝ

(j)
F,k−1, ŝ

(i)
B,k). (4.65)

Obviously, one may exchange the roles of µ̃F
k and µB

k , as depicted in
Fig. 4.21(b): the importance samples are now given by µ̃F

k , and the
importance function equals:

f(sk)
△

= µB
k (sk)µY

k (sk), (4.66)

88 Chapter 4. Phase-Estimation Algorithms

where the message µB
k (sk) is obtained by applying the sum-product

rule to the node fA(sk, sk+1) with as incoming message the particle

list µ̃B
k+1

△

=
{

ŝ
(i)
B,k+1, w

(i)
B,k+1

}N

i=1
, i.e.,

µB
k (sk)

△

=

N∑

i=1

w
(i)
B,k+1fA(sk, ŝ

(i)
B,k+1). (4.67)

One may generate half of the samples by the method of Fig. 4.21(a), and
the other half by the method of Fig. 4.21(b), which leads to a symmetrical
situation.

Sk

.
µF

k−1

µY
k

µF
kµ̃F

k

fA(sk−1, sk)

fB(sk, yk)

=
µB

k−1 µB
kµ̃B

k

µU
k

Figure 4.20: Smoothing by particle methods. One time slice of the
state-space model is shown.

.=

closed-form

closed-form

particle list

particle list particle list

(a) A first option

. =

closed-form

closed-form

particle list

particle list

particle list

(b) A second option

Figure 4.21: Computing µU
k by importance sampling.

Remark 4.6. (Particle filtering for constant parameters)
Particle filtering is not well-suited for inferring constant parameters. If sk

4.6. Particle Methods 89

is constant, i.e., sk
△

= s and hence fA(sk−1, sk)
△

= δ(sk−1 − sk) for all k,
the (un)weighted sampling step is trivial: the messages µ̃k are identi-
cal to the messages µk−1. Since importance sampling does not change
the position of the particles, but only their weights, the position of the
particles is in all lists µk identical. In other words, the particles do not
“explore” the parameter space, and the resulting approximation of the
posterior density of S is rather poor. Liu et al. [115] proposed a heuristic
scheme to deal with this problem. The idea is to introduce “artificial

evolution”: the function fA(sk−1, sk)
△

= δ(sk−1 − sk) is replaced by some
conditional q(sk|sk−1), e.g., a Gaussian distribution with mean sk−1.
The (un)weighted sampling step is then no longer trivial: it modifies the
position of the particles. However, artificial evolution introduces noise
in the system: the lists of samples are “wider” than the true posterior
density. Therefore, Liu et al. propose to move the particles towards the
mean of the list after each (un)weighted sampling step (“shrinkage”).
Shrinkage can exactly compensate for the increase in variance due to
artificial evolution. However, it does not eliminate the distortion of the
higher-order moments.

Remark 4.7. (Particle filters: pros and cons)
Both the basic and SIR particle filter suffer from certain problems. Gen-
erally speaking, due to the repeated sampling, small deviations from the
true densities µk and µ̃k will accumulate and eventually lead to dras-
tically distorted sample lists. In particular, after several iterations of
the basic particle filter, all but one particle have zero weight (“degene-
racy”); in the SIR particle filter, all particles will eventually coincide
(“sample impoverishment”). It is therefore recommendable to alternate
weighted and unweighted sampling to generate the lists µ̃k [59]. Despite
sophisticated (heuristic) alternation schemes, the resulting sample lists
may still be quite far from the true densities, especially when the latter
are narrow (as in the high-SNR regime). In the literature, some other
heuristic methods have been proposed to improve the basic and SIR par-
ticle filter, e.g., artificial evolution in conjunction with shrinkage [115]
(cf. Remark 4.6). We have tried out most of the proposed schemes. The
results of our experiments indicate that the standard particle methods
are not recommendable if high-precision results are required, i.e., poste-
rior densities or estimates. In fact, numerical integration often amounts
to more accurate results; this method is however only applicable in low-
dimensional systems.

90 Chapter 4. Phase-Estimation Algorithms

4.6.5 Markov-Chain Monte-Carlo Methods (MCMC)

As in Section 4.6.3, we wish to draw samples from a probability func-
tion (“message”) f from which it is hard to sample directly. As we
explained in that section, samples from f may be obtained by impor-
tance sampling: one draws samples from a different function h and cor-
rects for that by weighting the obtained samples. Markov-Chain Monte-
Carlo methods (MCMC) are alternative sampling methods that are si-
milar in spirit [171]. The idea is to sample repeatedly from an ergodic
Markov chain with stationary distribution f . We now briefly present
the most well-known MCMC method, i.e., the Metropolis-Hastings algo-
rithm [171]. This algorithm is based on a conditional density q(y|x) from
which it is assumed to be easy to sample. In addition, q is supposed to be
symmetric, i.e., q(y|x) = q(x|y). Usually, the function q fully factorizes,
i.e.,

q(y1, . . . , yN |x1, . . . , xN)
△

=
N∏

k=1

q(yk|xk). (4.68)

An example of a function q is a Gaussian distribution with mean x and
diagonal covariance matrix. The Metropolis-Hastings algorithm gene-
rates samples x̂ from the “target” function f by the following iterative
procedure:

a) Choose an initial value x̂.

b) Sample ŷ from q(y|x̂).

c) Set

x̂
△

= ŷ with probability p (4.69)

where

p
△

= min

{
f(ŷ)

f(x̂)
, 1

}

(4.70)

d) Iterate 2–3 a sufficient number of times.

Note that the function f must be available up to some constant.

Similarly as Gibbs sampling, the Metropolis-Hastings algorithm can be
interpreted as a message-passing algorithm that operates on a factor
graph of f . The following steps are iterated:

4.6. Particle Methods 91

µ1 µN

µ̃1 µ̃M

Y

f1

X1 XM

fN

=

ŷŷ

.

. . .

Figure 4.22: Application of the Metropolis-Hastings algorithm at a
generic edge Y .

a) Select a variable (edge or equality constraint node) Y in the factor
graph of f (see Fig. 4.22).

b) The edge Y generates the message ŷnew by sampling from q(y|ŷ).

c) Set ŷ
△

= ŷnew with probability p where

p
△

= min

{
f(ŷnew)

f(ŷ)
, 1

}

(4.71)

with

f(y)
△

=
µ1(y) . . . µN (y)

∑

y µ1(y) . . . µN (y)
. (4.72)

The message ŷ is broadcast to the neighboring nodes fk (k =
1, . . . ,M).

d) The nodes fk update their outgoing messages µ̃ by applying the
sum-product rule with as incoming messages the samples ŷ and x̂ℓ

(ℓ = 1, . . . ,M) (cf. (4.84)).

One may group certain variables, as in Gibbs sampling (cf. Remark 4.3).

In the previous sections, we encountered several situations where we
needed to draw samples from a probability function (“message”). As we
explained in Section 4.6.1, sampling from a generic sum-product mes-
sage µg→X (4.36) requires samples from g(x, ẑ1, . . . , ẑN); if sampling

92 Chapter 4. Phase-Estimation Algorithms

from g is hard, and importance sampling is for some reason inconve-
nient, one may resort to the Metropolis-Hastings algorithm.

MCMC can also be applied in the context of Gibbs sampling, more specif-
ically, to generate samples from f(y) (cf. (4.43)). The resulting algo-
rithms are in the literature referred to as hybrid MCMC [171, pp. 392–
396].

MCMC can be used in the context of particle filters too [20] [97]. In
the case of filtering, the message µk is then not generated from µ̃k by
importance sampling (cf. Fig. 4.19), instead it is obtained by means of
the Metropolis-Hastings algorithm with target function f :

f(sk)
△

= µY
k (sk)µ̃F

k (sk), (4.73)

where µ̃F
k (sk) is given by (4.63). As a consequence

f(sk)
△

= µY
k (sk)

∑

i

w
(i)
k−1fA(ŝ

(i)
k−1, sk). (4.74)

One may proceed similarly in the case of smoothing. This combined
MCMC-particle filtering approach is less prone to problems as sample
impoverishment and degeneracy, but it is computationally complex.

4.6.6 Simulated Annealing

The original simulated annealing algorithm is an extension of the Metro-
polis-Hastings algorithm [171, pp. 163–169]. It can be used:

• to sample from a multivariate function f(x1, . . . , xN),

• to find the mode of the function f .

The key idea is to draw samples from functions fα, where the (positive)
exponent α increases in the course of the algorithm. The initial value
of α is close to zero (e.g., α = 0.1). If one wishes to obtain samples
from f , one halts the algorithm as soon as α = 1. If one tries to find the
mode of α, the end value of α is much larger (e.g., α = 10 or 100). Note
that for small values of α (i.e., 0 ≤ α < 1), the function fα is flatter
than the target function f , whereas for large values of α (i.e., α ≫ 1),

4.6. Particle Methods 93

the function fα mainly consists a narrow peak centered at the global
maximum of f .

Simulated annealing works as follows:

a) Choose an initial value (x̂1, x̂2, . . . , x̂N).

b) Choose an initial value α (e.g., α = 0.1).

c) Sample a new value ŷ from q(y|x̂).

d) Set x̂
△

= ŷ with probability p, where

p
△

= min

{(
f(ŷ)

f(x̂)

)α

, 1

}

(4.75)

e) Iterate 3–4 a “large” number of times.

f) Increase α according to some schedule.

g) Iterate 5–6 until convergence or until the available time is over.

Various stopping criteria and several schemes to increase α are available
in the literature.4

The principle of simulating annealing is generic. It can be applied to
any message-passing algorithm, not only to the Metropolis-Hastings al-
gorithm.5 The idea is to replace a local function f by a power fα.6 In the
course of the message-passing algorithm, α increases. If one is interested
in posterior probabilities, the algorithm is halted as soon as α = 1. If
one tries to find the mode of a function, one stops the algorithm at a
larger value of α.

4We refer to [171, pp. 163–169] for detailed information and numerous references.
5If it is interleaved with a particle method (such as Metropolis-Hastings), it is

called “stochastic annealing”; otherwise, it is called “deterministic annealing”.
6This only makes sense if the function f is “soft”, i.e., if it is not a Dirac delta.

94 Chapter 4. Phase-Estimation Algorithms

4.6.7 Application

Constant-Phase Model

The forward messages µF
k in Fig. 4.23 are represented as lists of sam-

ples µF
k

△

= {θ̂(i)k }N
i=1, whereas the downward messages µg→Θk

are avai-
lable in closed-form (cf. (4.23)). The messages in Fig. 4.23 are computed
as follows:

1© Initialize the list µF
1 with samples drawn from µg→Θ1 .

2© The particle lists µF
k are updated in a forward sweep by means

of importance sampling combined with the evolution/shrinkage
method of Liu et al. [115] (cf. Remark 4.6).

3© The upward messages µ×→Xk
(xk) are computed as weighted ave-

rages over the list µF
L :

µ×→Xk
(xk)

△∝
N−1∑

i=0

w
(i)
L µZk→×

(
xk exp

(
jθ̂

(i)
L

))
, (4.76)

where w
(i)
L is the weight of particle θ̂

(i)
L .

1© 2©2©

3©

==

××× . . .

. . .
µF

1 µF
2 µF

L

Z1 Zk ZL

Θ

ggg

X1 X2 XL

Θ1 Θ2 ΘL

Figure 4.23: Particle filtering in the factor graph of the constant-phase
model.

4.6. Particle Methods 95

Random-Walk Phase Model

The forward, backward, and upward messages µpk→Θk−1
, µpk→Θk

and
µΘk→g respectively are lists of samples, the downward messages µg→Θk

are available in closed-form (see Fig. 4.24). The messages in Fig. 4.24
are updated as follows:

1© Initialize the lists µΘ1→p2 and µΘL→pL
with samples drawn from

µg→Θ1 and µg→ΘL
(cf. (4.23)).

2© The messages µpk→Θk
and µpk→Θk−1

are updated in a forward and
backward sweep respectively. At the phase noise nodes, sample
lists are generated by (un)weighted sampling; this is implemented
by simply adding “phase noise” to the incoming particles (cf. (4.2)).
At the equality constraint nodes, importance sampling is applied
(cf. Section 4.6.4).

3© The messages µΘk→g (1 < k < L) are obtained by importance
sampling (cf. Remark 4.5).

4© The messages µ×→Xk
(xk) are evaluated as weighted averages over

the lists µΘk→g
△

= {θ̂(i)k , w
(i)
k }N

i=1:

µ×→Xk
(xk)

△∝
N−1∑

i=0

w
(i)
k µZk→×

(
xk exp

(
jθ̂

(i)
k

))
. (4.77)

1©1©
2© 2©3©

4©

=

×××
. . .

. . .

Z1 Z2 ZL

ggg

X1 X2 XL

Θ1 Θ2
ΘL

p(θ2|θ1) p(θL|θL−1)

Figure 4.24: Particle filtering in the factor graph of the random-walk
phase model.

96 Chapter 4. Phase-Estimation Algorithms

4.6.8 Summary

We summarize the main ideas of this section.

• In particle methods, probability distributions (“messages”) are repre-
sented as lists of samples. Integrals are evaluated as averages
over lists of samples.

• We have given a local view of particle methods, i.e., we have shown
how particle methods can be applied at particular nodes in the fac-
tor graph of the system at hand. In particular, we have explained
how samples can be drawn from a generic sum-product mes-
sage. We treated discrete and continuous variables. We con-
sidered various representations for the incoming messages, i.e.,
lists of samples, quantized messages, hard decisions, Gaussian dis-
tributions etc. Several combinations of incoming messages amount
to existing algorithms, others to novel algorithms.

• In this setting, particle methods can straightforwardly be com-
bined with other methods, such as gradient methods, decision-
based methods (as ICM), Kalman-style algorithms (based on Gaussian
distributions; see Appendix H) etc. In addition, such combinations
can systematically be explored.

• We have shown how standard Monte-Carlo methods can be under-
stood from this local viewpoint:

– In Gibbs sampling, messages are represented by a single
sample.

– Importance sampling can be viewed as message passing at
an equality constraint node, where one incoming message
is available in closed form, the other is a particle list. Also
the outgoing message is represented by a particle list.

– Particle filtering stands for forward/backward message pass-
ing on the factor graph of a state-space model, where the
forward/backward messages are lists of samples.

– MCMC is a method to draw samples from a “complicated”
probability function (“message”). It may be used in combina-
tion with Gibbs sampling and particle filtering.

4.7. Adaptive Quantization 97

– Simulated Annealing was originally formulated as a par-
ticle method. However, simulated annealing is a generic idea,
and it can be applied to any message-passing algorithm: cer-
tain factors (in the factor graph of the system at hand) are
raised to a positive power α; in the course of the message-
passing algorithm, the power α increases.

4.7 Adaptive Quantization

4.7.1 General Idea

In numerical integration and particle methods, integrals are replaced by
finite sums (cf. (4.27) and (4.35)). In numerical integration, the quanti-
zation levels are uniform, whereas in particle filtering, the quantization
levels are sampled from a distribution, hence, they are non-uniform. Ob-
viously, non-uniform quantization (and in particular particle methods)
could in principle lead to better results than uniform quantization. We
pointed out before, however, that for the particular problem of estimation
in state-space models, particle methods (i.e., particle filtering), seems
to perform worse than numerical integration, mainly due to the recur-
sive sampling (cf. Remark 4.7). We propose an alternative (heuristic)
method to obtain non-uniform quantization levels, which in particular
situations leads to better results than uniform quantization (numerical
integration). The idea is simple: where the function f(x) attains large
values, the density of quantization levels should be large (cf. Fig. 4.13
(left)). In contrast to particle filtering, we do not try to achieve this goal
by sampling from f(x), but by shrinkage (see Fig. 4.25): the quantization
levels are recursively moved towards the mean (or maximum or median).
Suppose an initial quantization {x(i)}N

i=1 of x is given. Shrinkage stands
for the iterative application of the following two steps:

a) Compute the mean x̄:

x̄
△

=
1

N

N∑

i=1

f
(
x

(i)
old

)
x

(i)
old. (4.78)

98 Chapter 4. Phase-Estimation Algorithms

b) Move the quantization levels towards the mean:

x(i)
new

△

= (1 − ε)x
(i)
old + εx̄, (4.79)

where ε is a small positive number that may depend on the iteration
number. In Fig. 4.25, three iterations of this algorithm are depicted.
The resulting quantization levels are obviously not samples from f . The

x

f

(a) Original (uniform) quantization.

x

f

(b) First iteration.

x

f

(c) Second iteration.

x

f

(d) Third iteration.

Figure 4.25: Adaptive quantization by shrinkage.

method works only well for unimodal distributions. If f is multimodal,
one may apply a clustering algorithm first, and apply shrinkage in each
cluster. Note that one may use the maximum or median rather than the
mean (4.78).

Shrinkage can be integrated in a generic message-passing algorithm that
operates on a factor graph as follows:

4.7. Adaptive Quantization 99

a) Initialize the quantization levels of all quantized variables x in the
factor graph. The quantization levels may be uniform; alterna-
tively, they may be generated by sampling (particle list).

b) Initialize all messages.

c) Update all messages in the graph according to the sum-product rule
or a suitable approximation. In the case of quantized variables, the
sum-product rule is evaluated as in (4.27).

d) Compute the marginals f(x) of the quantized variables x.

e) Shrink the quantization levels of x based on the marginals f(x)
(cf. (4.78) and (4.79)).

f) Iterate 3–5.

4.7.2 Application

We extend the phase estimators based on numerical integration (cf. Sec-
tion 4.5.2) with shrinkage.

Constant-Phase Model

Shrinkage is applied between step 2© (computation of µF
k) and 3© (com-

putation of µ×→Xk
):

a)

θ̄ = arg
N−1∑

i=0

µF
L(θ̂

(i)
old) exp

(
jθ̂

(i)
old

)
, (4.80)

b)

θ̂(i)new = arg
[

(1 − ε) exp
(
jθ̂

(i)
old

)
+ ε exp(jθ̄)

]

, (4.81)

where i = 0, 1, . . . , N − 1.

The update 2© and the shrinkage step (4.80)–(4.81) are iterated a number
of times before the update 3© is carried out.

100 Chapter 4. Phase-Estimation Algorithms

Random-Walk Phase Model

Shrinkage is applied between step 1© (computation of µΘk→pk
and µΘk→pk−1

)
and 2© (computation of µΘk→g):

a)

θ̄ = arg

N−1∑

i=0

µpk+1→Θk
(θ̂

(i)
old)µpk→Θk

(θ̂
(i)
old) exp

(
jθ̂

(i)
old

)
, (4.82)

b)

θ̂(i)new = arg
[

(1 − ε) exp
(
jθ̂

(i)
old

)
+ ε exp(jθ̄)

]

, (4.83)

where i = 0, 1, . . . , N − 1.

The update 1©, the shrinkage step (4.82)–(4.83), and the update 2© are
iterated a number of times before the update 3© is carried out.

4.7.3 Summary

• Adaptive quantization is a simple heuristic method to generate
non-uniform quantization levels.

• It can easily be integrated in a message-passing algorithm with
quantized messages.

4.8 Gradient Methods

In this section, we describe steepest descent (or “steepest ascent” or
“gradient descent”) as a message-passing algorithm. The results in this
section are based on joint work with Sascha Korl [46].

4.8.1 General Idea

It is common to represent a probability function f(x) by a single value
such as:

4.8. Gradient Methods 101

• its mode x̂max △

= argmaxx[f(x)]

• its mean

• its median

• a sample from f (as in Gibbs sampling).

The probability function f is then approximated by the Dirac delta δ(x−
x̂), as illustrated in Fig. 4.26 for x̂ = x̂max.

In particular, if sum-product messages are represented by single values,
the integral-product rule is approximated as follows.

Integral-product rule evaluated by means of hard decisions:

µf→Y (y)
△∝ f(y, x̂1, . . . , x̂N), (4.84)

where x̂k is a hard estimate of Xk, representing the message µXk→f .

xxmax

fmax

f

Dirac delta approximation

Figure 4.26: A probability density function and its approximation by
a Dirac delta located at its mode xmax.

In the rest of this section, we focus on the mode x̂max △

= argmaxx[f(x)].
Let us have a look at a simple example.

Example 4.2. (Mode of a message)
We consider the following model:

Yk
△

= ejΘ +Nk, (4.85)

102 Chapter 4. Phase-Estimation Algorithms

where Nk is complex white Gaussian noise with (known) variance 2σ2
N ,

i.e., σ2
N per dimension. We wish to estimate the unknown phase Θ ∈

[0, 2π) fromN observations y
△

= (y1, . . . , yN). The factor graph of Fig. 4.27
depicts the conditional probability density function p(y|θ). The fac-
tors p(yk|θk) are defined as

p(yk|θk)
△

=
1

2πσ2
N

e−|yk−ejθk |2/2σ2
N . (4.86)

Since the factor graph is cycle-free, sum-product message passing leads
to the exact marginals. The messages µ↑(θk) are given as

µ↑(θk) = p(yk|θk) (4.87)

=
1

2πσ2
N

e−|yk−ejθk |2/2σ2
N . (4.88)

The message µ↑(θ) equals

µ↑(θ) =

N∏

k=1

µk↑(θ) (4.89)

=

N∏

k=1

1

2πσ2
N

e−|yk−ejθ |2/2σ2
N . (4.90)

The ML-estimate of Θ is the mode of µ↑(θ) = p(y|θ). Since the func-

tion p(yk|θ) is concave, the ML-estimate θ̂ML is obtained by solving the
equation:

dµ↑(θ)
dθ

∣
∣
∣
∣
θ̂ML

!
= 0. (4.91)

The (unique) solution of (4.91) is

θ̂ML = arg

(∑N
k=1 Im[yk]

∑N
k=1 Re[yk]

)

. (4.92)

�

In the previous example, we obtained a closed-form expression for the
mode. In many practical situations, there is no closed-form expression
for the mode available. One may then apply numerical methods such as
gradient methods. The familiar steepest descent (or “steepest ascent”

4.8. Gradient Methods 103

y1 yNy2

=

. . .

Θ

Θ1 Θ2 ΘN

p(y1|θ1) p(y2|θ2) p(yN |θN)

Figure 4.27: ML estimation of the phase Θ from non-modulated ob-
servations.

or “gradient descent/ascent”) method tries to find θ̂max as follows [19]:

starting from some initial guess θ̂(0), iterate the rule:

θ̂(k+1) = θ̂(k) + λk ∇θf(θ)|θ̂(k) , (4.93)

for k = 1, 2, 3, . . ., where the parameter λk (the “step size”) is a positive
real number that may depend on k. An alternative update rule is

θ̂(k+1) = θ̂(k) + λk ∇θ log f(θ)|θ̂(k) . (4.94)

The update rule (4.93) or (4.94) is iterated until a fixed point is reached
or until the available time is over. Note that rule (4.94) is often preferable
to (4.93) if g(θ) strongly varies, since the logarithm in (4.94) compresses
the range of g(θ).

In this section, we investigate how steepest descent can be applied in
the context of the sum-product algorithm. We start by considering the
factor graph depicted in Fig. 4.28(a), which represents the global function

f(θ)
△

= fA(θ)fB(θ). The gradient ∇θf(θ) in update rule (4.93) is given
by

∇θf(θ) = fB(θ)∇θfA(θ) + fA(θ)∇θfB(θ), (4.95)

and similarly, the gradient ∇θ log f(θ) in update rule (4.94) equals

∇θ log f(θ) = ∇θ log fA(θ) + ∇θ log fB(θ). (4.96)

Steepest descent according to rule (4.94) (and similarly (4.93)) may be
viewed as follows:

104 Chapter 4. Phase-Estimation Algorithms

a) The equality constraint node in Fig. 4.28(a) broadcasts the esti-

mate θ̂(k). Node fA replies with the message ∇θ log fA(θ)|θ(k) and
likewise node fB.

b) A new estimate θ̂(k+1) is computed as

θ̂(k+1) = θ̂(k) + λk

(

∇θ log fA(θ)
∣
∣
∣
θ̂(k)

+ ∇θ log fB(θ)
∣
∣
∣
θ̂(k)

)

. (4.97)

c) Iterate 1–2.

=
Θ

θ̂(k)

θ̂(k)

θ̂(k)

fA

fB

(a) fA and fB as
closed boxes.

=

. . . g

X1

Xn
Θ

θ̂(k)

θ̂(k)

θ̂(k)

fA

fB

(b) Opening the box fA.

Figure 4.28: Factor graph of f(θ) = fA(θ)fB(θ).

In Fig. 4.28(a), the nodes fA and fB may be summaries of the subgraph
“behind” them, as illustrated in Fig. 4.28(b): the function fA is a sum-
mary of the dashed box. This box contains a.o. the local node g, which
is connected to the equality constraint node Θ. The summary fA(θ) is
computed from the messages µXk→g, arriving at the node g from the left,
according to the sum-product rule:

fA(θ) ∝
∑

x1,...,xn

g(x1, . . . , xn, θ) ·
n∏

ℓ=1

µXℓ→g(xℓ). (4.98)

The above gradient method requires∇θfA(θ) and ∇θ log fA(θ) (cf. (4.97)).
In the following, we show how these expressions can be computed. We
distinguish three cases:

a) g is an equality constraint node

b) g is differentiable

c) g corresponds to a deterministic mapping.

4.8. Gradient Methods 105

Equality constraint node

=...

Θ1

Θn

fA(θ)

Θ

(a) Equality constraint node.

∇θg...

X1

Xn

∇θfA

Θ

(b) Differentiable node func-
tion.

Figure 4.29: Generic nodes.

If g is an equality constraint node (see Fig. 4.29(a)), the required gra-
dients are computed similarly as in (4.95) and (4.96):

∇θfA(θ) =

n∑

ℓ=1

∇θµθℓ→ = (θ)

n∏

m=1;m 6=ℓ

µθm→ = (θ), (4.99)

and

∇θ log fA(θ) =
n∑

ℓ=1

∇θ logµΘℓ→ = (θ). (4.100)

Differentiable node function

Let g(x1, . . . , xn, θ) be differentiable w.r.t. θ. The gradient ∇θfA(θ) can
then be computed as follows:

∇θfA(θ)∝
∑

x1,...,xn

∇θg(x1, . . . , xn, θ) ·
n∏

ℓ=1

µXℓ→g(xℓ). (4.101)

Note that in (4.101), we differentiated under the integral sign; we will
always assume in this thesis that this operation is allowed.7 The up-
date rule (4.101) can be viewed as applying the sum-product rule to the
node ∇θg, as illustrated in Fig. 4.29(b). The incoming messages are the
standard sum-product summaries µXℓ→g. In other words, if g is differ-
entiable, the differentiation operator does not propagate to the subgraph

7Appendix I lists necessary conditions for differentiation under the integral sign.

106 Chapter 4. Phase-Estimation Algorithms

on the left of g; it is (only) applied to the local node function g. This
is not the case if g corresponds to a deterministic mapping, which is the
subject of next subsection.

The gradient ∇θ log fA(θ) equals

∇θ log fA(θ) =
∇θfA(θ)

fA(θ)
, (4.102)

and is computed from (4.98) and (4.101). In order to evaluate ∇θ log fA(θ),
the sum-product rule is applied both to g and ∇θg.

If the variables Xℓ are discrete (and the alphabet is not “too large”), the
expressions (4.101) and (4.102) can be evaluated in a straightforward
manner. If on the other hand those variables (or a subset of them) are
continuous, the integrals in (4.98) and (4.101) may be evaluated in several
ways.

• In some cases, a closed-form expression of (4.98) or (4.101) exists.

• The integrals in (4.98) and (4.101) can be approximated based on
canonical distributions as for example Gaussian distributions.

• The messages µXℓ→g(xℓ) may be quantized messages with quanti-

zation levels x
(iℓ)
ℓ , then (cf. (4.27))

∇θfA(θ) (4.103)

∝
∑

i1,...,in

∇θg
(
x

(i1)
1 , . . . , x(in)

n , θ
)

n∏

k=1

µxk→g

(
x

(ik)
k

)
, (4.104)

and

∇θ log fA(θ) (4.105)

=

∑

i1,...,in

∇θg
(
x

(i1)
1 , . . . , x

(in)
n , θ

)∏n
k=1 µxk→g

(
x

(ik)
k

)

∑

i1,...,in

g
(
x

(i1)
1 , . . . , x

(in)
n , θ

)∏n
k=1 µxk→g

(
x

(ik)
k

) ,

(4.106)

where the sums are taken over the quantization levels (which may
be different for each variable).

4.8. Gradient Methods 107

• The messages µXℓ→g(xℓ) may be lists of samples
{
x

(iℓ)
ℓ

}
(cf. (4.35)).

Consequently

∇θfA(θ) ∝
∑

i1,...,in

∇θg
(
x

(i1)
1 , . . . , x(in)

n , θ
)
, (4.107)

and

∇θ log fA(θ) =

∑

i1,...,in

∇θg
(
x

(i1)
1 , . . . , x

(in)
n , θ

)

∑

i1,...,in

g
(
x

(i1)
1 , . . . , x

(in)
n , θ

) , (4.108)

where the sums are taken over the lists of samples.

• The incoming messages µXℓ→g(xℓ) may be a hard decision x̂ℓ. The
expressions (4.101) and (4.102) reduce to (cf. (4.84))

∇θfA(θ) ∝ ∇θg(x̂1, . . . , x̂n, θ) (4.109)

and

∇θ log fA(θ) =
∇θg(x̂1, . . . , x̂n, θ)

g(x̂1, . . . , x̂n, θ)
. (4.110)

• Combinations of the previous options are possible.

Deterministic mapping

We consider the case where the local function g corresponds to the de-

terministic mapping y
△

= h(x1, . . . , xn, θ), i.e.,

g(x1, . . . , xn, y, θ)
△

= δ
(
y − h(x1, . . . , xn, θ)

)
. (4.111)

We assume that h is differentiable. Let v
△

= (x1, . . . , xn). The mes-
sage fA(θ) is computed as follows

fA(θ) ∝
∑

x1,...,xn

δ
(
y − h(v, θ)

)
µY→g(y)

n∏

ℓ=1

µXℓ→g(xℓ) (4.112)

=
∑

v

µY→g

(
h(v, θ)

)
·

n∏

ℓ=1

µXℓ→g(xℓ). (4.113)

108 Chapter 4. Phase-Estimation Algorithms

As a consequence

∇θfA(θ) ∝
∑

v

∇θ

[
µY→g

(
h(v, θ)

)]
·

n∏

ℓ=1

µXℓ→g(xℓ) (4.114)

=
∑

v

∇θh(v, θ) ∇y µY→g(y)|y=h(v,θ)

·
n∏

ℓ=1

µXℓ→g(xℓ). (4.115)

Eq. (4.115) may be viewed as applying the sum-product rule to the
node function ∇θh, as illustrated in Fig. 4.30. Besides the standard
sum-product messages µXℓ→g(xℓ), also the message ∇y µY→h(y)|h(v,θ) is

required, which is the gradient of a sum-product message. The mes-
sage ∇y µY→g(y)|h(v,θ) is computed by the same rules as ∇θfA(θ)

(cf. (4.99) (4.101) (4.115)). Similarly as in (4.101) and (4.102), the up-
date rule (4.115) can be evaluated in several ways, depending on the
data-type of the incoming messages. For example, if the incoming mes-
sages x̂ℓ and ∇y µY→g(y)|h(x̂,θ) are hard decisions, where x̂ stands for

(x̂1, . . . , x̂n), then

∇θfA(θ) ∝ ∇θg(v̂, θ) ∇y µY→g(y)|h(v̂,θ) . (4.116)

This rule may be familiar to the reader who has some background in
neural network theory: indeed, if one applies the rule (4.116) together
with (4.97) (4.109) and (4.110) to a factor graph that represents a feed-
forward neural network, one obtains the well-known backpropagation
algorithm [22]. We refer to Appendix E.3 for more details.

∇θh

. . .

Y ∇θµ

X1 Xn

∇θfA

Θ

Figure 4.30: Deterministic mapping h.

We explain now how two well-known algorithms can be viewed as in-

4.8. Gradient Methods 109

stances of the above generic rules: iterative conditional modes and sto-
chastic approximation.

4.8.2 Iterative Conditional Modes

Suppose we wish to maximize a multivariate function f(x1, . . . , xN). This
can be done by the following iterative algorithm called Iterative Condi-
tional Modes (ICM) (or “cyclic maximization” or “alternating maximi-
zation” or “coordinate descent”):

a) Choose an initial value (x̂1, x̂2, . . . , x̂N).

b) Choose an index k.

c) Compute x̂k
△

= argmaxxk
f(xk), where

f(xk)
△

=
f(x̂1, . . . , x̂k−1, xk, x̂k+1, . . . , x̂N)

∑

xk
f(x̂1, . . . , x̂k−1, xk, x̂k+1, . . . , x̂N)

. (4.117)

d) Iterate 2–3 a “large” number of times.

Under the assumption that f is bounded above, ICM converges to a local
maximum of f . Note that ICM is strongly related to Gibbs sampling
(see Section 4.6.2). In Gibbs sampling, one draws a sample from f(xk),
whereas in ICM one computes the mode of f(xk).

If it is hard to compute the mode x̂k
△

= argmaxxk
f(xk) (Step c), one may

select a value x̂new
k which increases f(xk), i.e., f(x̂new

k) ≥ f(x̂old
k) (“gene-

ralized ICM”). The value x̂new
k may be obtained by gradient methods.

Generalized ICM usually leads to a stationary point of f , but not necessa-
rily to a local maximum.

ICM can readily be formulated as a message-passing algorithm:

a) Select a variable (edge or equality constraint node) Y in the factor
graph of f (see Fig. 4.16).

b) The edge Y generates the message ŷ
△

= argmaxy f(y), where

f(y)
△

=
µ1(x) . . . · µN (y)
∑

y µ1(y) . . . µN (y)
, (4.118)

110 Chapter 4. Phase-Estimation Algorithms

µ1 µN

µ̃1 µ̃M

Y

f1

X1 XM

fN

=

ŷŷ

.

. . .

Figure 4.31: ICM at a generic edge Y .

and broadcasts ŷ to its neighboring nodes fk (k = 1, . . . ,M).

c) The nodes fk update their outgoing messages µ̃ by applying the
sum-product rule with as incoming messages the samples ŷ and x̂ℓ

(ℓ = 1, . . . ,M).

In the case of modified ICM, one replaces the message ŷ
△

= argmaxy f(y)
(Step c) by a value ŷ which increases f(y). If this value is determined
by steepest descent, one obtains a similar situation as in Fig. 4.32. As
in Gibbs sampling, one may group several variables (cf. Remark 4.3).

4.8.3 Stochastic Approximation

Suppose we wish to find the mode θmax of the global function f(θ)
△

=
∏N

ℓ=1 fℓ(θ) by means of steepest descent (see Fig. 4.32). Straightforward
application of the generic rules of Section 4.8.1 (cf. Fig. 5.1) leads to the
following message-passing algorithm:

a) The equality constraint node in Fig. 4.32(a) broadcasts the esti-

mate θ̂(k). The nodes fℓ reply with the message ∇θ log fℓ(θ)|θ(k) .

b) A new estimate θ̂(k+1) is computed as

θ̂(k+1) = θ̂(k) + λk

[N∑

ℓ=1

∇θ log fℓ(θ)
∣
∣
∣
θ̂(k)

]

. (4.119)

4.8. Gradient Methods 111

Θ

θ̂(k)

θ̂(k)

θ̂(k)
=

. . .

f1(θ) f2(θ) fN (θ)

(a) Standard scheduling.

=== . . .

f1(θ) f2(θ) fN(θ)

Θ1 Θ2 ΘL

θ̂(0) θ̂(1)

θ̂(1) θ̂(2) θ̂(L−1)

θ̂(L−1)

θ̂(L)

(b) Stochastic approximation.

Figure 4.32: Gradient methods for estimating Θ.

c) Iterate 1–2.

An alternative scheme is depicted in Fig. 4.32(b). The following steps
are performed in a forward sweep (k = 1, . . . , N):

a) The equality constraint node Θk sends the estimate θ̂(k−1) to the
node fk. The latter replies with the message ∇θ log fk(θ)|θ̂(k−1) .

b) A new estimate θ̂(k) is computed as

θ̂(k) = θ̂(k−1) + λk∇θ log fk(θ)
∣
∣
∣
θ̂(k−1)

, (4.120)

112 Chapter 4. Phase-Estimation Algorithms

which is then sent to the equality constraint node Θk+1.

The eventual estimate of Θ is given by θ̂L. Note that the update (4.120)
only involves the gradient of the local function fk, whereas (4.119) re-
quires the gradients of all local functions. The procedure of Fig. 4.32(b)
is in the literature referred to as stochastic approximation (SA).

The stochastic approximation scheme can not only be applied to the
estimation of fixed parameters, but also to filtering and smoothing in
state-space models. The SA algorithm for estimating constant para-
meters can directly be used for filtering in state-space models. In the
notation of Fig. 4.19 (left), the expression (4.120) takes the form:

θ̂k = θ̂k−1 + λk∇θ log fB(θk, yk)
∣
∣
∣
θ̂k−1

. (4.121)

The SA algorithm for filtering may be viewed as forward-only message
passing in the graph of the state-space model, as illustrated in Fig. 4.33.
Note that update rule (4.121) takes the factor fB into account, but it
ignores the factor fA. Accordingly, the message update at the node fA

is trivial: the output message is identical to the input message θ̂k−1.

Θk

.
θ̂k−1 θ̂kθ̂k−1

θ̂k−1
fA(θk−1, θk)

fB(θk, yk)

=

Figure 4.33: SA gradient method for filtering. Only one time slice of
the state-space model is shown.

Along the same lines, SA gradient methods can be used for smoothing
(see Fig. 4.34): one alternates a forward sweep of updates

θ̂Fk
△

= θ̂Fk−1 + λ
d log fB(θk, yk)

dθk

∣
∣
∣
∣
θ̂F

k−1

, (4.122)

with a backward sweep of updates

θ̂Bk
△

= θ̂Bk+1 − λ
d log fB(θk, yk)

dθk

∣
∣
∣
∣
θ̂B

k+1

. (4.123)

4.8. Gradient Methods 113

The forward and backward sweeps are initialized as θ̂F1
△

= θ̂B1 and θ̂BN
△

= θ̂FN
respectively. After a sufficient number of SA forward and backward
sweeps, the eventual estimate θ̂totk is obtained as the average of the for-

ward and back estimate θ̂Fk and θ̂Bk :

θ̂totk
△

=
1

2

(
θ̂Fk + θ̂Bk

)
. (4.124)

Θk

.
θ̂F

k−1 θ̂F
k

θ̂F
k−1

fA(θk−1, θk)

fB(θk, yk)

=

θ̂B
k−1

θ̂B
kθ̂B

k−1

θ̂totk

Figure 4.34: SA gradient method for smoothing.

Remark 4.8. (Stochastic approximation: pro and con)

• Pro:
SA gradient algorithms can be implemented without any knowledge
of fA. Or, in other words, it is not necessary to model fA explicitly.

• Con:
Since SA gradient algorithms do not take the prior model fA into
account, they often have a larger estimation error than algorithms
that do take fA into account.

4.8.4 Application

Constant-Phase Model

We present two different sum-product-based gradient methods for the
constant-phase model. The first algorithm is obtained by straightfor-
wardly applying the generic rules of Section 4.8.1. The second method
is an SA algorithm.

114 Chapter 4. Phase-Estimation Algorithms

The first algorithm perform the following steps (see Fig. 4.35):

1© The compound equality constraint node broadcasts the current
phase estimate θ̂old to all multiply nodes.

2© The latter reply with the messages
d log µg→Θk

(θ)

dθ

∣
∣
∣
θ=θ̂old

.

3© At the compound equality constraint node, a new phase estimate
is computed according to the rule

θ̂new = θ̂old + λ
d logµ =→Θ(θ)

dθ

∣
∣
∣
∣
θ=θ̂old

(4.125)

= θ̂old + λ

L∑

k=1

d logµg→Θk
(θ)

dθ

∣
∣
∣
∣
θ=θ̂old

. (4.126)

4© The upward messages µ×→Xk
(xk) are computed:

µ×→Xk
(xk)

△∝ µZk→×

(
xk exp

(
jθ̂new

))
. (4.127)

The steps 1©– 3© are iterated a number of times before 4© is performed.
The initial estimate θ̂ may be obtained from a non-data aided algorithm
(e.g., the M-law [136]).

©
2©

1©

1©1©

2©

2©2© 3©

4©

θ̂

θ̂θ̂

=

×××

. . .

. . .

Z1 Zk ZL
Θ

ggg

X1 X2 XL

Θ1 Θ2 ΘL

Figure 4.35: Gradient descent (of sum-product messages) in the factor
graph of the constant-phase model: standard approach.

4.8. Gradient Methods 115

The derivatives in the RHS of (4.126) are computed as follows:

d logµg→Θk
(θ)

dθ
=

dµg→Θk
(θ)

dθ
µ−1

g→Θk
(θ) (4.128)

= − 1

σ2
N

(∑

xk

µXk→× (xk)e−|xkejθk−yk|
2/2σ2

N

·
[
sin θkRe(xky

∗
k) + cos θkIm(xky

∗
k)
])

·
(∑

xk

µXk→× (xk)e−|xkejθk−yk|
2/2σ2

N

)−1

, (4.129)

where y∗k stands for the complex conjugate of yk.

The SA scheme (depicted in Fig. 4.36) is a two-step procedure:

1© The following operations are performed in a forward sweep
(k = 1, . . . , N):

a) The equality constraint node Θk sends the estimate θ̂(k−1) to
the node fk., which replies with the message ∇θ log fk(θ)|θ̂(k−1) .

b) A new estimate θ̂(k) is computed as

θ̂(k) = θ̂(k−1) + λk
d logµg→Θk

(θ)

dθ

∣
∣
∣
∣
θ̂(k−1)

, (4.130)

which is then sent to the equality constraint node Θk+1.

The eventual estimate of Θ is given by θ̂L.

2© The upward messages µ×→Xk
(xk) are computed:

µ×→Xk
(xk)

△∝ µZk→×

(
xk exp

(
jθ̂L

))
. (4.131)

Random-Walk Phase Model

Also for the random-walk phase model we present a “standard” gradient
method and an SA gradient method.

In the first approach, one alternates the following steps:

116 Chapter 4. Phase-Estimation Algorithms

1©
1©

2©

== =

×××

. . .

. . .

Z1 Zk ZL

ggg

X1 X2 XL

Θ1 Θ2 ΘLθ̂0

θ̂0

θ̂1

θ̂1

θ̂2 θ̂L

θ̂L

Figure 4.36: Gradient descent (of sum-product messages) in the factor
graph of the constant-phase model: SA algorithm.

n5

1© 1©

1© 2©
3© 3©

4© =

×××
. . .

. . .

Z1 Z2 ZL

ggg

X1 X2 XL

Θ1 Θ2
ΘL

p(θ2|θ1) p(θL|θL−1)

Figure 4.37: Gradient descent (of sum-product messages) in the fac-
tor graph of the random-walk phase model: standard ap-
proach.

1© The equality constraint nodes broadcast the current phase esti-
mates θoldk to the neighboring multiply nodes and phase noise nodes.

2© The multiply nodes reply with the messages
d log µg→Θk

(θk)

dθ

∣
∣
∣
θk=θ̂old

k

.

3© The phase noise nodes reply with the messages d log p(θk|θk−1)
dθk

∣
∣
∣
θ=θ̂old

and d log p(θk+1|θk)
dθk

∣
∣
∣
θ=θ̂old

.

4© At the equality constraint nodes, a new phase estimate is computed

4.8. Gradient Methods 117

according to the rule

θ̂new = θ̂old + λ

(
d logµg→Θk

(θk)

dθk

+
d log p(θk|θk−1)

dθk
+
d log p(θk+1|θk)

dθk

)∣
∣
∣
∣
θ=θ̂old

. (4.132)

5© The upward messages µ×→Xk
(xk) are computed:

µ×→Xk
(xk)

△∝ µZk→×

(
xk exp

(
jθ̂new

k

))
. (4.133)

The steps 1©– 4© are iterated a suitable number of times. The initial value

of the phase Θk can be constant, i.e., θ̂k
△

= θ̂. It may also be generated
by a forward SA sweep.

The derivative of logµg→Θk
(θk) (cf. RHS of (4.132)) is computed as

in (4.129). The derivatives of log p(θk|θk−1) and log p(θk+1|θk) w.r.t. θk

are computed as:

∂ log p(θk|θk−1)

∂θk

= − 1

σ2
W

∑

n∈Z(θk − θk−1 + n2π)e−(θk−θk−1+n2π)2/2σ2
W

∑

n∈Z e
−(θk−θk−1+n2π)2/2σ2

W

, (4.134)

and
∂ log p(θk|θk−1)

∂θk−1
= −∂ log p(θk|θk−1)

∂θk
. (4.135)

If σW is small, i.e., σW ≪ π, then the evaluation of the RHS of (4.134)
leads to numerical problems: for large values of the difference θk − θk−1,
both the numerator and denominator in the RHS of (4.134) are zero.
This problem can be circumvented by the approximation:

∂ log p(θk|θk−1)

∂θk
≈ − 1

σ2
W

∆θ + (∆θ + a)e
− 4π2+b

2σ2
W

1 + e
− 4π2+b

2σ2
W

, (4.136)

where σW ≪ π, ∆θ
△

= θk − θk−1,

a
△

=

{
2π if ∆θ ≤ 0
−2π otherwise,

(4.137)

118 Chapter 4. Phase-Estimation Algorithms

and

b
△

=

{
4π∆θ if ∆θ ≤ 0
−4π∆θ otherwise.

(4.138)

1©1©

2©2©

3©

4©

=

×××

. . .

. . .

Z1 Z2 ZL

ggg

X1 X2 XL

Θ1 Θ2
ΘL

Figure 4.38: Gradient descent (of sum-product messages) in the factor
graph of the random-walk phase model: SA algorithm.

In the SA algorithm (see Fig. 4.38), one alternates between a forward
sweep of SA updates 1©

θ̂F
k = θ̂F

k−1 + λ
d log µg→Θk

(θ)

dθ

∣
∣
∣
∣
θ=θ̂FW

k−1

. (4.139)

and a backward sweep of SA updates 2©

θ̂B
k = θ̂B

k+1 − λ
d logµg→Θk

(θ)

dθ

∣
∣
∣
∣
θ=θ̂B

k+1

. (4.140)

The forward and backward sweeps are initialized as θ̂F1
△

= θ̂B1 and θ̂BN
△

= θ̂FN
respectively. After a sufficient number of forward and backward sweeps,
the eventual estimate is computed as the average of the forward and
backward estimate 3©:

θ̂totk
△

=
1

2

(
θ̂Fk + θ̂Bk

)
. (4.141)

The upward messages µ×→Xk
are computed as 4©

µ×→Xk
(xk)

△∝ µZk→×

(
xk exp

(
jθ̂totk

))
. (4.142)

4.8. Gradient Methods 119

4.8.5 Summary

We summarize the key points of this section.

• When steepest descent is combined with the sum-product algo-
rithm, gradients of sum-product messages are required.

• If the local node function g is differentiable, the gradient of the
outgoing message is computed by the sum-product rule applied
to ∇θg, where the incoming messages are standard sum-product
messages (see (4.101)). In other words, the differentiation operator
does not propagate through the node g; it is only applied to the
local node function g.

• If the local node g corresponds to a deterministic mapping h,
the gradient of the outgoing message is computed by the sum-
product rule applied to ∇θh (see (4.115)). All incoming messages
are standard sum-product messages, except for one, which is the
gradient of an incoming sum-product message µY . In this case, the
differentiation operator is applied to both the local node function
and the incoming message µY ; in other words, the differentiation
operator propagates from node h towards the node the message µY

has been sent from.

• Differentiation also propagates through the equality constraint
node (see (4.99) and (4.100)).

• The three previous observations indicate that along an edge in the
factor graph, the following messages may propagate

– standard sum-product messages,

– gradients of sum-product messages,

– hard decisions θ̂,

depending on

– the location of the edges at which the steepest descent update
rules are applied

– the kind of nodes that are involved.

• The sum-product messages and their gradients may be represen-
ted in various ways. In this fashion, steepest descent can readily
and systematically be combined with other standard methods.

120 Chapter 4. Phase-Estimation Algorithms

• We have interpreted Iterative Conditional Modes (ICM) and sto-
chastic approximation as message passing:

– In ICM, messages are represented by their mode.

– Stochastic approximation can be viewed as a gradient method
for parameter and state estimation with a specific message-
update schedule.

4.9 Expectation Maximization

Expectation Maximization (EM) is a popular estimation algorithm. Both
the EM algorithm and (iterative) sum-product algorithm are often viewed
as alternative methods for estimating the parameters of graphical mod-
els. In other applications, the graphical model is used to compute the
E-step of the EM algorithm [69]. In this section, we will show how the
EM algorithm can be computed by local message updates on the fac-
tor graph. The results in this section are based on joint work Sascha
Korl presented in [45] [100]. Earlier work on this topic was done by
Eckford [61] independently. A related idea is proposed in [82].

4.9.1 General Idea

We begin by reviewing the expectation maximization (EM) algorithm.
Suppose we wish to find

θ̂max △

= argmax
θ

f(θ). (4.143)

We assume that f(θ) is the “marginal” of some real-valued function
f(x, θ):

f(θ) =
∑

x

f(x, θ), (4.144)

where
∑

x g(x) denotes either integration or summation of g(x) over the
whole range of x. The function f(x, θ) is assumed to be non-negative:

f(x, θ) ≥ 0 for all x and all θ. (4.145)

We will also assume that the integral (or the sum)
∑

x f(x, θ) log f(x, θ′)
exists for all θ, θ′. The described problem arises, for example, in the

4.9. Expectation Maximization 121

context of parameter estimation in state-space models. In such a context,
the variable x is itself a vector and the function f(x, θ) has a non-trivial
factor graph (see, for example, Fig. 4.40).

The EM algorithm attempts to compute (4.143) as follows:

a) Make some initial guess θ̂(0).

b) Expectation step: evaluate

f (k)(θ)
△

=
∑

x

f(x, θ̂(k)) log f(x, θ). (4.146)

c) Maximization step: compute

θ̂(k+1) △

= argmax
θ

f (k)(θ). (4.147)

d) Repeat 2–3 until convergence or until the available time is over.

The main property of the EM algorithm is

Theorem 4.1.

f(θ̂(k+1)) ≥ f(θ̂(k)). (4.148)

To prove this property, we need the following lemma.

Lemma 4.1. The function

f̃(θ, θ′)
△

= f(θ′) +
∑

x

f(x, θ′) log
f(x, θ)

f(x, θ′)
(4.149)

satisfies both

f̃(θ, θ′) ≤ f(θ) (4.150)

and

f̃(θ, θ) = f(θ). (4.151)

�

122 Chapter 4. Phase-Estimation Algorithms

Proof: The equality (4.151) is obvious. The inequality (4.150) follows
from eliminating the logarithm in (4.149) by the inequality log x ≤ x− 1
for x > 0:

f̃(θ, θ′) ≤ f(θ′) +
∑

x

f(x, θ′)

(
f(x, θ)

f(x, θ′)
− 1

)

(4.152)

= f(θ′) +
∑

x

f(x, θ) −
∑

x

f(x, θ′) (4.153)

= f(θ). (4.154)

�

To prove (4.1), we first note that (4.147) is equivalent to

θ̂(k+1) = argmax
θ

f̃(θ, θ̂(k)). (4.155)

We then obtain

f(θ̂(k)) = f̃(θ̂(k), θ̂(k)) (4.156)

≤ f̃(θ̂(k+1), θ̂(k)) (4.157)

≤ f(θ̂(k+1)), (4.158)

where (4.156) follows from (4.151), (4.157) follows from (4.155), and
(4.158) follows from (4.150).

Corollary 4.1. The global maximum θmax of f(θ) (cf. (4.143)) is a fixed
point of EM.

Proof: Assume θ̂(k) = θmax. Since the EM algorithm never decreases f
(cf. (4.1)), it follows that θ̂(ℓ) = θmax, for all ℓ > k, hence θmax is a fixed
point. �

We prove two additional interesting properties.

Theorem 4.2. The fixed points of EM are stationary points of f(θ).

Note that this statement does not imply that all stationary points of f(θ)
are fixed points of EM!

4.9. Expectation Maximization 123

Proof: We will use the short-hand notation

∇θg(θ̂)
△

= ∇θg(θ)|θ=θ̂ . (4.159)

The fixed points θ̂fixed of EM are implicitly defined as:

θ̂fixed !
= argmax

θ

∑

x

f(x, θ̂fixed) log f(x, θ). (4.160)

If we define the function f̄(θ, θ′) as

f̄(θ, θ′)
△

=
∑

x

f(x, θ′) log f(x, θ), (4.161)

we can rewrite (4.160) as

θ̂fixed !
= argmax

θ
f̄(θ, θfixed). (4.162)

At the fixed points, the first-order derivative of f̄(θ, θ′) w.r.t. θ vanishes:

∇θ f̄(θ̂fixed, θ̂fixed)
!
= 0. (4.163)

Note that

∇θ f̄(θ, θ′)
△

= ∇θ

∑

x

f(x, θ′) log f(x, θ) (4.164)

=
∑

x

f(x, θ′)∇θ log f(x, θ) (4.165)

=
∑

x

f(x, θ′)∇θf(x, θ)/f(x, θ). (4.166)

In (4.165) we differentiated under the integral sign. We assume in this
thesis that this operation is allowed.8 From (4.166) it follows:

∇θ f̄(θ̂, θ̂) =
∑

x

∇θf(x, θ̂) (4.167)

= ∇θf(θ̂), (4.168)

for all θ̂. As a consequence of (4.163) and (4.168),

∇θf(θ̂fixed) = 0, (4.169)

and hence the EM fixed points are stationary points (or “zero-gradient
points”) of f(θ). �

8In Appendix 6, we list necessary conditions for differentiation under the integral
sign.

124 Chapter 4. Phase-Estimation Algorithms

Theorem 4.3. A stationary point θ̂stat of f is a fixed point of EM,
if f̄(θ, θ̂stat) is concave in θ.

Proof: Stationary points θ̂stat of f are implicitly defined as:

∇θf(θ̂stat)
!
= 0. (4.170)

As a consequence of (4.168), it follows

∇θf̄(θ̂stat, θ̂stat) = 0. (4.171)

Since by assumption f̄(θ, θ̂stat) is concave in θ, we conclude that

θ̂stat = argmax
θ

f̄(θ, θ̂stat), (4.172)

which means that θstat is a fixed point of EM (cf. (4.350)). �

From Theorem 4.1 and 4.2 follows:

Corollary 4.2. If a local maximum of f(θ) is a fixed point of EM, then
it is a stable fixed point. If a local minimum or saddle point of f(θ) is a
fixed point of EM, then it is an unstable fixed point.

The proof is straightforward but a little technical; we omit it here.

Message-Passing Interpretation

We now rewrite the EM algorithm in message-passing form. In this
section, we will assume a trivial factorization

f(x, θ) = fA(θ)fB(x, θ), (4.173)

where fA(θ) may be viewed as encoding the a priori information about
Θ. More interesting factorizations (i.e., models with internal structure)
will be considered in the next section. The factor graph of (4.173) is
shown in Fig. 4.39. In this setup, the EM algorithm amounts to iterative
re-computation of the following messages:

4.9. Expectation Maximization 125

Θ θ̂(k)

h(θ)

fB

fA

X

Figure 4.39: Factor graph of (4.173).

Upwards message h(θ):

h(θ) =

∑

x fB(x, θ̂(k)) log fB(x, θ)
∑

x fB(x, θ̂(k))
(4.174)

= EpB [log fB(X, θ)] , (4.175)

where EpB denotes the expectation with respect to the probability
distribution

pB(x|θ̂(k))
△

=
fB(x, θ̂(k))

∑

x′ fB(x′, θ̂(k))
. (4.176)

Downwards message θ̂(k):

θ̂(k+1) = argmax
θ

(log fA(θ) + h(θ)) (4.177)

= argmax
θ

(

fA(θ) · eh(θ)
)

. (4.178)

The equivalence of this message-passing algorithm with (4.146) and (4.147)
may be seen as follows. From (4.146) and (4.147), we have

θ̂(k+1) = argmax
θ

∑

x

f(x, θ̂(k)) log f(x, θ) (4.179)

= argmax
θ

∑

x

fA(θ̂(k))fB(x, θ̂(k)) log
(
fA(θ)fB(x, θ)

)
(4.180)

= argmax
θ

∑

x

fB(x, θ̂(k))
(

log fA(θ) + log fB(x, θ)
)

(4.181)

= argmax
θ

(

log fA(θ) +

∑

x fB(x, θ̂(k)) log fB(x, θ)
∑

x′ fB(x′, θ̂(k))

)

, (4.182)

126 Chapter 4. Phase-Estimation Algorithms

which is equivalent to (4.174) and (4.177).

Some remarks:

a) The computation (4.174) or (4.175) is not an instance of the sum-
product algorithm.

b) The message h(θ) may be viewed as a “log-domain” summary of
fB. In (4.178), the corresponding “probability domain” summary
eh(θ) is consistent with the factor graph interpretation.

c) A constant may be added to (or subtracted from) h(θ) without
affecting (4.177).

d) If fA(θ) is a constant, the normalization in (4.174) can be omitted.
More generally, the normalization in (4.174) can be omitted if fA(θ)
is constant for all θ such that fA(θ) 6= 0. However, in contrast to
most standard accounts of the EM algorithm, we explicitly wish to
allow more general functions fA.

e) Nothing changes if we introduce a known observation (i.e., a con-
stant argument) y into f such that (4.173) becomes f(x, y, θ) =
fA(y, θ)fB(x, y, θ).

fB0
fB1

fB2 fBn

fA

fB
X0 X1 X2 Xn−1

y1 y2 yn

. . .

θ̂1 θ̂2 θ̂n

h1(θ1) h2(θ2) hn(θn)

Xn

Figure 4.40: Factor graph of (4.214).

4.9. Expectation Maximization 127

A Simple Example

Suppose that a binary symbolX (with values in {+1,−1}) is transmitted
over an additive white Gaussian noise (AWGN) channel with an unknown
real gain Θ. The channel output is

Y = Θ ·X +W (4.183)

where W is a zero-mean Gaussian random variable (independent of X
and Θ) with known variance σ2. Based on the (fixed) observation Y = y,
we wish to estimate Θ. (We also note an inherent ambiguity in the
problem: the sign of the gain Θ and the sign of X cannot be determined
individually.)

A factor graph of this system model is shown in Fig. 4.41. The node
symbols in this factor graph and the corresponding factors are listed in
Table 4.1. The small dashed box labeled “pΘ” represents an a priori
distribution over Θ, which may or may not be available.

If such a prior pΘ is available, the factor graph represents the probability
distribution

p(x, θ | y) ∝ p(y, θ | x) (4.184)

(when the other variables are eliminated by marginalization); when no
such prior is available, the factor graph represents

p(x | θ, y) ∝ p(y | x, θ). (4.185)

The factor graph of Fig. 4.41 has no cycles. Therefore, exact marginals
can be computed by the sum-product algorithm (without iterations).
Although our interest is in the EM-algorithm, it is instructive to begin
by writing down the messages of the sum-product algorithm. The sum-

product message towards the left along the edge labeled Z (
△

= Θ · X)
is

←
µ (z) =

1√
2πσ2

exp

(

− (y − z)2

2σ2

)

(4.186)

and the sum-product message upwards along the edge Θ is

µ↑(θ) =
∑

x

∞∑

−∞

δ(z − x · θ) ←µ (z) dz (4.187)

128 Chapter 4. Phase-Estimation Algorithms

symbol factor

X
=

Z

Y

δ(z − x)δ(z − y)

-
X

+ -
Z

6
Y

δ(z − x+ y)

-
X

× -
Z

6
Y

δ(z − x · y)

N (m,σ2)

X

1√
2πσ2

exp

(

− (x−m)2

2σ2

)

Table 4.1: Some node symbols and the corresponding local functions
(factors).

4.9. Expectation Maximization 129

fB

pΘ

?

Θ

×
6

X

-
Z

N (0, σ2)

?
W

+ -
y

Figure 4.41: Factor graph corresponding to (4.183).

∝
∑

x

exp

(

− (y − x · θ)2
2σ2

)

(4.188)

= exp

(

− (y − θ)2

2σ2

)

+ exp

(

− (y + θ)2

2σ2

)

. (4.189)

If a prior pΘ is given, the a posteriori distribution of Θ is

p(θ|y) ∝ pΘ(θ)µ↑(θ). (4.190)

When no such prior is available, the a posteriori distribution of Θ is

p(θ|y) ∝ µ↑(θ). (4.191)

Fig. 4.42 shows the message µ↑(θ) for several values of σ and a fixed value

of y, i.e., y
△

= 1. Fig. 4.43 shows how the mode θmax of the message µ↑(θ)
depends on σ2.

We now apply the EM algorithm to this example. The big dashed box
in Fig. 4.41 will take the role of fB in Fig. 4.39. If we close this box by

130 Chapter 4. Phase-Estimation Algorithms

−5 0 5
0

0.5

1

1.5

σ2 = 0.2
σ2 = 0.9
σ2 = 1.4

µ
↑(
θ)

θ

Figure 4.42: The message µ↑(θ) for several values of σ with y = 1.

marginalizing out its internal variables W and Z, we obtain

fB(x, y, θ) =
∞∑

−∞

δ(z − x · θ) ←µ (z) dz (4.192)

=
1√

2πσ2
exp

(

− (y − x · θ)2
2σ2

)

. (4.193)

The E-log message (4.174) is

h(θ) = γ−1
∑

x

fB(x, y, θ̂(k)) log fB(x, y, θ) (4.194)

with
γ

△

=
∑

x

fB(x, y, θ̂(k)). (4.195)

With α(k) △

= fB(+1, y, θ̂(k)) and β(k) △

= fB(−1, y, θ̂(k)), we have

γ = α(k) + β(k) (4.196)

and

h(θ) = γ−1
∑

x

fB(x, y, θ̂(k))

(

− log
(√

2πσ2
)

− (y − x · θ)2
2σ2

)

(4.197)

4.9. Expectation Maximization 131

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ2

θm
a
x

Figure 4.43: The (positive) mode θmax of the message µ ↑ (θ) as a
function of σ2 (with y = 1).

= − log
(√

2πσ2
)

− γ−1
∑

x

fB(x, y, θ̂(k))
(y − x · θ)2

2σ2
(4.198)

= − log
(√

2πσ2
)

− α(k)(y − θ)2 + β(k)(y + θ)2

2σ2(α(k) + β(k))
(4.199)

The E-log message h(θ) is thus a quadratic form and eh(θ) is a (unnor-
malized) Gaussian density; the mean and the variance of this Gaussian
density are easily identified as

mean of (normalized) eh(θ) =
α(k) − β(k)

α(k) + β(k)
y (4.200)

and

variance of (normalized) eh(θ) = σ2. (4.201)

Note that this is nicer than the sum-product message µ ↑ (θ) (4.189),
which is a Gaussian mixture.

The downwards message (i.e., the next estimate) θ̂(k+1) is

θ̂(k+1) = argmax
θ

(

pΘ(θ) · eh(θ)
)

(4.202)

132 Chapter 4. Phase-Estimation Algorithms

according to (4.178). In the absence of a prior pΘ(θ), this simplifies to

θ̂(k+1) = argmax
θ

eh(θ) (4.203)

=
α(k) − β(k)

α(k) + β(k)
y (4.204)

= y ·
exp
(

− (y−θ̂(k))2

2σ2

)

− exp
(

− (y+θ̂(k))2

2σ2

)

exp
(

− (y−θ̂(k))2

2σ2

)

+ exp
(

− (y+θ̂(k))2

2σ2

) (4.205)

= y · e
θ̂(k)y/σ2 − e−θ̂(k)y/σ2

eθ̂(k)y/σ2 + e−θ̂(k)y/σ2
(4.206)

= y · tanh(θ̂(k)y/σ2), (4.207)

where the step to (4.204) follows from (4.200).

Note that θ̂(k+1) has the same sign as θ̂(k) (independent of the sign of
y); the inherent ambiguity of the sign of Θ is thus resolved by the choice

of the starting value θ̂(0).

The fixed points of the recursion (4.207) are stationary points of p(θ|y) ∝
µ↑(θ). This follows from Theorem 4.3, since h(θ) (4.199) is concave. It
can also directly be verified:

dµ↑(θ)
dθ

=
d

dθ
e−

(y−θ)2

2σ2 +
d

dθ
e−

(y+θ)2

2σ2 (4.208)

=
1

σ2

(

(y − θ) · e−
(y−θ)2

2σ2 − (y + θ) · e−
(y+θ)2

2σ2

)

(4.209)

!
= 0 (4.210)

⇔ (4.211)

θ = y · e
θy/σ2 − e−θy/σ2

eθy/σ2 + e−θy/σ2 (4.212)

= y · tanh(θy/σ2). (4.213)

So far, all we have done is to write a simple standard example of the
EM algorithm in message-passing form. For this simple example, there
is probably no advantage for doing so. The benefits of the message
passing approach come with more richly structured models, which we
will consider in the next section.

4.9. Expectation Maximization 133

Nevertheless, the following aspects of this example carry over to many
larger examples. Fist, we note that the E-log message is nicer than the
sum-product message (Gaussian instead of a Gaussian mixture). Second,
in the computation of the E-log message h(θ), we used the “internal”

sum-product message
←
µ (z) in step (4.192);9 moreover, (4.192) is itself a

sum-product computation. We shall see that the use of the sum-product
algorithm to compute E-log messages is a cornerstone of the message
passing view of the EM algorithm.

Non-trivial Factor Graphs

The algorithm of the previous section still applies if Θ = (Θ1, . . . ,Θn)T

and X = (X0, . . . , Xn)T are vectors. However, opportunities to simplify
the computations may arise if fA and fB have “nice” factorizations. For
example, assume that fB factors as

fB(x, y, θ) = fB0(x0)fB1(x0, x1, y1, θ1) · · · fBn
(xn−1, xn, yn, θn),

(4.214)
where y = (y1, . . . , yn)T is some known (observed) vector. Such facto-
rizations arise from classical trellis models and state-space models. The
factor graph corresponding to (4.214) is shown in Fig. 4.40.

The upwards message h(θ) (4.175) splits into a sum with one term for
each node in the factor graph:

h(θ) = E
[

log
(

fB0(x0)fB1(x0, x1, y1, θ1) · · ·

· · · fBn
(xn−1, xn, yn, θn)

)]

(4.215)

= E[log fB0(X0)] + E[log fB1(X0, X1, y1, θ1)] + . . .

. . .+ E[log fBn
(Xn−1, Xn, yn, θn)] (4.216)

Each term
hk(θk)

△

= E[log fBk
(Xk−1, Xk, yk, θk)] (4.217)

may be viewed as the message out of the corresponding node, as indicated
in Fig. 4.40. The constant term E[log fB0(X0)] in (4.216) may be omit-
ted (cf. Remark c in Section 4.9.1). As in (4.175), all expectations are
with respect to the probability distribution pB, which we here denote by

9We come back to this issue in Section 4.9.3.

134 Chapter 4. Phase-Estimation Algorithms

pB(x|y, θ̂). Note that each term (4.217) requires only pB(xk−1, xk|y, θ̂),
the joint distribution of Xk−1 and Xk:

hk(θk) =
∑

xk−1

∑

xk

pB(xk−1, xk|y, θ̂) log fBk
(xk−1, xk, yk, θk). (4.218)

These joint distributions may be obtained by means of the standard
sum-product algorithm: from elementary factor graph theory, we have

pB(xk−1, xk|y, θ̂) ∝ fBk
(xk−1, xk, yk, θ̂)µXk−1→fBk

(xk−1)

· µXk→fBk
(xk), (4.219)

where µXk−1→fBk
and µXk→fBk

are the messages of the sum-product
algorithm towards the node fBk

and where “∝” denotes equality up to
a scale factor that does not depend on xk−1, xk. It follows that

pB(xk−1, xk|y, θ̂) =

fBk
(xk−1, xk, yk, θ̂)µXk−1→fBk

(xk−1)µXk→fBk
(xk)

∑

xk−1

∑

xk
fBk

(xk−1, xk, y, θ̂)µXk−1→fBk
(xk−1)µXk→fBk

(xk)
.

(4.220)

Note that, if the sum product messages µXk−1→fBk
and µXk→fBk

are
computed without any scaling, then the denominator in (4.220) equals

pB(y|θ̂), which is independent of k.

We now investigate two examples.

• The variables X may be symbols protected by a trellis code. If
the state space of the code is not too large, the messages µXk−1→fBk

and µXk→fBk
may be computed by the forward and backward re-

cursion of the BCJR algorithm [15] through the trellis of the code,
or equivalently, by a forward and backward sum-product sweep on
the factor graph of the code.

• The graph fB(x, θ) may represent a linear dynamical system
(see Appendix H and [100]). The messages µXk−1→fBk

and µXk→fBk

are then computed by a forward and backward Kalman recursion.

In some applications, the messages µXk−1→fBk
and µXk→fBk

are not
available in closed-form; they may then be represented in various ways

4.9. Expectation Maximization 135

such as quantized messages or lists of samples; they may also be appro-
ximated by Gaussian distributions [100]. We come back to this issue in
Section 4.9.5.

The downwards message θ̂ (4.177) is

(θ̂1, . . . , θ̂n)T = argmax
θ1,...,θn

(
log fA(θ) + h1(θ1) + hn(θn)

)
(4.221)

= argmax
θ1,...,θn

(

fA(θ) · eh1(θ1) · · · ehn(θn)
)

. (4.222)

If fA has itself a nice factorization, then (4.221) or (4.222) may be com-
puted by the standard max-sum or max-product algorithm respectively.
This applies in particular for the standard case Θ1 = Θ2 = . . . = Θn

(see Fig. 4.44):

(θ̂1, . . . , θ̂n)T = argmax
θ1,...,θn

(
h1(θ1) + · · · + hn(θn)

)
(4.223)

= argmax
θ1,...,θn

(

eh1(θ1) · · · ehn(θn)
)

. (4.224)

In addition, if the term fA(θ) and all terms ehℓ(θℓ) are Gaussians, the
max-product and the sum-product scheme are equivalent [117] (see Ap-
pendix H). Therefore, the Kalman filter can be used to solve (4.222), not
to be confused with the Kalman filter of the E-step (4.216)–(4.218). We
can use Gaussian sum-product message passing and the standard update
rules given in Table H.2 and H.3 for this purpose.

fA

Θ1 Θ2 ΘnΘn−1

. . .= =

Figure 4.44: Factor graph of Θ1 = Θ2 = . . . = Θn.

The above derivations do not in any essential way depend on the specific
example (4.214). In principle, any cut-set of edges in some factor graph
may be chosen to be the vector Θ. However, the resulting subgraphs
corresponding to fA and fB should be cycle-free in order to permit the

136 Chapter 4. Phase-Estimation Algorithms

computation of exact expectations (h-messages) and maximizations (θ̂-
messages). The h-message out of a generic node g(z1, . . . , zm, θk) (cf.
Fig. 4.45) is as follows.

E-log message out of a generic node:

h(θk) =
∑

z1

. . .
∑

zm

p(z1, . . . , zm|θ̂k) log g(z1, . . . , zm, θk) (4.225)

= γ−1
∑

z1

. . .
∑

zm

g(z1, . . . , zm, θ̂k)µ(z1) · · ·µ(zm)

· log g(z1, . . . , zm, θk) (4.226)

with

γ
△

=
∑

z1

. . .
∑

zm

g(z1, . . . , zm, θ̂k)µ(z1) · · ·µ(zm) (4.227)

and where µ(z1), . . . , µ(zm) are standard sum-product messages.

If exact sum-product message passing (on a cycle-free graph) is intractable,
the message passing rule (4.226) may also be applied to a (sub) graph
with cycles, but then there is no guarantee for (4.1). Alternatively, one
may use:

• low-complexity approximations such as (structured) mean-field
approximations [94] [217] and extensions (see, e.g., [90]),

• intermediate-complexity approximations as for example
structured-summary propagation [50] [51] or generalized belief pro-
pagation [223].

Also then, there is no guarantee for (4.1).

Remark 4.9. (Scheduling)
At every iteration of the (standard) EM algorithm (4.174)–(4.175), the
messages are computed in a specific order (“standard schedule”):

a) With the current estimate θ̂(k), all sum-product messages µ(zℓ)
(cf. (4.226)) in the subgraph fB(x, θ) are updated.

4.9. Expectation Maximization 137

g...

Z1

Zm

h(θk)

θ̂k

Figure 4.45: h-message out of a generic node.

b) The E-log messages are computed according to the rule (4.226)
using the messages µ(zℓ) updated in Step 1.

c) A new estimate θ̂(k+1) is computed according to (4.175).

One advantage of representing EM as message passing is the freedom
in choosing a schedule that differs from the standard schedule.10 For
example, if the messages µ(zℓ) are expensive to compute, it is natural to
re-use the messages µ(zℓ) from a previous iteration; in that case, one does
not recompute the messages µ(zℓ) at every iteration. This may lead to
a substantial reduction of the computational complexity (see, e.g., [82]).
More precisely, the number of flops needed to attain a fixed point of the
EM algorithm can be significantly smaller. For the sake of clarity, we
explicitly write down this alternative message-update schedule:

a) Initialize an estimate θ̂(0).

b) Iterate the following steps:

i) Compute the messages µ(zℓ).

ii) Compute the messages h(θ); the messages µ(zℓ) from (a) are
plugged into (4.226).

iii) Compute the new estimate θ̂(k) according to (4.177).

iv) Iterate (b)–(c) until convergence.

10Note, however, that the choice of the update schedule does not change the fixed
points of a message-passing algorithm, i.e., the set of solutions to which the algorithm
may converge. However, the schedule determines whether the algorithm converges. In
case the algorithm converges, scheduling determines to which fixed point the algorithm
actually converges.

138 Chapter 4. Phase-Estimation Algorithms

This is a double-loop algorithm; in the inner loop (b)–(c), the estimate θ̂
is refined, while the sum-product messages µ(zℓ) are kept fixed. Obvi-
ously, one may fix some (i.e., not all) of the messages µ(zℓ), and re-
compute the others at every iteration, depending on the complexity of
updating µ(zℓ).

Remark 4.10. (Deterministic nodes)
We consider now a node g that represents a deterministic mapping, i.e.,
g(x, z, θ) = δ(z − f(x, θ)) (see Fig. 4.46). Literal application of (4.226)
leads to

h(θ) = γ−1
∑

x

∑

z

δ(z − f(x, θ̂(k)))µX(x)µZ (z)

· log δ(z − f(x, θ)). (4.228)

For simplicity, we assume that X and Z are discrete, and therefore

h(θ) = γ−1
∑

x

∑

z

δ[z − f(x, θ̂(k)))]µX(x)µZ (z) log δ[z − f(x, θ)]

(4.229)

= γ−1
∑

x

µX(x)µZ(f(x, θ̂(k))) log δ[f(x, θ̂(k)) − f(x, θ)] (4.230)

=

{
−∞ if f(x, θ) 6= f(x, θ′),
0 otherwise.

(4.231)

We used the convention 0 log 0
△

= 0 in (4.230). Assuming that

f(x, θ) = f(x, θ′) ⇔ θ = θ′, ∀x, (4.232)

we can rewrite (4.231) as

h(θ) =

{
−∞ if θ 6= θ′,
0 otherwise,

(4.233)

and as a consequence:

eh(θ) =

{
0 if θ 6= θ′,
1 otherwise.

(4.234)

The solution (4.234) is disturbing: the message h(θ) has its maximum at

the current estimate θ̂(k), and therefore, the estimate for θ is not refined
in the course of the EM algorithm.

4.9. Expectation Maximization 139

In conclusion: the E-log update rule leads to absurd results if it is applied
to deterministic nodes. In Section 4.9.3, we propose a solution to this
problem.

f

X

Z
h(θ)

θ̂

Figure 4.46: h-message out of a node g(x, z, θ) = δ(z − f(x, θ)).

4.9.2 Table of EM update rules

In this section, the local E-log update rule (4.226) is worked out for
a number of common nodes. All h-messages (or eh) are collected in
Table 4.2, the corresponding derivations can be found in Appendix J.
The update rules in Table 4.2 can be used as building blocks for novel
EM-based estimation algorithms, as demonstrated in [100]. In Table 4.2
and in Appendix J, we denote vectors in bold in order to avoid confusion
between the scalar case and the vector case of message-update rules. So
far, we did not denote vectors in bold in order to keep the notation as
light as possible.

1
4
0

C
h
a
p
ter

4
.

P
h
a
se-E

stim
a
tio

n
A

lg
o
rith

m
s

Table 4.2: EM Update equations for standard building blocks.

Graph Node EM update rule

1
X

e
h(m) m̂

N

f(x,m) = N (x | m, s)

Gaussian,
unknown
mean, scalar

eh(m) ∝ N
(

m
∣
∣
∣ E[X], s

) X,m ∈ R

s ∈ R
+
0

2
X

e
h(m) m̂

N

f(x,m) = N (x | m,V)

Gaussian,
unknown
mean

eh(m) ∝ N
(

m
∣
∣
∣ E[X],V

)
X,m ∈ R

n

V ∈ R
n×n

V � 0

3
X

e
h(s) ŝ

N

f(x, s) = N (x | m, s)

Gaussian,
unknown
variance

eh(s) ∝ Ig

(

s
∣
∣
∣ −1

2
,
E[X2]−2mE[X]+m2

2

)
X,m ∈ R

s ∈ R
+
0

4
X

e
h(V) V̂

N

f(x,V) = N (x | m,V)

Gaussian,
unknown
variance

eh(V) ∝ exp
(
−E

[
(X−m)HV−1(X−m)

])
X,m ∈ R

n

V ∈ R
n×n

V � 0

5
Identity
covariance
matrix

eh(s) ∝ Ig

(

s
∣
∣
∣
n−2

2
,
1

2
E
[
(X−m)H(X−m)

]
) X,m ∈ R

n

V = Is

s ∈ R
+
0

4
.9

.
E

x
p
ecta

tio
n

M
a
x
im

iza
tio

n
1
4
1

Table 4.2: (continued)

Graph Node EM update rule

6
Diagonal
covariance
matrix

eh(s) ∝
n∏

ℓ=1

Ig

(

sℓ

∣
∣
∣ −1

2
,
1

2
E[(Xℓ−mℓ)

2]

) X,m ∈ R
n

V = diag (s)

s ∈ R
+n

7
N

a

a

X1 X2

e
h(a) â

f(x1, x2, a) =

exp
(
−(x2−ax1)

2/s
)

Scalar multi-
plication eh(a) ∝ N−1

(

a
∣
∣
∣

E[X1X2]

E[X2
1]

,
E[X2

1]

s

)
X1, X2 ∈ R

a ∈ R

s ∈ R
+
0

8
Na

A
X1 X2

e
h(a) â

f(x1,x2,a) =

exp
(
−(x2−Ax1)

H(x2−Ax1)/2s
)

Auto-
regression eh(a) ∝ N−1

(

a
∣
∣
∣ E[X1X

H
1]−1E[X1X2],

E[X1X
H
1]

s

)

X1,X2 ∈ R
n

a ∈ R
n, s ∈ R

+
0

A = [aH ; I 0]

X2 = [X2]1

9
N

c
cH

X

Y

e
h(c)

ĉ

f(x, y, c) =

exp
(
−(y−cHx)2/2s

)

Inner vector
product eh(c) ∝ N−1

(

c
∣
∣
∣ E[XXH]−1E[XY],

E[XXH]

s

) X, c ∈ R
n

Y ∈ R

s ∈ R
+
0

1
4
2

C
h
a
p
ter

4
.

P
h
a
se-E

stim
a
tio

n
A

lg
o
rith

m
s

Table 4.2: (continued)

Graph Node EM update rule

10
a

a

X1 X2

e
h(a) â

e
h(s)

ŝ

N

f(x1, x2, a, s) =

exp
(
−(x2−ax1)

2/2s
)

Joint coeffi-
cient/variance
estimation
scalar

eh(a) ∝ N−1

(

a
∣
∣
∣

E[X1X2]

E[X2
1]

,
E[X2

1]

ŝ

)

eh(s) ∝ Ig

(

s
∣
∣
∣ −1

2
,
E[(X2−âX1)

2]

2

)

X1, X2 ∈ R

a, â ∈ R

s, ŝ ∈ R
+
0

11 a

A
X1 X2

e
h(a) â

e
h(s)

ŝ

N

f(x1, x2, a, s) =

exp
(
−(x2−ax1)

2/2s
)

Joint coeffi-
cient/variance
estimation
Auto-
regression

eh(a) ∝ N−1

(

a
∣
∣
∣ E[X1X

H
1]−1E[X1X2],

E[X1X
H
1]

ŝ

)

eh(s) ∝ Ig

(

s
∣
∣
∣ −1

2
,
E[(X2−ÂX1)

H(X2−ÂX1)]

2

)

X1,X2,a ∈ R
n

s, ŝ ∈ R
+
0

X2 = [X2]1

12 X1 X2

A

h(A) Â

A

f(x1, x2, A) = ax1x2

Finite state
machine

h(A) =
∑

x1,x2

p(x1, x2) log ax1,x2

X1, X2 ∈ Zn

aij ∈ [0, 1]

4.9. Expectation Maximization 143

4.9.3 EM and compound nodes

Before applying EM, one may marginalize over certain variables. Let us
have a look at a small example.

Example 4.3. (EM and compound nodes)
Consider the global function shown in Fig. 4.47(a):

f(x1, x2, x3, θ)
△

= fA(θ)fB(x1, x2, x3, θ), (4.235)

with

fB(x1, x2, x3, θ)
△

= fB1(x1)fB2(x1, x2, θ)fB3(x2, x3, θ)fB4(x3). (4.236)

First, we derive “standard” EM (see Fig. 4.47(b)). The two E-log mes-
sages h1 and h2 are given by:

h1(θ) =
∑

x1,x2

p(x1, x2|θ̂(k)) log fB2(x1, x2, θ) (4.237)

h2(θ) =
∑

x2,x3

p(x2, x3|θ̂(k)) log fB3(x2, x3, θ), (4.238)

where

p(x1, x2|θ̂(k))
△

= γ−1 →µ (x1)fB2(x1, x2, θ̂
(k))

←
µ (x2) (4.239)

= γ−1fB1(x1)fB2(x1, x2, θ̂
(k))

∑

x3

fB3(x2, x3, θ̂
(k))fB4(x3) (4.240)

= γ−1
∑

x3

fB(x1, x2, x3, θ̂
(k)) (4.241)

p(x2, x3|θ̂(k))
△

= γ−1 →µ (x2)fB3(x2, x3, θ̂
(k))

←
µ (x3) (4.242)

= γ−1
(∑

x1

fB1(x1)fB2(x1, x2, θ̂
(k))
)

fB3(x2, x3, θ̂
(k))fB4(x3) (4.243)

= γ−1
∑

x1

fB(x1, x2, x3, θ̂
(k)), (4.244)

144 Chapter 4. Phase-Estimation Algorithms

with

γ
△

=
∑

x1,x2

p(x1, x2|θ̂(k)) (4.245)

=
∑

x2,x3

p(x2, x3|θ̂(k)) (4.246)

=
∑

x1,x2,x3

fB(x1, x2, x3, θ̂
(k)) (4.247)

△

= fB(θ̂(k)), (4.248)

and
→
µ (x1),

→
µ (x2),

←
µ (x2) and

←
µ (x3) are standard sum-product mes-

sages:

→
µ (x1) = fB1(x1) (4.249)
→
µ (x2) =

∑

x1

fB1(x1)fB2(x1, x2, θ̂
(k)) (4.250)

←
µ (x2) =

∑

x3

fB3(x2, x3, θ̂
(k))fB4(x3) (4.251)

←
µ (x3) = fB4(x3). (4.252)

The “standard” EM algorithm alternates the update rules (4.237) and
(4.238) with the update rule:

θ̂(k+1) = argmax
θ

(log fA(θ) + h1(θ) + h2(θ)) . (4.253)

Now, we follow a different approach. Before applying EM, we eliminate
the variable X2, resulting in the function f(x1, x3, θ) defined as:

f(x1, x3, θ)
△

=
∑

x2

fB2(x1, x2, θ)fB2(x2, x3, θ). (4.254)

The h-message out of the (compound) node f(x1, x3, θ) (smallest dashed
box in Fig. 4.47(c)) is given by:

h(θ)
△

=
∑

x1,x3

p(x1, x3|θ̂(k)) log f(x1, x3, θ). (4.255)

In summary, eliminating the variable X2 before applying the E-log rule
is equivalent to:

4.9. Expectation Maximization 145

a) Combining the two nodes fB2 and fB3 .

b) Applying the E-log rule to the resulting compound node (“box”).

The resulting EM algorithm alternates the update rule (4.255) with the
update rule:

θ̂(k+1) = argmax
θ

(log fA(θ) + h(θ)) . (4.256)

�

Since the resulting algorithms are (standard) EM algorithms, they are
guaranteed to never decrease the global function f (cf. (4.1)).

Deterministic nodes (cf. Remark 4.10) can be handled by combining them
with nodes that represent continuous functions (“boxing”), as illustrated
in Fig. 4.48 (with g(x, z, θ) = δ(z − f(x, θ))). The E-log message h is
given by:

h(θ) = γ−1
∑

x,z,z′

δ(z − f(x, θ̂))µ↑(z′)µ↓(x)h(z, z′)

· log
∑

z

δ(z − f(x, θ))h(z, z′) (4.257)

= γ−1
∑

x,z′

h(f(x, θ̂), z′)µ↓(x)µ↑(z′) log h(f(x, θ), z′), (4.258)

where γ equals:

γ =
∑

x,z′

h(f(x, θ̂), z′)µ↓(x)µ↑(z′). (4.259)

Note that we have applied the generic rule (4.258) in the simple exam-
ple (4.183), more precisely in (4.192)–(4.193) (see Fig. 4.41).

4.9.4 Hybrid EM

In the previous sections, we have described the EM algorithm as an
algorithm that performs local computations: it computes messages on a
factor graph.

From this “local” perspective, several interesting options become obvi-
ous:

146 Chapter 4. Phase-Estimation Algorithms

fA

fB1

Θ

fB2 fB3 fB4

=

X1 X2 X3

(a) Factor graph of (4.254).

fB

fA

θ̂θ̂

fB1

h1 h2

Θ

fB2 fB3
fB4

=

X1 X2 X3

fA

Θ1 Θ2

(b) Standard EM

fA

θ̂

fB1

h2Θ

fB2 fB3 fB4

=

X1 X2 X3

fB

fA

(c) Combining the nodes fB2
and fB3

Figure 4.47: Eliminating variables before applying EM.

4.9. Expectation Maximization 147

g

h

Z ′

X

Z
h(θ)

θ̂

Figure 4.48: Combining the node g(x, z, θ) = δ(z − f(x, θ)) with a
continuous node h.

• One may apply the E-log update rule in some subgraph of the factor
graph of f (for estimating some variable Θ); in an other subgraph,
a variable Θ′ may be estimated by an other message-passing esti-
mation algorithm, such as a sum-product-based gradient algorithm
or ICM.

• At a particular node, one may combine the E-log update rule with
the sum-product rule.

In the following, we investigate the second option, referred to as hybrid
EM [100]. Consider the generic node depicted in Fig. 4.49. First, we
eliminate the variables Z ′1, . . . , Z

′
m by means of the sum-product rule,

resulting in the function f(z1, . . . , zn, θk) (dashed box in Fig. 4.49); the
variables Z ′1, . . . , Z

′
m are internal variables of the box f . Then, we apply

the E-log rule to f .

148 Chapter 4. Phase-Estimation Algorithms

E-log message out of a box f (“hybrid E-log message”) [100]:

h(θk) =
∑

z1

. . .
∑

zn

p(z1, . . . , zn|θ̂k) log f(z1, . . . , zn, θk), (4.260)

= γ−1
∑

z1

. . .
∑

zn

f(z1, . . . , zn, θ̂k)µ(z1) · · ·µ(zn)

· log f(z1, . . . , zn, θk), (4.261)

with

γ
△

=
∑

z1

. . .
∑

zn

f(z1, . . . , zn, θ̂k)µ(z1) · · ·µ(zn), (4.262)

and

f(z1, . . . , zn, θk) ∝
∑

z′
1

. . .
∑

z′
m

g(z1, . . . , zn, z
′
1, . . . , z

′
m, θk)

· µ(z′1) · · ·µ(z′m), (4.263)

where µ(z1), . . . , µ(zn), µ(z′1), . . . , µ(z′m) are standard sum-product
messages.

g
f

Z1 Zn

Z ′1 Z ′m

. . .

. . . h(θk)

θ̂k

Figure 4.49: Hybrid EM.

The hybrid E-rule (4.261) is of interest for the following reasons:

• A hybrid E-log message may have a simpler form than the corres-
ponding E-log message, as we will illustrate by an example at the
end of this section (Example 4.6). As a consequence, the maximi-
zation (4.177) may be simpler.

4.9. Expectation Maximization 149

• The hybrid E-rule can be applied to deterministic nodes, in
contrast to the E-log rule (cf. Remark 4.10). An example is de-
picted in Fig. 4.50 (with g(x, z, θ) = δ(z − f(x, θ))). One first
eliminates the variable Z by means of the sum-product rule. One
applies the E-log rule to the resulting compound node (dashed box
in Fig. 4.50). The resulting hybrid E-message h equals:

h(θ) = γ−1
∑

x,z

δ(z − f(x, θ))µ↑(z)µ↓(x)

· log
∑

z

δ(z − f(x, θ))µ↑(z) (4.264)

= γ−1
∑

x

µ↓(x)µ↑(f(x, θ)) log µ↑(f(x, θ)), (4.265)

where
γ =

∑

x

µ↓(x)µ↑(f(x, θ)). (4.266)

Often a deterministic node can be handled by combining it with a
neighboring continuous node, as described in Section 4.9.3. In some
situations, it is nevertheless more attractive to apply the hybrid E-
rule instead (cf. Example 4.6).

g

. . .

X

Z
h(θ)

θ̂

Figure 4.50: Hybrid E-rule applied to a deterministic node g(x, z, θ) =
δ(z − f(x, θ)).

By a hybrid EM algorithm, we denote a modification of the EM algorithm
where at some nodes in the subgraph fB(x, θ), the hybrid E-rule (4.261)
is applied instead of the E-log rule (4.226). The EM algorithm can be
viewed as a special case of the hybrid EM algorithm, where the E-log

150 Chapter 4. Phase-Estimation Algorithms

fA

θ̂θ̂

fB1

h2

Θ

fB2 fB3 fB4

=

X1 X2 X3
fB

fA

Θ1 Θ2h̃1

Figure 4.51: A simple hybrid EM algorithm.

rule is applied at all nodes in the subgraph fB(x, θ). Let us have a look
at a simple example of a hybrid EM algorithm.

Example 4.4. (Hybrid EM)
Consider again the global function (4.267):

f(x1, x2, x3, θ)
△

= fA(θ)fB1(x1)fB2(x1, x2, θ)fB3(x2, x3, θ)fB4(x3),
(4.267)

shown in Fig. 4.47(a).

We apply the hybrid E-rule to the node fB2 : the variable X2 (“internal
variable”) is eliminated before the E-log rule is applied to the node fB2 ,
as illustrated in Fig. 4.51. The hybrid E-message h̃1 is given by:

h̃1(θ) =
∑

x1

p(x1|θ̂(k)) log
∑

x2

fB2(x1, x2, θ)
←
µ (x2) (4.268)

=
∑

x1,x2

p(x1, x2|θ̂(k)) log
∑

x2

fB2(x1, x2, θ)
←
µ (x2), (4.269)

where p(x1, x2|θ̂(k)) and
←
µ (x2) are given by (4.241) and (4.251) respec-

tively.

At the node fB3 , we apply the E-log rule; the E-log message h2 is again
given by (4.238). The variable X2 is now treated as a hidden variable.
The hybrid EM algorithm alternates the update rules (4.238) and (4.269)
with the update rule

θ̂(k+1) = argmax
θ

(

log fA(θ) + h̃1(θ) + h2(θ)
)

. (4.270)

4.9. Expectation Maximization 151

Note that the variable X2 is thus treated simultaneously as an internal
variable (at node fB2) and as a hidden variable (at node fB3), in contrast
to the approach of Fig. 4.47(c), where the variable X2 is consistently
treated as an internal variable (of the box f(x1, x3, θ)). Whereas the
approach depicted in Fig. 4.47(c) is guaranteed to decrease the global
function f at each iteration, there is no such guarantee for the hybrid
EM algorithm. However, we are able to characterize the fixed points of
the algorithm. �

Theorem 4.4. Assume that a factor graph of a global function f(x, θ)
△

=
fA(θ)fB(x, θ) is available whose subgraph fB(x, θ) is cycle-free. The
fixed points of a hybrid EM algorithm applied on that factor graph are
stationary points of the marginal f(θ).

Proof: It is instructive to first prove the theorem for the simple hybrid
EM algorithm (4.270). We consider the general case afterwards.

Note first of all that the hybrid EM algorithm (4.270) operates on a
factor graph whose subgraph fB(x, θ) is cycle-free (see Fig. 4.47(a)). By
defining the function f̃(θ, θ′) as

f̃(θ, θ′)
△

= log fA(θ) + f̃1(θ, θ
′) + f̃2(θ, θ

′), (4.271)

with

f̃1(θ, θ
′)

△

=
∑

x1,x2

p(x1, x2|θ′) log
∑

x2

fB2(x1, x2, θ)
←
µ (x2) (4.272)

f̃2(θ, θ
′)

△

=
∑

x2,x3

p(x2, x3|θ′) log fB3(x2, x3, θ), (4.273)

the rule (4.270) can be rewritten as

θ̂(k+1) = argmax
θ

f̃(θ, θ(k)). (4.274)

The fixed points of the hybrid EM algorithm are implicitly defined by
the equation:

θ̂fixed = argmax
θ

f̃(θ, θfixed). (4.275)

As a consequence of (4.275), the fixed points fulfill the constraint:

∇θ f̃(θ, θfixed)
∣
∣
∣
θfixed

= 0. (4.276)

152 Chapter 4. Phase-Estimation Algorithms

We now show that

∇θ f̃(θ, θ′)
∣
∣
∣
θ′

= ∇θ log f(θ)|θ′ . (4.277)

First, note that

∇θ f̃(θ, θ′)
∣
∣
∣
θ′

= ∇θ log fA(θ)|θ′ + ∇θ f̃1(θ, θ
′)
∣
∣
∣
θ′

+ ∇θ f̃2(θ, θ
′)
∣
∣
∣
θ′
. (4.278)

We rewrite the second term in the RHS of (4.278) as:

∇θ f̃1(θ, θ
′)
∣
∣
∣
θ′

=
∑

x1,x2

p(x1, x2|θ′) ∇θ log
∑

x2

fB2(x1, x2, θ)
←
µ (x2)

∣
∣
∣
∣
∣
θ′

(4.279)

=
∑

x1,x2

p(x1, x2|θ′)
∑

x2
∇θfB2(x1, x2, θ)|θ′

←
µ (x2)

∑

x2
fB2(x1, x2, θ′)

←
µ (x2)

. (4.280)

We substitute (4.241) and (4.248) in (4.280) and obtain:

∇θ f̃1(θ, θ
′)
∣
∣
∣
θ′

=
1

fB(θ′)

∑

x1,x2

fB2(x1, x2, θ
′)
→
µ (x1)

←
µ (x2)

·
∑

x2
∇θfB2(x1, x2, θ)|θ′

←
µ (x2)

∑

x2
fB2(x1, x2, θ′)

←
µ (x2)

(4.281)

=
1

fB(θ′)

∑

x1

→
µ (x1)

(∑

x2

fB2(x1, x2, θ
′)
←
µ (x2)

)

·
∑

x2
∇θfB2(x1, x2, θ)|θ′

←
µ (x2)

∑

x2
fB2(x1, x2, θ′)

←
µ (x2)

(4.282)

=
1

fB(θ′)

∑

x1

→
µ (x1)

∑

x2

∇θfB2(x1, x2, θ)|θ′

←
µ (x2) (4.283)

=
1

fB(θ′)

∑

x1,x2

→
µ (x1) ∇θfB2(x1, x2, θ)|θ′

←
µ (x2). (4.284)

By substituting (4.249) and (4.251) in (4.284), it follows:

∇θ f̃1(θ, θ
′)
∣
∣
∣
θ′

4.9. Expectation Maximization 153

=
1

fB(θ′)

∑

x1,x2

fB1(x1) ∇θfB2(x1, x2, θ)|θ′

·
(∑

x3

fB3(x2, x3, θ
′)fB4(x3)

)

(4.285)

=
1

fB(θ′)

∑

x1,x2,x3

fB1(x1) ∇θfB2(x1, x2, θ)|θ′ fB3(x2, x3, θ
′)fB4(x3)

(4.286)

=
1

fB(θ′)
∇θ

(∑

x1,x2,x3

fB1(x1)fB2(x1, x2, θ)fB3(x2, x3, θ
′)fB4(x3)

)∣
∣
∣
θ′

(4.287)

=
∑

x1,x2

∇θ p(x1, x2|θ)|θ′ (4.288)

= Ep(x1,x2|θ) [∇θ log p(x1, x2|θ)|θ′] . (4.289)

Note that (4.251) and hence (4.285)–(4.289) hold since the graph of
fB(x, θ) is cycle-free.

Similarly, the third term in the RHS of (4.271) can be written as

∇θ f̃2(θ, θ
′)
∣
∣
∣
θ′

=
1

fB(θ′)

∑

x2,x3

→
µ (x2) ∇θfB3(x2, x3, θ)|θ′

←
µ (x3) (4.290)

=
1

fB(θ′)

∑

x1,x2,x3

fB1(x1)fB2(x1, x2, θ
′) ∇θfB3(x2, x3, θ)|θ′ fB4(x3)

(4.291)

=
∑

x2,x3

∇θ p(x2, x3|θ)|θ′ (4.292)

= Ep(x2,x3|θ) [∇θ log p(x2, x3|θ)|θ′] . (4.293)

Note that:

∇θfB(x, θ) =fB1(x1)∇θfB2(x1, x2, θ)fB3(x2, x3, θ)fB4(x3)

+ fB1(x1)fB2(x1, x2, θ)∇θfB3(x2, x3, θ)fB4(x3). (4.294)

Therefore, by substituting (4.286) and (4.291) in (4.271), we obtain:

∇θf̃(θ, θ′)
∣
∣
∣
θ′

= ∇θ log fA(θ)|θ′ +
1

fB(θ′)

∑

x

∇θfB(x, θ)|θ′ (4.295)

154 Chapter 4. Phase-Estimation Algorithms

= ∇θ log fA(θ)|θ′ +
1

fB(θ′)
∇θfB(θ)|θ′ (4.296)

= ∇θ log fA(θ)|θ′ + ∇θ log fB(θ)|θ′ (4.297)

= ∇θ log f(θ)|θ′ , (4.298)

where fB(θ)
△

=
∑

x fB(x, θ). From (4.276) and (4.298) it follows:

∇θf(θ)|θfixed = 0, (4.299)

or, in words: the fixed points θfixed of the hybrid EM algorithm (4.270)

are stationary points of the marginal f(θ)
△

=
∑

x f(x, θ) of the global
function f(x, θ) (4.267).

The key point in the above proof is the fact that the terms (4.286)
and (4.291) have the same form, since it leads to the equalities (4.298)
and (4.299). Note that the term (4.286) originates from a hybrid E-
message, whereas the term (4.291) originates from an E-log message.
If we had applied the E-log rule (instead of the hybrid E-rule) to the
node fB2 (cf. (4.237)), we would also then have obtained the term (4.286).

We now consider the generic node fBk
depicted in Fig. 4.52, where the

variables Zℓ and Z ′ℓ are certain components of the vector X . The corres-

ponding term f̃k(θ, θ′) (cf. (4.272) and (4.273)) equals:

f̃k(θ, θ′) =
∑

z,z′

p(z, z′|θ′) log
∑

z′

fBk
(z, z′, θ)

m∏

ℓ=1

µ(z′ℓ), (4.300)

where Z
△

= (Z1, . . . , Zn), and Z ′
△

= (Z ′1, . . . , Z
′
m). Therefore,

∇θf̃k(θ, θ′)
∣
∣
∣
θ′

=
∑

z,z′

p(z, z′|θ′) ∇θ log
∑

z′

fBk
(z, z′, θ)

m∏

ℓ=1

µ(z′ℓ)

∣
∣
∣
∣
∣
θ′

(4.301)

=
∑

z,z′

p(z, z′|θ′)
∑

z′ ∇θfBk
(z, z′, θ)|θ′

∏m
ℓ=1 µ(z′ℓ)

∑

z′ fBk
(z, z′, θ′)

∏m
ℓ=1 µ(z′ℓ)

(4.302)

=
1

fB(θ′)

∑

z,z′

∇θfBk
(z, z′, θ)|θ′

n∏

ℓ=1

µ(zℓ)

m∏

ℓ=1

µ(z′ℓ). (4.303)

If the subgraph fB(x, θ) is cycle-free, we can rewrite (4.303) as:

4.9. Expectation Maximization 155

fBk

Z1 Zn

Z ′1 Z ′m

. . .

. . . h(θ)

θ̂

Figure 4.52: Hybrid EM.

∇θ f̃k(θ, θ′)
∣
∣
∣
θ′

=
1

fB(θ′)

∑

x

∇θfBk
(z, z′, θ)|θ′

fBk
(z, z′, θ′)

fB(x, θ′). (4.304)

Note that the terms (4.286) and (4.291) have the form (4.304). In the
term (4.286), Z = X1 and Z ′ = X2, whereas in the term (4.291), the
hidden variables are given by Z = (X2, X3) and there are no inter-
nal variables Z ′. The expression (4.304) holds for any choice of hid-
den variables Z and internal variables Z ′. Note also that the expres-
sion (4.304) makes no distinction between hidden variables and internal
variables. In particular, if both Z and Z ′ are treated as hidden variables
(as in standard EM), the expression (4.304) remains unchanged. Each
node fBk

amounts thus to a term of the form (4.304); therefore, the equal-
ities (4.295)–(4.299) hold for general cycle-free graphs fB(x, θ). In con-
clusion: the fixed points θfixed of a general hybrid EM algorithm (operat-

ing on a factor graph of f(x, θ)
△

= fA(θ)fB(x, θ) whose subgraph fB(x, θ)

is cycle-free) are stationary points of the marginal f(θ)
△

=
∑

x f(x, θ).
�

Theorem 4.4 concerns cycle-free subgraphs fB(x, θ). What if the sub-
graph fB(x, θ) is cyclic? For cyclic graphs, Theorem 4.4 does not hold,
i.e., the fixed points of hybrid EM algorithms applied to cyclic sub-
graphs fB(x, θ) are not equal to the stationary points of the marginal
f(θ). But, if the fixed points are not the stationary points of the exact
marginal f(θ), are they perhaps stationary points of the approximate
marginal b(θ) obtained by iterative sum-product message passing on the
subgraph fB(x, θ)? We now show by a simple example that the answer
to that question is “no”.

Example 4.5. ((Hybrid) EM on cyclic subgraphs fB(x, θ))

156 Chapter 4. Phase-Estimation Algorithms

θ̂θ̂

fB1

h2

Θ

fB2 fB3 fB4

=

X1

X5 X4

X2 X3

fB5

fB5

fB

fA

Θ1 Θ2h̃1

Figure 4.53: A simple hybrid EM algorithm operating on a cyclic sub-
graph fB(x, θ).

We consider the global function shown in Fig. 4.53:

f(x1, x2, x3, x4, x5, θ)
△

= fA(θ)fB(x1, x2, x3, x4, x5, θ), (4.305)

with

fB(x1, x2, x3, x4, x5, θ)
△

= fB1(x1, x5)fB2(x1, x2, θ)fB3(x2, x3, θ)

·fB4(x3, x4)fB5(x4, x5). (4.306)

Note that the subgraph fB(x, θ) is cyclic, in contrast to the subgraph
fB(x, θ) in Fig. 4.51. As in Example 4.4, we apply the hybrid E-rule to
the node fB2 and the E-log rule to the node fB3 . We are interested in
the fixed points of the resulting algorithm. The algorithm may, however,
not converge and thus never attain a fixed point.

We follow the line of thought in Example 4.4; we again again start from
the function f̃(θ, θ′) (4.271), which contains the terms f̃1(θ, θ

′) (4.272)
and f̃2(θ, θ

′) (4.273). Note that the equalities (4.284) and (4.290) also

hold for the factor graph of Fig. 4.53. The sum-product messages
→
µ (x1),

→
µ (x2),

←
µ (x2), and

←
µ (x3) in (4.284) and (4.290) are now computed

iteratively, since the subgraph fB is cyclic; they are in general not given
by (4.249)–(4.252) respectively. As a consequence, the equalities (4.286)

4.9. Expectation Maximization 157

and (4.291) do not hold. It follows:

∇θf̃(θ, θ′)
∣
∣
∣
θ′
= ∇θ log fA(θ)|θ′ + γ−1

∑

x1,x2

→
µ (x1)

←
µ (x2)∇θ fB2(x1, x2, θ)|θ′

+ γ−1
∑

x2,x3

→
µ (x2)

←
µ (x3)∇θ fB3(x2, x3, θ)|θ′ ,

(4.307)

where

γ
△

=
∑

x1,x2

→
µ (x1)

←
µ (x2)fB2(x1, x2, θ

′) (4.308)

=
∑

x2,x3

→
µ (x2)

←
µ (x3)fB3(x2, x3, θ

′). (4.309)

In analogy to (4.289) and (4.293), we can rewrite (4.307) as:

∇θ f̃(θ, θ′)
∣
∣
∣
θ′

= ∇θ log fA(θ)|θ′ + Eb(x1,x2|θ′) [∇θ log f(x1, x2, θ)|θ′]

+ Eb(x2,x3|θ′) [∇θ log f(x2, x3, θ)|θ′] , (4.310)

where

b(x1, x2|θ′) △

= γ−1
∑

x1,x2

→
µ (x1)

←
µ (x2)fB2(x1, x2, θ

′) (4.311)

b(x2, x3|θ′) △

= γ−1
∑

x2,x3

→
µ (x2)

←
µ (x3)fB3(x2, x3, θ

′). (4.312)

Note that we write b(·|·) and not p(·|·) in (4.311)–(4.312), since the ex-
pressions (4.311)–(4.312) are not the exact marginals but approximations

(“beliefs”). If we define the function log f̂(θ) as:

log f̂(θ)
△

= log fA(θ) +

∫ θ

−∞

Eb(x1,x2|θ̃)

[

∇θ log f(x1, x2, θ̃)
]

dθ̃

+

∫ θ

−∞

Eb(x2,x3|θ̃)

[

∇θ log f(x2, x3, θ̃)
]

dθ̃, (4.313)

then

∇θ f̃(θ, θ′)
∣
∣
∣
θ′

= ∇θ log f̂(θ)
∣
∣
∣
θ′
. (4.314)

158 Chapter 4. Phase-Estimation Algorithms

From (4.276), it follows that the fixed points of the hybrid EM algorithm

are stationary points of the function f̂(θ), where the beliefs occurring

in f̂(θ) (cf. (4.311)–(4.313)) are computed by means of the sum-product

messages
→
µ (x1),

→
µ (x2),

←
µ (x2), and

←
µ (x3) available at convergence of

the sum-product algorithm. Note that f̂(θ) is not equal to the mar-
ginal b(θ) obtained by iterative sum-product message passing. The latter
is given by:

b(θ) ∝ fA(θ)µfB2→Θ(θ)µfB3→Θ(θ), (4.315)

where

µfB2→Θ(θ) ∝
∑

x1,x2

fB2(x1, x2, θ)
→
µ (x1)

←
µ (x2) (4.316)

µfB3→Θ(θ) ∝
∑

x2,x3

fB3(x2, x3, θ)
→
µ (x2)

←
µ (x3). (4.317)

Since the sum-product messages
→
µ (x1),

→
µ (x2),

←
µ (x2) and

←
µ (x3) de-

pend on θ, we have in general:

∇θ log b(θ)|θ′ 6= ∇θ f̃(θ, θ′)
∣
∣
∣
θ′
, (4.318)

where the RHS is given by (4.310). Therefore, the fixed points of the
hybrid EM-algorithm are not stationary points of b(θ).

If the subgraph fB(x, θ) is cycle-free, the beliefs b(·|θ) are equal to the

exact marginals p(·|θ), hence, f̂(θ) = f(θ). The fixed points of the hybrid
EM-algorithm are then stationary points of f(θ).

Since the E-log rule is a special case of the hybrid E-rule, the above expo-
sition also applies to the standard EM-algorithm (with h-messages (4.237)
and (4.238)) applied on the graph of Fig. 4.53. �

From the previous example, it is but a small step to the following theo-
rem.

Theorem 4.5. Assume that a factor graph of a global function f(x, θ)
△

=
fA(θ)fB(x, θ) is available (whose subgraph fB(x, θ) may be cycle-free or
cyclic). The fixed points of a (hybrid) EM algorithm applied on that

factor graph are stationary points of the function f̂(θ), defined as:

log f̂(θ)
△

= log fA(θ) +

∫ θ

−∞

Eb(x|θ̃)

[

∇θ log fB(x, θ̃)
]

dθ̃, (4.319)

4.9. Expectation Maximization 159

where the beliefs b(·|θ) are computed by means of the sum-product mes-
sages available at convergence of the sum-product algorithm.

Example 4.6. (AR coefficient estimation)
We consider the system depicted in Fig. 4.54(a); we wish to estimate the

X1 X2X ′2

a

+a

N

(a) Estimation of a

X1 X2X ′2

â

a

f

h(a)

+a

N

(b) E-log rule applied to
compound node

X1 X2X ′2

â

a

f

h(a)

+a

N

(c) Hybrid E-rule

X1 X ′2

â

a

h(a)

a

(d) Direct application.

Figure 4.54: State transition node for scalar AR coefficient estimation.

coefficient a by an EM-type algorithm. The messages along the edges
X1, X2, and X ′2 are assumed to be Gaussian.

In the following, we outline two approaches. In the first approach, the
E-log rule (4.226) is applied to the compound node f of Fig. 4.54(b)
defined as:

f(x1, x2, a)
△

=
1√
2πs

e(x2−ax1)
2/s. (4.320)

The message eh(a) leaving the box f(x1, x2, a) is given by Rule 7 of
Table 4.2:

eh(a) ∝ N−1

(

a
∣
∣
∣

E[X1X2]

E[X2
1]

,
E[X2

1]

s

)

. (4.321)

160 Chapter 4. Phase-Estimation Algorithms

In the second approach, we apply the hybrid E-rule (4.261), as illustrated
in Fig. 4.54(c). First, we integrate over the variable X ′2, amounting to:

f(x1, a)
△

=

∫

g(x1, x2, a)µX′
2→g(x2)dx

′
2 (4.322)

=

∫

δ(x2 − ax1)µX′
2→g(x2)dx

′
2 (4.323)

= µX′
2→g(ax1) (4.324)

△

= N (ax1 | m′2, v′2) . (4.325)

The E-log message leaving the box f(x1, a) is given by:

h′(a) =

∫

x1

p(x1|â(k)) log f(x1, a) dx1 (4.326)

=

∫

x1

p(x1|â(k)) log µX′
2→f (ax1) dx1 (4.327)

= C − 1

2v′2

(

a2E[X2
1 |â(k)] − 2am′2E[X1|â(k)] + (m′2)

2
)

.(4.328)

with

C = −1

2
log(2πv′2) (4.329)

and in the exponential domain

eh′(a) ∝ N−1

(

a
∣
∣
∣
m′2E[X1]

E[X2
1]

,
E[X2

1]

v′2

)

(4.330)

where the expectations are w.r.t. the distribution p(x1|â(k)). Note that
the message (4.330) follows directly from the message (4.321), where

X2
△

= m′2 and where s
△

= v′2. Note also that the message (4.330) is easier
to evaluate than the message (4.321).

In certain applications, the multiplication node occurs in absence of
the addition node, as illustrated in Fig. 4.54(d). This situation oc-
curs for example in time-dependent linear systems without input noise
(cf. Fig. H.1 with B = 0 and time-dependent A-matrices). The hybrid
E-rule (4.330) can be applied directly to the multiplication node, in con-
trast to the rule (4.321).

The extension to the vector case (autoregression), as shown in Fig. 4.55,

4.9. Expectation Maximization 161

a

A
X1 X2

eh(a) â

+
X′2

f

N

(a) E-log rule applied to
compound node

a

A
X1 X2

eh(a) â

+
X′2

f

N

(b) Hybrid E-rule

Figure 4.55: Autoregression.

is straightforward.11 The dashed box in Fig. 4.55(a) represents the factor:

f(x1,x2,a) =
1

√

(2π)n|V|
exp

(
−1/2(x2−Ax1)

HV−1(x2−Ax1)
)
,

(4.331)

with

A ,

[
aH

I 0

]

, (4.332)

and X1,X2 ∈ Rn.

The message eh(a) leaving the box f(x1,x2,a) equals (cf. Section J.3.2):

eh(a) ∝ N−1
(

a
∣
∣
∣ma,Wa

)

, (4.333)

where

Wa = w11E
[
X1X

H
1

]
(4.334)

ma = W−1
a

(
n∑

k=1

w1kE [X1 [X2]k] −
n−1∑

k=1

w1k+1E [X1 [X1]k]

)

, (4.335)

with [Xi]j the j-th component of the (random) vector Xi, and wij the

element (i, j) of W
△

= V−1 (i, j = 1, . . . , n). Note that the expres-
sion E [X1 [X1]k] stands for a vector whose ℓ-th component is given by
E [[X1]ℓ [X1]k].

11We will denote vectors in bold in order to avoid confusion between the scalar case
and the vector case.

162 Chapter 4. Phase-Estimation Algorithms

The E-log message leaving the box f(x1,a) in Fig. 4.55(b) is given by:

eh(a) ∝ N−1
(

a
∣
∣
∣ma,Wa

)

(4.336)

with

Wa = w11E
[
X1X

H
1

]
(4.337)

ma = W−1
a

(n∑

k=1

w1k [m′2]k E [X1] −
n−1∑

k=1

w1k+1E [X1 [X1]k]
)

, (4.338)

where m′2 ∈ R
n and V′2 ∈ R

n×n is the mean and covariance matrix of
the incoming message along the edge X ′2, and wij is the element (i, j)

of the matrix W2
△

= V′−1
2 (i, j = 1, . . . , n). The message (4.336) follows

directly from the message (4.333), where the variable X2 is set to m2

and where V
△

= V′2. �

4.9.5 Extensions of EM

The evaluation of the upward message h(θ) (4.174) (E-step) and/or the

downward message θ̂(k) (4.177) (M-step) is sometimes not feasible. In
the literature, several methods have been proposed to solve this problem.

If the computation of the message h(θ) is not tractable, one may com-
pute h(θ) approximately by means of Monte-Carlo methods, an approach
called Monte-Carlo EM (MCEM) [128, p. 214–216]. The sum-product
messages µ(z) (cf. (4.226)) are then represented as lists of samples. The
special case where the messages µ(z) are represented by a single sample
is called Stochastic EM (SEM) [128, p. 216–218].

If the computation of θ̂(k) (4.177) is problematic, one may carry out
the maximization in (4.177) by ICM (cf. Section 4.8.2), an approach
called Expectation Conditional Maximization (ECM) [128, p. 167–
171]. As usual, several variables may be grouped in the ICM steps. In
addition, several update schedules are possible; one may update the h-
messages after each (or a certain number of) ICM step(s) (“multicycle
ECM” [128, p. 214–216]). Alternatively, if the computation of the mes-
sages h(θ) is expensive, one may only update the h-messages after the

ICM algorithm has converged to an estimate θ̂(k). Some of the ICM steps
may be replaced by a conditional maximization of the marginal f(θ),

4.9. Expectation Maximization 163

an approach called Expectation Conditional Maximization Either
(ECME) [128, p. 206–208]; one maximizes the marginal f(θ) w.r.t. cer-
tain components θk of the parameter vector θ while the other components
are kept fixed at the current estimate. In an extension of ECM called
Alternating ECM (AECM) [128, p. 183–184], the hidden variable(s)
may be chosen differently at each ICM iteration. ECME may be regarded
as a special case of AECM, where in particular ICM steps, there are no
hidden variables. Another special case of ACME is the Space Alter-
nating Generalized EM algorithm (SAGE) [128, p. 206]; in SAGE, no
variables are grouped in the ICM steps.

Instead of ICM, gradient methods may be used to (approximately) carry
out the M-step. This approach is called gradient EM [128, p. 156–158]);
it is the subject of the next section.

4.9.6 Gradient EM

The maximization in the RHS of (4.177) is sometimes intractable. The

estimate θ̂(k+1) may be determined by gradient methods.

Let us have a look at a simple example. Suppose that

fA(θ)
△

= fA1(θ1)fA2(θ1, θ2) . . . fAn
(θn−1, θn), (4.339)

and

fB(x, θ)
△

= fB0(x0)fB1(x0, x1, y1, θ1)fB2(x1, x2, y2, θ2)

. . . fBn
(xn−1, xn, yn, θn), (4.340)

as illustrated in Fig. 4.40. As we pointed out before, the probability
function f(x, θ) may represent a state-space model parameterized by the
parameter θ, whose prior model is determined by fA(θ). In this case, the
downward message (4.177) equals

(θ̂1, . . . , θ̂n)T = argmax
θ1,...,θn

(
log fA1(θ1) + log fA2(θ1, θ2) + . . .

+ log fAn
(θn−1, θn) + h1(θ1) + hn(θn)

)
(4.341)

= argmax
θ1,...,θn

(
fA1(θ1)fA2(θ1, θ2) . . . fAn

(θn−1, θn) . . .

· eh1(θ1) · · · ehn(θn)
)
, (4.342)

164 Chapter 4. Phase-Estimation Algorithms

where

hk(θk) =
∑

xk−1

∑

xk

pB(xk−1, xk|y, θ̂) log fk(xk−1, xk, yk, θk), (4.343)

and

pB(xk−1, xk|y, θ̂) =

fk(xk−1, xk, yk, θ̂)µXk−1→fk
(xk−1)µXk→fk

(xk)
∑

xk−1

∑

xk
fBk

(xk−1, xk, y, θ̂)µXk−1→fk
(xk−1)µXk→fk

(xk)
.

(4.344)

fB0
fB1 fB2

fBn

fA1
fA2 fAn

fA

fB

X0 X1 X2 Xn−1

Θ1 Θ2 Θn

y1 y2 yn

. . .

. . .

θ̂1 θ̂2 θ̂n

h1(θ1) h2(θ2) hn(θn)

Xn

===

Figure 4.56: Factor graph of (4.339) and (4.340).

The gradient ∇θh(θ)
△

=
(
∇θ1h(θ), . . . ,∇θn

h(θ)
)T

required for steepest
descent is computed as follows

∇θℓ
hℓ(θℓ)

= ∇θℓ

[∑

xℓ−1,xℓ

pB(xℓ−1, xℓ, |y, θ̂) log fBℓ
(xℓ−1, xℓ, y, θℓ)

]

,

(4.345)

=
∑

xℓ−1,xℓ

pB(xℓ−1, xℓ, |y, θ̂)∇θℓ
log fBℓ

(xℓ−1, xℓ, y, θℓ). (4.346)

Note that (4.344) and hence also the rule (4.346) involve standard sum-
product messages. Those messages may again be represented in different

4.9. Expectation Maximization 165

ways, such as lists of particles, quantized messages, Gaussian distribu-
tions etc.

fBℓ

fAℓ
fAℓ+1

fA

fB
Xℓ−1 Xℓ

Θℓ

yℓ

.

.
θ̂ℓ θ̂ℓ

θ̂ℓ

=

Figure 4.57: Steepest descent as summary propagation.

Expectation maximization, in which the M-step is performed by steepest
descent, may then be formulated as follows (see Fig. 4.57):

a) The equality constraint nodes Θℓ broadcast the estimates θ̂
(k)
ℓ .

b) The nodes fAℓ
and fAℓ+1

reply with the messages ∇θℓ
log fAℓ

|θ̂(k)

and ∇θℓ
log fAℓ+1

∣
∣
θ̂(k) respectively.

c) A forward and backward sum(mary)-product sweep is performed
in the box fB.

d) The nodes fBℓ
reply with ∇θℓ

h|θ̂(k) , computed according to (4.346).

e) The new estimate θ̂(k+1) is computed:

θ̂
(k+1)
ℓ = θ̂

(k)
ℓ + λk

(
∇θℓ

log fAℓ
|θ̂(k)

+ ∇θℓ
log fAℓ+1

∣
∣
θ̂(k) + ∇θℓ

h|θ̂(k)

)
. (4.347)

f) Iterate 1–5.

As usual, several update schedules are possible. For example, in or-
der to reduce the computational cost, one may prefer not to update
the sum-product messages µXℓ→fBℓ

(xℓ) (cf. Step 3) at each iteration;

166 Chapter 4. Phase-Estimation Algorithms

the probability functions pB(xℓ−1, xℓ, |y, θ̂) (cf. Step 4) are then recom-

puted according to (4.344) using the new estimate θ̂, but the old mes-
sages µXℓ→fBℓ

(xℓ).

Remark 4.11. (Gradient EM vs. gradient sum-product)
If one replaces the messages ∇θℓ

(θk) (in Step 4 and 5) by the the sum-
product messages ∇θℓ

µfBk
→Θk

(θk) (or ∇θℓ
log µfBk

→Θk
(θk)), one obtains

a purely sum-product based gradient method (see Section 4.8.1).

fB0
fB1 fB2 fBn

fA1
fA2 fAn

fA

fB
X0 X1 X2 Xn−1

Θ1 Θ2 Θn

y1 y2 yn

. . .

. . .

θ̂1 θ̂1

θ̂1

θ̂2 θ̂n

θ̂n−1

θ̂n−1 θ̂n−1

θ̂0

θ̂0

h1(θ1) h2(θ2) hn(θn)

Xn

= ==

Figure 4.58: Gradient EM: stochastic approximation.

The stochastic approximation (SA) principle can also be applied to gra-
dient EM, as illustrated in Fig. 4.58. It amounts to forward-only message-
passing algorithms known as “recursive EM” or “online EM” [194] [207]
[102] [226] [67]. In [194] [207], online EM algorithms for estimating fixed
parameter are derived, whereas in [102] [226] [67], such algorithms are
derived for time-varying parameters.

The example (4.339)–(4.340) can easily be extended to general func-
tions fA and fB. The gradient of the h-message out of the generic

node g(z, θm)
△

= g(z1, z2, . . . , zn, θm) (cf. Fig. 4.59) is as follows.

4.9. Expectation Maximization 167

Gradient of an E-log message out of a generic node:

∇θm
h(θm) =

∑

z
g(z, θ̂m)∇θm

log g(z, θm)
n∏

ℓ=1

µZℓ→θm
(zℓ)

∑

z
g(z, θ̂m)

n∏

ℓ=1

µZℓ→θm
(zℓ)

.

(4.348)

g...

Z1

Zn

∇θm
h

Θm

Figure 4.59: Generic node g.

We now state two interesting properties of gradient EM.

Theorem 4.6. Assume that a factor graph of a global function f(x, θ)
△

=
fA(θ)fB(x, θ) is available whose subgraph fB(x, θ) is cycle-free. The fixed
points of gradient EM applied on the graph of f(x, θ) are the stationary
points of f(θ).

Proof: We will again use the function f̄(θ, θ′) defined as

f̄(θ, θ′)
△

=
∑

x

f(x, θ′) log f(x, θ). (4.349)

The fixed points of gradient EM are implicity defined as

∇θ f̄(θ, θfixed)
∣
∣
fixed

!
= 0. (4.350)

From (4.168) it follows

∇θf(θ̂fixed) = 0, (4.351)

and hence the fixed points of gradient EM are the stationary points (or
“zero-gradient points”) of f(θ). �

Theorem 4.7. Assume that a factor graph of a global function f(x, θ)
△

=
fA(θ)fB(x, θ) is available (whose subgraph fB(x, θ) may be cycle-free or

168 Chapter 4. Phase-Estimation Algorithms

cyclic). The fixed points of a gradient EM algorithm applied on that

factor graph are the stationary points of the function f̂(θ), defined as:

log f̂(θ)
△

= log fA(θ) +

∫ θ

−∞

Eb(x|θ̃)

[

∇θ log fB(x, θ̃)
]

dθ̃, (4.352)

where the beliefs b(·|θ) are computed by means of the sum-product mes-
sages available at convergence of the sum-product algorithm.

The proof goes along the lines of the exposition in Example 4.5. Note
that, if the subgraph fB is cycle-free, then f̂(θ) = f(θ).

The Venn diagrams of Fig. 4.60 and Fig. 4.61 summarize our results
concerning the fixed points of EM-type algorithms; Fig. 4.60 depicts the
situation for factor graphs of f(x, θ) with cycle-free subgraphs fB(x, θ),
whereas Fig. 4.61 concerns arbitrary factor graphs of f(x, θ), i.e., factor
graphs whose subgraph fB(x, θ) may be cycle-free or cyclic.

SP of f(θ) = FP of GEM

FP of EM

FP of HEM

Figure 4.60: Venn diagram depicting the stationary points (SP)
of f(θ), fixed points (FP) of EM, hybrid EM (HEM), and
gradient EM (GEM); for cycle-free subgraph fB(x, θ).

4.9.7 Application

In the constant-phase model, the maximization step (4.177) can be car-
ried out analytically; in the random walk phase model, the maximiza-
tion step is intractable and we will apply steepest descent, resulting in a
gradient-EM algorithm. First we treat the constant-phase model, then
the random-walk phase model.

4.9. Expectation Maximization 169

SP of f̂(θ) = FP of GEM

FP of EM

FP of HEM

FP of f(θ)

Figure 4.61: Venn diagram depicting the stationary points (SP) of f(θ)

and f̂(θ), fixed points (FP) of EM, hybrid EM (HEM),
and gradient EM (GEM); for cycle-free and cyclic sub-
graphs fB(x, θ).

Constant-phase model

We start by choosing the “boxes” fA and fB appropriately. Since we
wish to estimate the phase Θ, we choose the Θ edges as cut set of edges
that separates the boxes fA and fB (see Fig. 4.4 and Fig. 4.62). The box
fA contains all nodes that correspond to the prior of Θ, i.e., all nodes
that are solely connected to Θ edges. In this case, fA exclusively contains
the equality constraint node Θ, as illustrated in Fig. 4.62; all other nodes
belong to the box fB. Note that the box fB has a “nice” structure, i.e.,
fB has a non-trivial factorization. We now apply the message-update
rules (4.174) and (4.177) to the factor graph of Fig. 4.62. The message
h(θ) equals

h(θ)=

L∑

k=1

∑

xk

pB(xk|y, θ̂(ℓ)) log fB(xk, yk, θ) (4.353)

170 Chapter 4. Phase-Estimation Algorithms

×××

fA

fB

fB1 fB2 fBL

h1(θ) h2(θ) hL(θ)

Z1 Z2 ZL
gg g

X1 X2 XL

S1 S2 SL

⊕
Θ

θ̂ θ̂ θ̂

Θ
=

. . .

. . .

Figure 4.62: EM in the constant-phase model.

△

=

L∑

k=1

hk(θ), (4.354)

where the function fB(xk, yk, θ) is given by

fB(xk, yk, θ)
△

=

∫

zk

∮

sk

δ(zk − xksk)δ(sk − ejθ)·

(2πσ2
N)−1 e−|yk−zk|

2/2σ2
N dzkdsk (4.355)

= (2πσ2
N)−1 e−|yk−xkejθ |2/2σ2

N . (4.356)

The small dashed boxes in Fig. 4.62 represent the functions fB(xk, yk, θ).
The marginalization (4.355)–(4.356) corresponds to “closing” those boxes.

The distribution pB(xk|y, θ̂(ℓ)) is defined as

pB(xk|y, θ̂(ℓ)) △

= γkfB(xk, yk, θ̂
(ℓ))µXk→× (xk), (4.357)

where γk is a normalization factor, i.e.,

γk
△

=

(
∑

xk

fB(xk, yk, θ̂
(ℓ))µXk→× (xk)

)−1

. (4.358)

4.9. Expectation Maximization 171

Note that fB(xk, yk, θ̂
(ℓ)) is nothing but the message µ×→Xk

(xk), which
leaves the multiply node along the edgeXk (at the ℓ-th iteration). There-
fore

pB(xk|y, θ̂(ℓ)) △

= γkµXk→× (xk)µ×→Xk
(xk). (4.359)

In the following, we use the short-hand notation pB(xk) for pB(xk|y, θ̂(ℓ)).
The phase Θ has a uniform prior, i.e., fA(θ)

△

= 1 for all θ. The message

θ̂(ℓ+1) equals

θ̂(ℓ+1) = argmax
θ

h(θ) (4.360)

= argmax
θ

L∑

k=1

∑

xk

pB(xk)logfB(xk, yk, θ) (4.361)

= arg

L∑

k=1

∑

xk

pB(xk) [ykx
∗
k] (4.362)

= arg

L∑

k=1

[

yk

(
E[xk]

)∗
]

, (4.363)

where the expectation E[xk] is defined as

E[xk]
△

=
∑

xk

pB(xk)xk. (4.364)

In this particular case, a closed-form expression for the messages θ̂ can
thus be found. The expression (4.363) was proposed earlier by Noels et
al. [185].

Random-walk phase model

We again start by determining the boxes fA and fB; the box fB is chosen
as in the constant-phase model. The box fA is now more interesting, as
illustrated in Fig. 4.63: it contains the nodes p(θk|θk−1) besides the equa-
lity constraint nodes Θk. Both fA and fB have in this case a non-trivial
structure. We now apply the message-update rules (4.174) and (4.177)
to the factor graph of Fig. 4.63. The message h(θ), summarizing the
box fB, is again given by (4.353), since the box fB remained unchanged.

172 Chapter 4. Phase-Estimation Algorithms

...

...

1©
1©1©

2©

3©3©

4©

5©

×× ×

fA

fB

fB1
fB2 fBL

Z1 Z2 ZL
gg g

X1 X2 XL

S1 S2 SL

⊕

Θ1 Θ2 ΘL

θ̂1

θ̂1 θ̂1

θ̂2

θ̂2θ̂2

θ̂L

θ̂Lθ̂L

== =

Figure 4.63: Steepest descent-EM in the random-walk phase model.

The function log fA(θ) equals

log fA(θ) =

L∑

k=2

log p(θk|θk−1), (4.365)

where

p(θk|θk−1)
△

= (2πσ2
W)−1/2

∑

n∈Z

e−(θk−θk−1+n2π)2/2σ2
W . (4.366)

The message θ̂ is computed as

θ̂ = argmax
θ

(log fA(θ) + h(θ)) (4.367)

= argmax
θ

[
L∑

k=2

log p(θk|θk−1)+

L∑

k=1

∑

xk

pB(xk) log fB(xk, yk, θk)

]

. (4.368)

The maximization (4.368) can not be carried out analytically. We solve
this problem by gradient EM. We propose two approaches; the first al-
gorithm is derived by straightforwardly applying the generic rules, the
second method is an SA algorithm.

4.9. Expectation Maximization 173

The first method performs following steps (see Fig. 4.63):

1© The equality constraint nodes Θk broadcast the estimates θ̂
(ℓ)
k .

2© The nodes fBk
reply with dhk(θk)

dθk

∣
∣
∣
θ̂
(ℓ)
k

.

3© The nodes p(θk|θk−1) and p(θk+1|θk) reply with ∂ log p(θk|θk−1)
∂θk

∣
∣
∣
θ̂(ℓ)

and
∂ log p(θk+1|θk)

∂θk

∣
∣
∣
θ̂(ℓ)

respectively.

4© The new estimate θ̂(ℓ+1) is computed:

θ̂
(ℓ+1)
k = θ̂

(ℓ)
k + λ

(

∂ log p(θk|θk−1)

∂θk

∣
∣
∣
∣
θ̂
(ℓ)
k

+

∂ log p(θk+1|θk)

∂θk

∣
∣
∣
∣
θ̂
(ℓ)
k

+
dhk(θk)

dθk

∣
∣
∣
∣
θ̂
(ℓ)
k

)

. (4.369)

5© The messages µ×→Xk
(xk) are updated.

The steps 1©– 4© are iterated a number of times before 5© is carried out.
Note that the above algorithm (Step 1–6) is very similar to the steepest-
descent algorithm of Section 4.8.4. There, steepest descent is applied to
sum-product messages, whereas it is applied to the E-log messages hk

here. If one replaces hk by logµg→Θk
in the above procedure (in Step 2©

and 4©), one obtains the (first) gradient-based sum-product algorithm of
Section 4.8.4.

One obtains an SA EM algorithm by replacing the messages logµg→Θk

in the SA gradient algorithm of Section 4.8.4 by the E-log messages hk

(in Step 1© and 3©). The resulting SA EM algorithm is similar to the
algorithm developed in parallel work by Noels et al. [151].

4.9.8 Summary

The formulation of the EM algorithm as message passing on a graph has
some interesting implications:

174 Chapter 4. Phase-Estimation Algorithms

• A local view onto the EM algorithm has been given. It is not
necessary to handle complicated equations for the complete model.
The problem is divided into simple and small units. The global
model is built by connecting these units into a graph. The EM
algorithm is then computed by passing messages along the edges
of this graph.

• A generic update rule for EM messages on a factor graph has
been given, i.e., the E-log rule (4.226). Given the node function and
the incoming sum-product messages this rule leads to the message
sent along the edges modeling the parameters.

• A table of ready-to-use nodes has been given (Table 4.2). This
table was derived by applying the update rule (4.226) to nodes that
often occur in signal-processing applications.

• The message passing EM fits well into the factor graph frame-
work developed so far. Once a probabilistic problem is modeled as
a factor graph, different algorithms can be used by passing different
messages along the edges of the graph. The EM messages are an
alternative among others.

• There is much flexibility in choosing a schedule which opens
up the opportunity to develop different forms of the EM algorithm,
especially online estimation algorithms.

• It is also possible to combine with other message types. Either
the E-step as well as the M-step can apply different techniques such
as simulation-based methods (stochastic EM, Monte-Carlo EM),
gradient methods (gradient EM), and decision-based methods
(AECM).

• Non-trivial a priori models for the parameters are possible. The
maximization in the E-step amounts to the max-product algorithm
on the graph for the parameters.

• A hybrid update rule has been devised, i.e., the hybrid E-rule
(4.261). The fixed points of algorithms that use the hybrid E-rule
are stationary points of the marginal f(θ), as in standard EM. The
hybrid rule sometimes leads to simpler expressions. It is also be
applied to deterministic nodes, in contrast to the E-log rule (4.226).

4.10. Results and Discussion 175

• The E-log rule and hybrid E-rule can be applied on cyclic sub-
graphs fB(x, θ). We characterized the fixed points of the resulting
(hybrid) EM-algorithms.

4.10 Results and Discussion

We performed simulations of the proposed code-aided phase-estimation
algorithms for the constant-phase model and random-walk phase model.
In particular, we assessed the performance of the phase estimators based
on:

• numerical integration (NI) (cf. Section 4.5.2)

• particle methods (PM) (cf. Section 4.6.7)

• adaptive quantization (AQ) (cf. Section 4.7.2)

• sum-product based steepest descent (SP-SD) (cf. Section 4.8.4)

• EM (constant-phase model) and gradient EM (GEM) (random-
walk phase model) (cf. Section 4.9.7).

We used a rate 1/2 LDPC code of length L = 100 that was randomly
generated and was not optimized for the channel at hand. The factor
graph of the code does not contain cycles of length four. The degree of
all bit nodes equals 3; the degrees of the check nodes are distributed as
follows: 1, 14, 69 and 16 check nodes have degree 4, 5, 6 and 7 respec-
tively. The symbol constellation was Gray-encoded 4-PSK. We iterated
20 times between the LDPC decoder and the phase estimator, each time
with hundred iterations inside the LDPC decoder. In the gradient-based
algorithms and the adaptive-quantization-based algorithms, we iterated
50 times inside the factor graph of the phase model. We did not ite-
rate between the LDPC decoder and the mapper. We optimized the
(constant) step size parameter λ which occurs in the gradient-based al-
gorithms. We considered the phase noise values σ2

W = 0 (constant-phase
model) and σ2

W = 10−4 rad2 (random-walk phase model).

We are fully aware of the fact that this setup is rather artificial. First of
all, one normally uses longer codes (e.g., L = 10.000). Since some of the

176 Chapter 4. Phase-Estimation Algorithms

phase estimators are complex, however, particularly the estimators based
on (adaptive) quantization, it is convenient to use short block codes in
order to limit the required computation time.

In addition, the code we used is randomly generated and is therefore not
optimized for the channel at hand. It is clear that the channel capacity
can not be achieved by means of this code, which is also not our aim;
we mainly wish to compare the performance of our code-aided phase
estimators.

Moreover, the phase noise may in some applications be stronger than
σ2

W = 10−4 rad2. Pilot symbols seem then to be required. The issue
of pilot sequence design, however, goes beyond the scope of this thesis;
therefore, in order to avoid the use of pilot symbols, we only consider
channels with weak phase noise. For simplicity, we will also assume that
the phase ambiguity has been resolved.12

In the particle-based algorithms, the messages were represented as lists
of N = 200 particles. In the numerical-integration based algorithms, the
phase was uniformly quantized over N = 200 levels; in the algorithms
based on adaptive quantization, we used N = 200 (non-uniform) quan-
tization levels. In the following, we elaborate on the performance, ro-
bustness, convergence, and complexity of the proposed code-aided phase
estimators.

4.10.1 Performance

In Fig. 4.64 and Fig. 4.65, the phase synchronizers for the constant-phase
model and random-walk phase model (σ2

W = 10−4 rad2) respectively are
compared in terms of the mean squared (phase) estimation error (MSE);
in Fig. 4.66 and Fig. 4.67, the phase synchronizers for the constant-phase
model and random-walk phase model (σ2

W = 10−4 rad2) respectively are
compared in terms of the (decoded) frame error rate (FER).

From Fig. 4.64 and Fig. 4.65 it becomes clear that the phase estima-

12In [52] we propose techniques to resolve the phase ambiguity (see also [216]). In
the constant-phase model, the phase ambiguity can be resolved by testing the possible
hypothesis and by choosing the most probable hypothesis. This method can also be
applied to the random-walk phase model as long as the phase noise is sufficiently
small (σ2

W ≤ 10−4 rad2); otherwise, one may resort to pilot symbols.

4.10. Results and Discussion 177

tors based on adaptive quantization (AQ) have the smallest MSE, fol-
lowed by the phase estimators based on numerical integration (NI), the
particle methods (PM)), the EM-based algorithm (constant phase), the
phase estimator gradient EM (GEM) (random-walk phase), and the sum-
product-based steepest descent (SP-SD) estimators. As can be seen from
Fig. 4.66 and Fig. 4.67, the FER of all code-aided phase synchronizers is
about the same; they all perform significantly better than the classical M-
law estimator, which does not use any information from the decoder [136].
The code-aided phase estimators based on adaptive quantization and uni-
form quantization have a slightly smaller FER than the other code-aided
phase estimators.

Simulation results (not shown here) indicate that the performance of
GEM-based and SP-SD-based phase estimators does not depend on the
message-update schedule inside the factor graph of the phase model:
the standard schedule and the stochastic approximation (SA) approach
(cf. Section 4.8.3) lead to about same performance. In Fig. 4.64 to
Fig. 4.67, the results for the SA-approach are shown; the curves for the
standard schedule practically coincide (not shown).

We investigated why the EM-based algorithm and the gradient-based al-
gorithms perform (slightly) worse in terms of MSE and FER than the
numerical-integration-based and adaptive-quantization-based approach.
The performance degradation is mainly due to two factors. First of all,
the EM-based algorithm and the gradient-based algorithms approximate
a density (“message”) by a single value. We quantified the resulting FER
degradation by considering a slight modification of the NI-based algo-
rithm for the random-walk phase model, where the upward Θk-messages
(arriving at the multiply nodes) are not represented as quantized mes-
sages (as in the NI-based algorithm), but as single values, i.e., as the
mode of the upward Θk-messages; all other Θk-messages are quantized
messages (as in the NI-based algorithm). The FER gap between this
modified NI-based algorithm and the (unmodified) NI-based algorithm is
solely due to the single-value approximation of the upward Θk-messages.
The FER of the modified NI-based algorithm is shown in Fig. 4.68 to-
gether with the FER of the SP-SD-based and NI-based algorithm. For
SNR-values smaller or equal to 2dB, the FER of the modified NI-based
algorithm coincides with the FER of the SP-SD algorithm. At higher
SNR values, it coincides with the FER of the (unmodified) NI-based al-
gorithm. This is in agreement with our intuition: at high SNR, the width
of the posterior density p(θ|y) is small and the Dirac-delta approxima-

178 Chapter 4. Phase-Estimation Algorithms

tion (“single value”) is satisfactory; this is not the case at low SNR.
From Fig. 4.68 we learn that there must be additional factors that lead
to performance degradation for the SP-SD-based and EM-based estima-
tors, since at high SNR, the Dirac delta approximation is satisfactory and
does not lead to FER degradation. A second factor is the fact that both
estimators do sometimes not convergence to the global maximum of the
marginal p(θ|y), but to a neighboring local maximum. Fig. 4.69 shows

histograms of phase estimates θ̂ obtained by the NI-based, AQ-based, SP-
SD-based, and EM-based phase estimator for the constant-phase model
at SNR = 3dB, where the true value Θ = 0.5 rad. We resolved the phase
ambiguity by limiting the phase estimates to the interval [0, π/2). Note
that the histograms of the EM-based and SP-SD-estimators contain a
significant number of outliers (θ̂ = 0 and θ̂ = π/2), in contrast to the
histograms of the other two estimators. The outliers most often occur
when the initial estimate (generated by the M-law) is closer to a local
maximum of the marginal p(θ|y) than to the global maximum, as can
be seen from Fig. 4.70. This problem can often be alleviated by running
the (SP-SD-based or EM-based) phase estimator several times, each time

with a different initial estimate θ̂(0). Wymeersch [216] has improved the
performance of the EM-based phase estimator for the constant-phase
model by using multiple initial estimates θ̂(0).

4.10.2 Convergence

Fig. 4.71 and Fig. 4.72 depicts the FER of the EM-based phase estima-
tor and the NI-based phase estimator respectively as a function of the
number of iterations (for σ2

W = 0 and 10−4 rad2). The curves show that
10 iterations between the LDPC decoder and the phase estimators are
sufficient to achieve convergence. We verified that this statement also
holds for the other algorithms (results not shown here).

4.10.3 Robustness

We investigated how the performance of our algorithms depends on some
of their parameters, i.e., the number of quantization levels or particles,
and the step size λ. We also verified how the performance degrades
when the (true) value for σN is unknown to the receiver and a wrong

4.10. Results and Discussion 179

−1 0 1 2 3 4
10

−3

10
−2

10
−1

CRB
M−law
PM
NI
AQ
EM
SP−SD

SNR

M
M

S
E

Figure 4.64: MSE for the constant-phase model.

value σR 6= σN is inserted in (4.7).

Fig. 4.73 shows how the FER of the NI-based phase estimator (for the
random-walk phase model) varies with the number of quantization levels;
it can be seen from this figure that 100 quantization levels are sufficient.
We verified that the same holds for the AQ-based phase estimator, and
that in the particle methods, 100 particles suffice (results not shown
here).

In Fig. 4.74, the FER of the standard SP-SD estimator (for the random-
walk phase model) is shown for various values of the learning rate λ
(cf. (4.132)). It can be seen that the optimum learning rate depends only
weakly on the SNR. We obtained similar curves for the other gradient-
based phase estimators (not shown here).

In Fig. 4.75, we consider the situation where the receiver uses the wrong
value of σN , i.e., in (4.7) σN is replaced by a value σR 6= σN . Fig. 4.75 il-
lustrates how the MSE of the NI-based phase estimator (for the constant-

180 Chapter 4. Phase-Estimation Algorithms

−1 0 1 2 3 4
10

−3

10
−2

10
−1

BCRB
NI
AQ
GEM
SP−SD

SNR

M
M

S
E

Figure 4.65: MSE for the random-walk phase model with σ2
W =

10−4 rad2.

phase model) depends on the value σR. As expected, the minimum MSE
is achieved when there is no mismatch, i.e., for σR = σN .

4.10.4 Complexity

The EM-based phase estimator and the gradient-based phase estimators
have the lowest complexity, since the messages are represented by a single
value. The algorithms based on numerical integration are much more
complex. As is well known, numerical integration becomes infeasible in
high-dimensional systems. The particle methods are complex as well,
but they scale better with the dimensionality of the system. The same
holds for the approach based on adaptive quantization. In the following
section, we summarize the main points of this chapter.

4.10. Results and Discussion 181

−1 0 1 2 3 4
10

−4

10
−3

10
−2

10
−1

10
0

CAWGN
M−law
PM
NI
AQ
EM
SP−SD

SNR

F
E

R

Figure 4.66: FER for the constant-phase model.

−1 0 1 2 3 4
10

−4

10
−3

10
−2

10
−1

10
0

CAWGN
NI
AQ
EM
SP−SD

SNR

F
E

R

Figure 4.67: FER for the random-walk phase model with σ2
W =

10−4 rad2.

182 Chapter 4. Phase-Estimation Algorithms

2 2.5 3 3.5 4

10
−3

10
−2

10
−1

SP−SD
NI
NI−single value

SNR

F
E

R

Figure 4.68: Frame error rate for the random-walk phase model

with σ2
W = 10−4 rad2 for the SP-SD-based algorithm,

the NI-based algorithm and the modified NI-based algo-
rithm, where the upward Θk-messages are represented by
a single value.

4.10. Results and Discussion 183

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

300

350

400

450

500

θ̂
(a) EM.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

300

350

400

θ̂
(b) Numerical integration (NI).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

300

350

400

θ̂
(c) Sum-product based steepest
descent (SP-SD).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

300

350

400

θ̂
(d) Adaptive quantization (AQ).

Figure 4.69: Histograms of the phase estimates θ̂ for the constant-
phase model (SNR = 0dB); the true value is θ = 0.5 rad.

184 Chapter 4. Phase-Estimation Algorithms

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

θ̂(0)

θ̂

Figure 4.70: Initial estimate θ̂(0) (obtained by the M-law) vs. (fi-

nal) estimate θ̂ obtained after 20 iterations of the EM-
based phase estimator (σ2

W = 0 rad2; SNR = 0dB). The
true value θ = 0.5 rad is depicted by the star centered at
(0.5,0.5).

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

F
E

R

Nit

Figure 4.71: FER of EM-based algorithm as a function of the iteration

number (σ2
W = 0 and 10−4 rad2; SNR = -1, 0, . . . , 4dB).

4.10. Results and Discussion 185

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

F
E

R

Nit

Figure 4.72: FER of NI-based approach as a function of the iteration

number (σ2
W = 0 and 10−4 rad2; SNR = -1, 0, . . . , 4dB).

10
1

10
2

10
−3

10
−2

10
−1

10
0

N

F
E

R

Figure 4.73: FER of the NI-based estimator as a function of the num-

ber of quantization levels N (σ2
W = 10−4 rad2; SNR = -1,

0, . . . , 3dB).

186 Chapter 4. Phase-Estimation Algorithms

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

λ

F
E

R

Figure 4.74: FER as a function of the step size λ (σW = 10−4 rad2;
SNR = -1, 0, . . . , 4dB).

0.2 0.3 0.4 0.5 0.6 0.7 0.8
10

−2

10
−1

10
0

σR

M
S
E

Figure 4.75: MSE as a function of the value σR (σ2
W = 0 rad2; σN =

0.5006; SNR = 3dB).

4.11. Summary 187

4.11 Summary

In this chapter, we described how factor graphs can be used for statistical
inference, i.e., detection and estimation. Statistical inference is accom-
plished by sending messages along the edges of the graph (“summary
propagation” or “message passing”). Different algorithms are obtained
by different message types or different message-update schedules.

We described various standard algorithms in signal processing and ma-
chine learning as message passing on factor graphs:

• particle methods, e.g., Gibbs sampling, particle filtering, impor-
tance sampling, simulated annealing, Markov-Chain Monte-Carlo
methods

• gradient-based methods, e.g., steepest ascent/descent

• expectation maximization (EM) and extensions, e.g., Monte-Carlo
EM, gradient EM, SAGE, etc.

• decision-based methods (e.g., iterative conditional modes).

We determined the local message-update rules for each of the above
algorithms. Those update rules may be used as building blocks for novel
estimation and detection algorithms; by listing the possible update rules
at each node in the factor graph, one can systematically derive novel
algorithms. We derived various code-aided phase-estimation algorithms
in this fashion.

Chapter 5

Computing
Cramér-Rao-Type
Bounds

In this chapter, we present message-passing algorithms to compute Cramér-
Rao-type bounds, which are lower bounds on the mininum mean squared
error. Cramér-Rao-type bounds can be used to asses the performance of
estimation algorithms, in particular, code-aided phase-estimation algo-
rithms (see Example 5.5, Example 5.6, and Example 5.11). The results
of this chapter are based on [40] and [41].

5.1 Introduction

For many practical estimation problems1 (e.g., code-aided carrier-phase
estimation), popular estimators such as the maximum likelihood estima-
tor (ML), the maximum a posteriori estimator (MAP) or the minimum
mean square error estimator (MMSE) are infeasible. One therefore often
resorts to approximate methods such as expectation maximization [58],
loopy belief propagation [119], gradient-based algorithms [19], Markov

1Basic notions from estimation and detection theory are reviewed in Appendix A.

189

190 Chapter 5. Computing Cramér-Rao-Type Bounds

Chain Monte Carlo methods [171] (MCMC), particle filters [59], or com-
binations of those methods.

Suboptimal estimators are typically compared based on their mean squared
estimation error (MSE). However, the MSE is not an absolute perfor-
mance measure; in order to determine whether a suboptimal algorithm
is close to optimal (in terms of MSE), the MSE of the minimum mean
squared error (MMSE) estimator is required. Unfortunately, the mimi-
mum achievable MSE can often not be computed (neither analytically,
nor numerically), and one needs to resort to bounds on the mimimum
achievable MSE, typically, lower bounds. A well-known family of such
lower bounds are the Cramér-Rao-type bounds. In this chapter, we
present (novel) algorithms for computing Cramér-Rao-type bounds for
real-life estimation problems. Interestingly, Cramér-Rao-type bounds are
tight for many (practical) estimation problems.

For the estimation of parameters, a commonly used lower bound for
the MSE is the Cramér-Rao bound (CRB), given by the inverse of the
Fisher information matrix [199] [176] (“standard CRB”). The CRB has
been computed in a wide variety of contexts, ranging from communica-
tions (e.g., [16] [206] [138] [76] [86] [183] [184] [228] [145] [146] [147] [149]
[150] [18] [227]), signal and image processing (e.g., [71] [195] [111] [29]
[107] [142] [162] [70] [163] [14]), to computer vision (e.g., [221] [159]). For
some applications, a closed-form expression for the CRB is available; in
other applications, e.g., estimation in AR(MA)-models [71] [195] [111]
[29] [107] [142] [162] [70] [163], the derivation of CRBs is involved. For
example, the CRB has been derived for AR(MA)-models without obser-
vation noise [71] [195] [111] [29] [107] [142] [162], but for AR(MA)-models
with observation noise, the CRB seems to be intractable [163]; therefore,
one often resorts to asymptotic bounds (i.e., high-SNR bounds) [70] or
to numerical algorithms [163].2

Van Trees derived an analogous bound to the CRB for random variables,
referred to as “Bayesian CRB” (BCRB) or “posterior CRB” or “Van
Trees bound” [199]. Rather surprisingly, far less attention has been given
to the BCRB than to the standard CRB. The BCRB has been determined
for a few estimation problems; Tichavský et al. derived the BCRB for
filtering in state-space models with freely evolving state [192]. A particle
method for computing the BCRB of [192] for the particular case of non-

2The algorithm of [163] only applies to ARMA models and is not easily extended
to other systems.

5.1. Introduction 191

linear non-stationary dynamical systems is presented in [191]; the method
of [191] has recently been used for computing the BCRB for various
tracking problems (see e.g., [26]).

Recently, so-called hybrid Cramér-Rao bounds have been proposed [172];
they apply to the joint estimation of parameters and random variables.
In this chapter, we consider each of the three different types of Cramér-
Rao bounds, i.e., standard, Bayesian, and hybrid Cramér-Rao bounds.

There are two general strategies to obtain Cramér-Rao-type bounds for
a given estimation problem. One may derive Cramér-Rao-type bounds
from the information matrix of the joint probability density function
(pdf) of the system at hand; alternatively, one may derive such bounds
from information matrices of marginals of the joint pdf. In this chapter,
we propose (novel) practical algorithms to compute Cramér-Rao bounds:

• following each of both strategies,

• for each of the three different types of Cramér-Rao bounds.

Our algorithms are message-passing algorithms that operate on a factor
graph of the system at hand. The algorithms can be applied to standard
estimation problems, such as:

• filtering and smoothing in state-space models,

• estimation of the parameters of state-space models,

• estimation in multiple coupled state-space models and other sys-
tems that are most naturally represented by cyclic graphs,

• code-aided channel estimation.

The first three problems are ubiquitous in various areas of signal process-
ing such as biomedical signal processing, speech and image processing;
the last problem appears in the context of communications. Our algo-
rithms sometimes lead to analytical bounds; for most non-trivial estima-
tion problems, however, the bounds involve intractable integrals, which
we then solve by Monte-Carlo integration.

192 Chapter 5. Computing Cramér-Rao-Type Bounds

In this chapter, we will give numerous examples, ranging from toy exam-
ples that illustrate the (sometimes abstract) concepts to more challenging
problems such as carrier-phase estimation and estimation in AR models.

Our algorithms for computing Cramér-Rao-type bounds may also lead
to novel estimation algorithms, more precisely, to estimation algorithms
that are based on the natural gradient, which is a central concept in
information geometry [7]. More generally speaking, our algorithms open
the door to promising (practical) applications of information geometry
to (estimation with) graphical models.

We organized this chapter as follows. In the next section, we review the
three Cramér-Rao-type bounds, and outline the two general strategies to
compute Cramér-Rao-type bounds. In Section 5.3, we present message-
passing algorithms for computing Cramér-Rao-type bounds from infor-
mation matrices of joint pdfs; we illustrate the techniques by several
standard estimation problems, e.g., estimation in (general) state-space
models, carrier-phase estimation, and estimation of the parameters and
state of AR models. In Section 5.4, we propose algorithms to compute
Cramér-Rao-type bounds from information matrices of marginals. We
apply also these methods to estimation in (general) state-space models
and to estimation in AR models; we elaborate on code-aided channel
estimation. In Section 5.5, we summarize our methods and contribu-
tions; in Section 5.6, we outline several extensions of our methods, no-
tably, natural-gradient based algorithms (and information geometry in
general), other types of bounds, and other types of error measures.

The proofs of the lemmas and theorems of this chapter can be found in
Appendix K, unless stated otherwise.

5.2 Overview of Cramér-Rao-Type Bounds

We review:

a) the (standard) Cramér-Rao bound, which applies to parameters,

b) Bayesian Cramér-Rao bounds, which apply to random variables,

5.2. Overview of Cramér-Rao-Type Bounds 193

c) hybrid Cramér-Rao bounds, which are applicable to the joint esti-
mation of parameters and random variables.

5.2.1 Standard Cramér-Rao Bound

We start by introducing our notation. Let Θ = (Θ1,Θ2, . . . ,Θn)T be a
parameter vector, and let Y = (Y1, Y2, . . . , YN)T be a real random vec-
tor (the extension to complex random vectors is straightforward). Sup-
pose that p(y|θ) is the probability density function (pdf) of Y , which is
parametrized by Θ. We consider the problem of estimating Θ from an
observation vector y = (y1, y2, . . . , yN)T . Let the function θ̂(y) be an es-
timator of Θ based on the observation y. We define the error matrix E(θ)
as:

E(θ)
△

= EY |Θ[θ̂(Y) − θ)(θ̂(Y) − θ)T]. (5.1)

The Fisher information matrix F(θ)3 is given by

Fij(θ)
△

= EY |Θ

[

∇θi
log p(Y |θ)∇T

θj
log p(Y |θ)

]

, (5.2)

where Fij(θ) is the (i, j)-th element of F(θ), ∇v
△

=
[

∂
∂v1

, . . . , ∂
∂vq

]T

with

v ∈ Rq, and v
△

= (v1, . . . , vq)
T . Note that Fij is a matrix, since the

components Θk are in general vectors. The Fisher information matrix
F(θ) can be computed in several ways (Lemma K.6):

Fij(θ)
△

= EΘ|Y

[

∇θi
log p(Y |θ)∇T

θj
log p(Y |θ)

]

(5.3)

= −EΘ|Y

[

∇θi
∇T

θj
log p(Y |θ)

]

. (5.4)

The inverse of the Fisher information matrix is a lower bound on the
error matrix E(θ) (see, e.g., [199, pp. 66–67], [176, pp. 301–303]).

Theorem 5.1. (Cramér-Rao bound)
Suppose that, for all θ:

a) the error matrix E(θ) of the estimator θ̂(y) exists,

3The Fisher information matrix not only plays an important role in statistics, but
also in information geometry [7] and machine learning (e.g., [89]) (see Section 5.6).

194 Chapter 5. Computing Cramér-Rao-Type Bounds

b) the Fisher information matrix F(θ) is non-singular,

c) the support of p(y|θ) with respect to y does not depend on θ,

d) the pdf p(y|θ) is differentiable with respect to all coordinates θi for
all y,

e) the integral B(θ)
△

=
∫

y[θ̂(y)−θ]p(y|θ)dy can be differentiated under
the integral sign,

f) the estimator θ̂(y) is unbiased, i.e., B(θ)
△

=
∫

y[θ̂(y)−θ]p(y|θ)dy = 0,

Then

E(θ) � F(θ)−1. (5.5)

The inequality (5.5) means that the matrix D(θ)
△

= E(θ) − F(θ)−1 is
positive semi-definite. The inequality (5.5) is known as the Cramér-Rao
bound, but was in fact first proposed by Fisher in the early days of
statistics [63]. Note that the bound merely applies to unbiased estima-

tors θ̂(y). We remind the reader of the fact that the minimum mean
square error (MMSE) estimator, i.e., the estimator that minimizes E(θ),
is not necessarily unbiased.4 This is for example the case if Θ takes
values in an interval [a, b] or [a,∞), as in phase, frequency, timing and
noise variance estimation.

Remark 5.1. (Singular information matrix)
The above bound only applies if the Fisher information matrix F(θ) is
non-singular. What if F(θ) is singular? One may then add a diagonal
matrix D to F(θ), e.g.,

D
△

= εI, (5.6)

where ε is a “small” positive number, and I is a unity matrix. If the

resulting matrix F̃(θ)
△

= F(θ) + D is non-singular, it is a lower bound
on E(θ):

E(θ) � F̃(θ)−1. (5.7)

This applies also to the other Cramér-Rao-type bounds we will encounter
in later sections.

4In fact, an estimator that mininizes E(θ) for all θ may even not exist.

5.2. Overview of Cramér-Rao-Type Bounds 195

Definition 5.1. (Regularity)

An estimator θ̂(y) and an estimation problem with conditional p(y|θ) are
called regular if the first five assumptions in Theorem 5.1 are met (for
all θ). Note that Assumptions 2 through 4 merely concern the estimation
problem, more precisely, the pdf p(y|θ), whereas Assumption 1 and 5 also

concern the estimator θ̂(y). �

In many estimation problems, the observation vector consists of multiple
samples drawn from the (same) pdf p(·|θ); the pdf p(y|θ) can then be
written as:

p(y|θ) △

=

N∏

k=1

p(yk|θ), (5.8)

where yk is the k-th observation, and N is the total number of obser-
vations. The corresponding error matrix E(θ) and Fisher information
matrix F(θ) depend on N .

For any regular estimator (biased as well as unbiased) and any regular
estimation problem of the form (5.8), the Cramér-Rao bounds holds in
the limit of an infinite number of observations (i.e., as N → ∞); the
Cramér-Rao bound is thus an asymptotic bound (“high-SNR bound”)
for any regular estimator and any regular estimation problem.

Theorem 5.2. (Asymptotic Cramér-Rao bound)
Suppose that:

a) θ takes values in an interval [a, b], with a, b ∈ R, and a < b,

b) the estimator θ̂(y) is regular, and the estimation problem (with
pdf p(y|θ)) is regular,

c) the conditional p(y|θ) has the form p(y|θ) △

=
∏N

k=1 p(yk|θ) for all θ ∈
[a, b],

Then
lim

N→∞
E(θ) � lim

N→∞
F(θ)−1, ∀θ ∈ (a, b) (5.9)

We refer to [75] for a particularly elegant proof of Theorem 5.2. In the
limit of an infinite number of observations (and under some additional

weak conditions), the estimation error of the ML-estimator, i.e., θ̂ML(y)−

196 Chapter 5. Computing Cramér-Rao-Type Bounds

θ, is a zero-mean Gaussian random vector whose covariance matrix E(θ)
is given by the inverse of the Fisher information matrix.5 In other words,
the ML-estimator becomes the MMSE estimator as soon as the number
of samples is sufficiently large.

Example 5.1. (CRB for the mean of Gaussian random variables)
Suppose that we draw N i.i.d. samples y1, . . . , yN from a Gaussian dis-
tribution with known variance σ2, but unknown real-valued mean Θ. We
wish to compute the CRB for the estimation of the mean Θ from the N
samples y1, . . . , yN . The pdf p(y|θ) equals

p(y|θ) =

N∏

k=1

1√
2πσ2

e−(θ−yk)2/2σ2

. (5.10)

Since

d2

dθ2
log p(y|θ) = − 1

2σ2

N∑

k=1

d2

dθ2
[
(θ − yk)2

]
(5.11)

= −N

σ2
, (5.12)

it follows

F(θ) = −EY

[
d2

dθ2
log p(Y |θ)

]

(5.13)

=
N

σ2
. (5.14)

The Fisher information matrix (5.14) is a scalar, and it does not depend
on Θ. From (5.5) and (5.14), it follows:

EY [(θ̂(Y) − θ)2] ≥ σ2/N. (5.15)

As is well known, the ML-estimator of the mean Θ is given by the em-
pirical mean. Its MSE is equal to σ2/N ; in other words, the empirical
mean achieves the CRB (5.15).

Assume now that Θ ∈ [a, b] with a, b ∈ R and a < b. The CRB is again
given by (5.15). Note that the CRB grows unboundedly as σ2 increases,

5We refer to [176, pp. 421–424] for a more precise statement of the result, including
the proof.

5.2. Overview of Cramér-Rao-Type Bounds 197

whereas the MSE of any estimator of Θ is bounded, since Θ takes values
in a finite interval. In other words, the CRB (5.15) is invalid if Θ ∈ [a, b].
This is due to the fact that all estimators are necessarily biased, and
Condition f of Theorem 5.1 is not fulfilled. On the other hand, the CRB
is valid for all Θ ∈ (a, b) as σ2 → 0 or N → ∞ (cf. Theorem 5.2). �

5.2.2 Bayesian Cramér-Rao Bounds

We again start by introducing our notation. Let X = (X1, X2, . . . , Xn)T

and Y = (Y1, Y2, . . . , YN)T , whereXk and Yk are real random vectors (the
extension to complex random vectors is straightforward); the vectors Xk

and Yk do not necessarily all have the same size. The index k may
stand for (discrete) time, i.e., X and Y may be stochastic processes.
Suppose p(x, y) is the joint probability density function (pdf) of X and
Y . We consider the problem of estimating X from an observation vector
y = (y1, y2, . . . , yN)T . Let the function x̂(y) be an estimator of X based
on the observation y. We define the error matrix E of the estimator x̂(y)
as

E
△

= EXY [(x̂(Y) −X)(x̂(Y) −X)T]. (5.16)

The Bayesian information matrix J is given by

Jij
△

= EXY

[

∇xi
log p(X,Y)∇T

xj
log p(X,Y)

]

. (5.17)

Note that Jij is a matrix, since the componentsXk are in general vectors.
The Bayesian information matrix J can be computed in several ways
(Lemmas K.7–K.9)

Jij
△

= EXY

[

∇xi
log p(X,Y)∇T

xj
log p(X,Y)

]

(5.18)

= −EXY

[

∇xi
∇T

xj
log p(X,Y)

]

(5.19)

= −EXY

[

∇xi
∇T

xj
log p(Y |X)

]

−EX

[

∇xi
∇T

xj
log p(X)

]

(5.20)

= EXY

[

∇xi
log p(Y |X)∇T

xj
log p(Y |X)

]

+EX

[

∇xi
log p(X)∇T

xj
log p(X)

]

. (5.21)

198 Chapter 5. Computing Cramér-Rao-Type Bounds

The equality (5.19) follows from Lemma K.7, whereas (5.20) is based on
the chain rule for probabilities:

p(x, y) = p(y|x)p(x). (5.22)

The equality (5.21) follows from Lemma K.8 and K.9.

Note that the Bayesian information matrix J is constant, whereas the
Fisher F(x) information matrix depends on x. In general,

J = EX [F(X)] + EX

[
∇x log p(X)∇T

x log p(X)
]
. (5.23)

If the prior p(x) is uniform, it follows from (5.23):

J = EX [F(X)]. (5.24)

If, in addition, F(x) does not depend on x, i.e., F(x)
△

= F, then J = F.

In ’68, Van Trees proved a Cramér-Rao-type bound for random vari-
ables [199, pp. 72–73].

Theorem 5.3. (Unconditional Bayesian Cramér-Rao bound)
Suppose that:

a) the error matrix E of the estimator x̂(y) exists,

b) the Bayesian information matrix J is non-singular,

c) the support of p(y|x) with respect to y does not depend on x,

d) the pdf p(x, y) is differentiable with respect to all coordinates xi

for all (x, y) belonging to the support of p(x, y),

e) the integralB(x)
△

=
∫

y[x̂(y)−x]p(y|x)dy can be differentiated under
the integral sign with respect to all coordinates xi, ∀x,

f) the prior p(x) is zero at the boundary of its support (“weak unbiased-
ness condition”),

Then

E � J−1. (5.25)

5.2. Overview of Cramér-Rao-Type Bounds 199

The inequality (5.25) is often referred to as the “Bayesian Cramér-Rao
bound” (BCRB), “posterior CRB” or the “Van Trees bound”. An esti-
mator x̂(y) and an estimation problem with joint pdf p(x, y) are called
regular if the first five assumptions in Theorem 5.3 are met. If the joint
pdf p(x, y) is Gaussian, the bound (5.25) holds with equality. Note that
the BCRB also holds for biased estimators, in contrast to the CRB. The
weak unbiasedness condition (Assumption 6), however, is not necessarily
fulfilled. As for the CRB, this is for example the case when X takes
values in an interval [a, b] or [a,∞), with a, b ∈ R and a < b . On the
other hand, the Bayesian Cramér-Rao bound (5.25) holds at high SNR
for any regular joint pdf p(x, y), i.e., also for a pdf p(x, y) for which the
weak unbiasedness condition is not met. In addition, the MAP estimator
achieves the bound (5.25) at high SNR.

The Bayesian Cramér-Rao lower bound (5.25) is in the literature also
referred to as unconditional Bayesian Cramér-Rao lower bound; in con-
trast, the conditional BCRB bounds the MSE conditioned on a particular
observation y [24]. The conditional Bayesian information matrix J(y) is
defined as:

Jij(y)
△

= EX|Y

[

∇xi
log p(X |y)∇T

xj
log p(X |y)

]

. (5.26)

Since ∇xi
log p(x|y) = ∇xi

log p(x, y), the matrix (5.26) can also be writ-
ten as:

Jij(y) = EX|Y

[

∇xi
log p(X, y)∇T

xj
log p(X, y)

]

. (5.27)

From Lemma K.6 follows an alternative expression for the matrix (5.26):

Jij(y) = −EX|Y

[

∇xi
∇T

xj
log p(X |y)

]

(5.28)

= −EX|Y

[

∇xi
∇T

xj
log p(X, y)

]

. (5.29)

The inverse conditional Bayesian information matrix is a lower bound on
the error matrix E(y) defined as:

E(y)
△

= EX|Y [(x̂(y) −X)(x̂(y) −X)T]. (5.30)

Theorem 5.4. (Conditional Bayesian Cramér-Rao bound)
Suppose that:

a) the error matrix E(y) of the estimator x̂(y) exists,

200 Chapter 5. Computing Cramér-Rao-Type Bounds

b) the conditional Bayesian information matrix J(y) is non-singular,

c) the pdf p(x|y) is differentiable with respect to all coordinates xi for
all (x, y) belonging to the support of p(x|y),

d) the prior p(x) is zero at the boundary of its support (“weak unbiased-
ness condition”),

Then

E(y) � J−1(y). (5.31)

If p(x|y) is Gaussian, the bound (5.31) holds with equality.

From (5.31), an alternative lower bound on E can be derived.6

Corollary 5.1. (Alternative unconditional Bayesian Cramér-Rao bound)
Suppose that:

a) the error matrix E(y) of the estimator x̂(y) exists for all y,

b) the Bayesian information matrix J(y) is non-singular for all y,

c) the pdf p(x, y) is differentiable with respect to all coordinates xi

for all (x, y) belonging to the support of p(x, y),

d) the prior p(x) is zero at the boundary of its support (“weak unbiased-
ness condition”),

Then

E � EY

[
J−1(Y)

]
. (5.32)

The bound (5.32) is tighter than the bound (5.25).

Lemma 5.1. If J and J(y) (for all y) are non-singular, then

J−1 � EY

[
J−1(Y)

]
. (5.33)

�

6To our knowledge, this bound is novel.

5.2. Overview of Cramér-Rao-Type Bounds 201

If the pdf p(x, y) is Gaussian, the bounds (5.25) and (5.32) coincide, since
the matrix J(y) is then independent of Y .

From the CRB (5.5), one can also derive an unconditional BCRB (“Fisher-
Bayesian Cramér-Rao bound”) [206].

Theorem 5.5. (Fisher-Bayesian Cramér-Rao bound)
Suppose that, for all x,

a) the estimator θ̂(y) is regular, and the estimation problem (with
pdf p(y|x)) is regular,

b) the estimator x̂(y) is unbiased, i.e., B(x)
△

=
∫

y[x̂(y)− x]p(y|x)dy =
0,

Then
E � EX

[
F−1(X)

]
. (5.34)

The bound (5.34) is tighter than the bound (5.25).

Lemma 5.2. If J and F(x) (for all x) are non-singular, then

J−1 � EX

[
F−1(X)

]
. (5.35)

�

The Fisher BCRB (5.34) only holds for unbiased estimators, whereas
the standard and alternative unconditional BCRBs (5.25) and (5.32)
also hold for biased estimators (as long as p(x) is zero at the boundary
of its support). If the prior p(x) is non-trivial, the MMSE-estimator is
most often biased and the Fisher-Bayesian Cramér-Rao bound (5.34) is
not applicable (at finite SNR). If the pdf p(x, y) is Gaussian, and the
prior p(x) is uniform, i.e.,

p(x, y) ∝ p(y|x), (5.36)

the bounds (5.25), (5.32), and (5.34) coincide, since the matrices F(x)
and J(y) are then independent of X and Y respectively.

Example 5.2. (BCRB for mean of Gaussian random variables)
We consider again the estimation problem of Example 5.1. Now, we

202 Chapter 5. Computing Cramér-Rao-Type Bounds

suppose that the (unknown) real-valued mean is a random variable (with
a non-trivial prior). We denote the mean by X , and its prior by p(x). We
wish to compute the BCRBs (5.25), (5.32) and (5.34) for estimating X
from y = y1, . . . , yN . The joint pdf p(x, y) equals:

p(x, y) = p(x)

N∏

k=1

1√
2πσ2

e−(x−yk)2/2σ2

. (5.37)

Since

d2

dx2
log p(x, y) =

d2

dx2
log p(y|x) +

d2

dx2
log p(x) (5.38)

= −N

σ2
+

d2

dx2
log p(x), (5.39)

it follows

J = −EXY

[
d2

dx2
log p(X,Y)

]

(5.40)

=
N

σ2
− EX

[
d2

dx2
log p(X)

]

, (5.41)

and

J(y) = −EX|Y

[
d2

dx2
log p(X, y)

]

(5.42)

=
N

σ2
− EX|Y

[
d2

dx2
log p(X)

]

. (5.43)

Note that J and J(y) are scalar. From (5.25) and (5.41) follows the
standard unconditional BCRB:

EXY [(x̂(X) −X)2] ≥
(
N

σ2
− EX

[
d2

dx2
log p(X)

])−1

. (5.44)

From (5.32) and (5.43) follows the alternative unconditional BCRB:

EXY [(x̂(Y) −X)2] ≥ EY

[(
N

σ2
− EX|Y

[
d2

dx2
log p(X)

])−1
]

. (5.45)

From (5.15) and (5.34) follows the Fisher BCRB:

EXY [(x̂(Y) −X)2] ≥
(
N

σ2

)−1

. (5.46)

5.2. Overview of Cramér-Rao-Type Bounds 203

The Fisher BCRB (5.46) is only valid for unbiased estimators, whereas
the MMSE estimator is usually biased if the prior p(x) is non-uniform.
If the prior p(x) is uniform, the bounds (5.44) and (5.45) reduce to the
Fisher BCRB (5.46). Note that

−EX

[
d2

dx2
log p(X)

]

= EX

[(
d

dx
log p(X)

)2
]

≥ 0, (5.47)

and therefore (cf. Lemma K.4),

(
N

σ2
− EX

[
d2

dx2
log p(X)

])−1

≤
(
N

σ2

)−1

. (5.48)

Similarly,
(
N

σ2
− EX|Y

[
d2

dx2
log p(X)

])−1

≤
(
N

σ2

)−1

. (5.49)

In words: if the prior p(x) is non-uniform, the BCRBs (5.44) and (5.45)
are lower than the bound (5.46), which is valid for a uniform prior p(x).
This makes sense: a non-uniform prior p(x) contains additional infor-
mation about X ; the more informative the prior, the smaller the es-
timation error will be. Not surprisingly, the BCRB (5.44) and (5.45)
reduce to (5.46) as N → ∞ or σ2 → 0: as the observations become more
informative, the prior knowledge loses its importance.

Assume now that X ∈ [a, b], with a, b ∈ R and a < b. The standard
BCRB, alternative BCRB and Fisher BCRB are again given by (5.44),
(5.45) and (5.46) respectively. Suppose that p(x) is uniform, i.e.,

p(x) =
1

b− a
, ∀x ∈ [a, b]. (5.50)

Both BCRBs (5.44) and (5.45) reduce then to the Fisher BCRB (5.46).
Note that the BCRB (5.46) (as the CRB (5.15)) grows unboundedly
as σ2 increases, whereas the MSE of any estimator x̂(y) of X ∈ [a, b] is
obviously bounded. In other words, the BCRBs (5.44) and (5.45) are
invalid for the prior (5.50). This is due to the fact that

p(a) 6= 0 6= p(b). (5.51)

Nevertheless, the BCRBs (5.44) and (5.45) become valid as N → ∞
or σ2 → 0 (“high SNR bound”).

�

204 Chapter 5. Computing Cramér-Rao-Type Bounds

Bayesian Cramér-Rao Bounds and Marginalization

In practice, one is often interested in bounding the MSE for a parti-
cular variable Xk, i.e., for a particular component of the vector X =
(X1, . . . , Xn)T . For example, one may wish to compute a BCRB for the
MSE:

EXkY [(x̂k(Y) −Xk)(x̂k(Y) −Xk)T]

= EXY [(x̂k(Y) −Xk)(x̂k(Y) −Xk)T] (5.52)
△

= Ekk, (5.53)

which is the k-th diagonal element of the error matrix E. Of practical
relevance is also the (weighted) average of the MSE over all components
of X :

n∑

k=1

wkEkk
△

=

n∑

k=1

wkEXkY [(x̂k(Y) −Xk)(x̂k(Y) −Xk)T], (5.54)

where n is the dimension ofX , andwk is a positive real number (typically,
wk = 1/n).

There are several ways to obtain a BCRB for (5.52) and (5.54). One may
derive a BCRB from the information matrix of the joint pdf p(x, y) (or
p(x|y)). For example, from the standard unconditional BCRB (5.25), it
follows:

Ekk � [J−1]kk, (5.55)

and
n∑

k=1

wkEkk �
n∑

k=1

wk[J−1]kk, (5.56)

where the unconditional Bayesian information matrix J is computed from
the joint pdf p(x, y). Note that in the RHS of (5.55) and (5.56), only the
diagonal elements of J−1 appear, the off-diagonal elements of J−1 are
not required. Along similar lines, an alternative BCRB for Ekk (5.52)
and the average (5.54) can be derived from (5.32):

Ekk � EY

[
[J−1(Y)]kk

]
, (5.57)

and
n∑

k=1

wkEkk �
n∑

k=1

wkEY

[
[J−1(Y)]kk

]
, (5.58)

5.2. Overview of Cramér-Rao-Type Bounds 205

where the conditional Bayesian information matrix J(y) is computed
from the joint pdf p(x|y). Similarly, (B)CRBs for Ekk(x) and Ekk(y)
can be derived from (5.5) and (5.31) respectively.

Alternatively, instead of deriving the BCRB from the information matrix
of p(x, y) (or p(x|y)) (cf. (5.55) to (5.58)), one may first marginalize over
some variables Xℓ (ℓ 6= k), and compute the BCRB from the information
matrix of the resulting marginal of p(x, y) (or p(x|y)). Let us have a look
at a simple example.

Example 5.3. (Marginalization and BCRB)

Let X
△

= (X1, X2)
T , and hence p(x, y)

△

= p(x1, x2, y). Suppose that we
wish to obtain a standard unconditional BCRB for X1. This can be done
in two ways. One may compute the unconditional Bayesian information
matrix of p(x1, y); the inverse of that matrix is a standard unconditional
BCRB for X1:

EX1Y [(x̂1(Y) −X1)(x̂1(Y) −X1)
T]

� EX1Y

[
∇x1∇T

x1
log p(X1, Y)

]−1
, (5.59)

where:

p(x1, y)
△

=

∫

x2

p(x1, x2, y)dx2. (5.60)

Alternatively, one may derive a standard unconditional BCRB from the
unconditional Bayesian information matrix of p(x1, x2, y), which is a 2×2
block matrix. More precisely, the first diagonal element of the inverse of
that matrix is a standard unconditional BCRB for X1:

EX1Y [(x̂1(Y) −X1)(x̂1(Y) −X1)
T] �

[
J−1

]

11
, (5.61)

where

J
△

=

[

−EX1X2Y

�
∇x1∇

T
x1

log p(X1, X2, Y)
�
−EX1X2Y

�
∇x1∇

T
x2

log p(X1, X2, Y)
�

−EX1X2Y

�
∇x2∇

T
x1

log p(X1, X2, Y)
�
−EX1X2Y

�
∇x2∇

T
x2

log p(X1, X2, Y)
�].

(5.62)
�

Bayesian Cramér-Rao bounds for a variable Xk can thus be derived in
various ways, since one has the freedom to marginalize some variables Xℓ

(ℓ 6= k) before computing the required information matrix. Which ap-
proach leads to the tighest bounds? For example, is the bound (5.59)

206 Chapter 5. Computing Cramér-Rao-Type Bounds

tighter than (5.61)? An answer to those questions is given in [24] (see
also [170]): the tightest Bayesian Cramér-Rao bound for a variable Xk

is obtained by first marginalizing over all variables Xℓ (ℓ 6= k), and
by then computing the inverse information matrix of the resulting mar-
ginal p(xk, y) (or p(xk|y)). For instance, the bound (5.59) is tighter
than (5.61). It is typically easier, however, to derive Cramér-Rao-type
bounds from the joint pdf (as in (5.61)) than from a marginal (as in (5.59)).7

Remark 5.2. (A common misunderstanding)
Some researchers (e.g., [148]) believe that

• Cramér-Rao-type bounds derived from joint pdfs only apply to
estimators that estimate all unknown variables jointly,

• Cramér-Rao-type bounds derived from marginal pdfs only apply to
estimators that treat some of the variables as nuisance parameters ;
the latter are not estimated explicitly, instead, they are eliminated
by marginalization.

For example, the bound (5.61) for the MSE of X1 would only hold for
estimators that jointly estimate X1 and X2, whereas the bound (5.59)
would only hold for estimators that marginalize over X2 (instead of esti-
mating X2). According to the same researchers (e.g., [148]), the fact
that the bound (5.59) is tighter than (5.61) would imply that one should
estimate X1 and X2 jointly in order to obtain the smallest MSE for X1,
since treating X2 as a nuisance parameter leads to a higher MSE for X1.

This is a misconception: both BCRBs (5.59) and (5.61) hold for the
MMSE estimator of X1 (assuming that the necessary conditions are ful-
filled), and hence for any estimator of X1.

5.2.3 Hybrid Cramér-Rao Bounds

We now consider systems that contain random variables X as well as
parameters Θ; the joint pdf of such a system is given by p(x, y|θ). We
define the error matrix E(XΘ)(θ) as

E(XΘ)(θ)
△

=

[

E
(XΘ)
11 (θ) E

(XΘ)
12 (θ)

E
(XΘ)
21 (θ) E

(XΘ)
22 (θ)

]

, (5.63)

7See Example 5.9 and 5.10.

5.2. Overview of Cramér-Rao-Type Bounds 207

where:

E
(XΘ)
11 (θ) = EXY |Θ

[

(θ̂(Y) − θ)(θ̂(Y) − θ)T
]

(5.64)

= EY |Θ

[

(θ̂(Y) − θ)(θ̂(Y) − θ)T
]

(5.65)

E
(XΘ)
12 (θ) = EXY |Θ

[

(θ̂(Y) − θ)(x̂(Y) −X)T
]

(5.66)

E
(XΘ)
21 (θ) = [E

(XΘ)
12 (θ)]T (5.67)

E
(XΘ)
22 (θ) = EXY |Θ

[
(x̂(Y) −X)(x̂(Y) −X)T

]
. (5.68)

The “hybrid” unconditional information matrix H(θ) is defined as:

H(θ)
△

=

[
H11(θ) H12(θ)
H21(θ) H22(θ)

]

, (5.69)

where:

H11(θ) = EXY |Θ

[
∇θ log p(X,Y |θ)∇T

θ log p(X,Y |θ)
]

(5.70)

H12(θ) = EXY |Θ

[
∇θ log p(X,Y |θ)∇T

x log p(X,Y |θ)
]

(5.71)

H12(θ) = [H21(θ)]
T

(5.72)

H22(θ) = EXY |Θ

[
∇x log p(X,Y |θ)∇T

x log p(X,Y |θ)
]
. (5.73)

The elements of the hybrid unconditional information matrix H(θ) can
also be written as:

H11(θ) = −EXY |Θ

[
∇θ∇T

θ log p(X,Y |θ)
]

(5.74)

H12(θ) = −EXY |Θ

[
∇θ∇T

x log p(X,Y |θ)
]

(5.75)

H22(θ) = −EXY |Θ

[
∇x∇T

x log p(X,Y |θ)
]
. (5.76)

The inverse of the hybrid unconditional information matrix H(θ) is a
lower bound on the error matrix E(XΘ)(θ).

Theorem 5.6. (Hybrid unconditional Bayesian Cramér-Rao bound [172];
see also [170])
Suppose that:

a) the error matrix E(XΘ)(θ) of the estimator (θ̂(y), x̂(y)) exists, ∀θ,

b) the hybrid unconditional information matrix H(θ) is non-singular,
∀θ,

208 Chapter 5. Computing Cramér-Rao-Type Bounds

c) the support of p(y|x, θ) with respect to y does not depend on x
and θ, ∀x and θ,

d) the pdf p(x, y|θ) is differentiable with respect to all coordinates xi

and θi, for all (x, y, θ) belonging to the support of p(x, y|θ),

e) the integral B(X)(x)
△

=
∫

y
[x̂(y)−x]p(y|x, θ)dy can be differentiated

under the integral sign with respect to all coordinates xi, ∀x and θ,

f) the prior p(x) is zero at the boundary of its support (“weak unbiased-
ness condition”),

g) the estimator θ̂(y) is unbiased, i.e., B(Θ)(θ)
△

=
∫

y[θ̂(y)−θ]p(y|θ)dy =
0, ∀θ,

h) the integral B(Θ)(θ)
△

=
∫

y
[θ̂(y) − θ]p(y|θ)dy can be differentiated

under the integral sign with respect to all coordinates θi, ∀θ,

i) the integral B(θ)
△

=
∫

x,y[x̂(y) − x]p(x, y|θ)dxdy (“average bias”) is
independent of θ, and can be differentiated under the integral sign
with respect to all coordinates θi, ∀θ,

Then
E(XΘ)(θ) � H(θ)−1. (5.77)

From (5.77), a Cramér-Rao-type bound for Θ can be obtained as:

EY |Θ[(θ̂(Y) − θ)(θ̂(Y) − θ)T]
△

= E
(XΘ)
11 �

[
H−1(θ)

]

11
, (5.78)

From (5.77), one also obtains an unconditional Bayesian Cramér-Rao
bound for the MSE of X :

EXY |Θ[(x̂(Y) −X)(x̂(Y) −X)T]
△

= E
(XΘ)
22 �

[
H−1(θ)

]

22
. (5.79)

Hybrid CRB and Marginalization

Again, one has the freedom to marginalize over certain variables Xℓ

before computing the information matrix. For example, an alternative
Cramér-Rao-type bound for Θ is given by:

EY |Θ[(θ̂(Y) − θ)(θ̂(y) − θ)T]
△

= E
(XΘ)
11

� EY |Θ

[
∇θ∇T

θ log p(Y |θ)
]
, (5.80)

5.2. Overview of Cramér-Rao-Type Bounds 209

where

p(y|θ) △

=

∫

x

p(x, y|θ)dx. (5.81)

The CRB (5.80) for Θ is derived by first marginalizing over X . The
bound (5.80) is tighter than (5.78) [170].

Remark 5.3. (Marginalization over parameters)
We consider here an alternative to the bound (5.59). One may wish
to marginalize over Θ before computing the information matrix. We

define p(x, θ, y)
△

= γ−1p(x, y|θ), where

γ
△

=

∫

x,θ

p(x, y|θ)dxdθdy, (5.82)

assuming that this integral converges. Now, Θ can be treated as a ran-

dom variable, and one can compute the bound (5.59) with X2
△

= Θ:

EXY [(x̂(Y) −X)(x̂(Y) −X)T]

� EXY

[
∇x∇T

x log p(X,Y)
]−1

, (5.83)

where:

p(x, y)
△

=

∫

θ

p(x, θ, y)dθ. (5.84)

Note that the error matrix in the LHS of (5.79) depends on Θ, whereas
the the error matrix in the LHS of (5.83) does not depend on Θ. Both
definitions of the error matrix make sense; it depends on the estimation
problem at hand which definition is the most appropriate.

5.2.4 Summary

There are two general strategies to obtain Cramér-Rao type bounds for
a variable Xk:

a) One computes the inverse information matrix of the joint pdf. The
bound is then given by a diagonal element of that matrix.

b) One marginalizes over certain (perhaps all) random variables Xℓ 6=
Xk before computing the information matrix. The bound is given
by a diagonal element of the inverse information matrix of the
resulting marginal.

210 Chapter 5. Computing Cramér-Rao-Type Bounds

Note that the information matrix of the joint pdf is typically large, but
sparse; this sparseness can be exploited while computing the diagonal
elements. Information matrices of marginals are smaller, but they are
usually dense. Cramér-Rao-Type bounds obtained from marginals are
tighter than the corresponding bounds derived from the joint pdf.

In the following, we propose practical algorithms for each of the two
stategies. In Section 5.3, we describe a summary-propagation algorithm
to compute Cramér-Rao-type bounds from the information matrix of the
joint pdf (Strategy 1). In Section 5.4, we develop algorithms for compu-
ting Cramér-Rao-type bounds from information matrices of marginals
(Strategy 2).

5.3 Cramér-Rao-Type Bounds From Joint
Densities

5.3.1 Standard Unconditional BCRBs

Suppose we wish to compute the standard unconditional Bayesian Cramér-
Rao bound for the MSE of a variable Xk (cf. (5.55)):

Ekk � [J−1]kk, (5.85)

or, the standard unconditional Bayesian Cramér-Rao bound for the MSE
averaged over all variables Xk (cf. (5.56)):

n∑

k=1

wkEkk �
n∑

k=1

wk[J−1]kk. (5.86)

In the RHS of (5.85) and (5.86), the inverse of the (potentially huge!)
matrix J occurs. However:

a) Only the diagonal elements of this inverse are required.

b) The joint probability density p(x, y) has in most practical systems
a “nice” structure, i.e., p(x, y) has typically a non-trivial factoriza-
tion. As a consequence, J is often sparse.

5.3. Cramér-Rao-Type Bounds From Joint Densities 211

c) This sparseness can effectively be exploited by applying the matrix
inversion lemma (Lemma K.2).

As a consequence, the elements [J−1]kk can be determined by local com-
putations that involve the inversion of matrices that are much smaller
than J. Those computations can be viewed as message passing (“sum-
mary propagation”) on a (cycle-free) factor graph of p(x, y). The sum-
mary propagation procedure is similar to the sum(mary)-product algo-
rithm; messages (which are in this case matrices) propagate on the factor
graph of p(x, y). They are updated at the nodes according to some rules.
The expression [J−1]kk is obtained from the messages along the edge Xk.
In the following, we first investigate a small working example, from which
we then extract the general summary-propagation procedure.

Suppose the pdf p(x, y) is given by

p(x, y) =

(((
f1(x1, y1)f2(x1, x2, x3)

)
f3(x3, y3)

)

f4(x4, y4)

·f5(x5, y5)f6(x3, x4, x5, x6)

)
(
f7(x7, y7)f8(x6, x7, x8)

)
, (5.87)

as shown in Fig. 5.1. The brackets in (5.87) correspond to the boxes
in Fig. 5.1. The unconditional Bayesian information matrix of (5.87)
equals:

J=

f11
1 + f11

2 f12
2 f13

2 0 0 0 0 0

f21
2 f22

2 f23
2 0 0 0 0 0

f31
2 f32

2 f33
2 + f33

3 + f33
6 f34

6 f35
6 f36

6 0 0

0 0 f43
6 f44

4 + f44
6 f45

6 f46
6 0 0

0 0 f53
6 f54

6 f55
5 + f55

6 f56
6 0 0

0 0 f63
6 f64

6 f65
6 f66

6 + f66
8 f67

8 f68
8

0 0 0 0 0 f76
8 f77

7 + f77
8 f78

8

0 0 0 0 0 f86
8 f87

8 f88
8

,

(5.88)
where we used the notation:

f ij
k

△

= −EXY [∇xi
∇T

xj
log fk(X,Y)] (5.89)

= −
∫

x,y

p(x, y)∇xi
∇T

xj
log fk(x, y)dxdy. (5.90)

212 Chapter 5. Computing Cramér-Rao-Type Bounds

Suppose we wish to compute the matrix [J−1]66, which is a lower bound
on the mean square estimation error of X6 (see (5.55)):

EXY [(X̂6(Y) −X6)(X̂6(Y) −X6)
T]

△

= E66 � [J−1]66. (5.91)

We define J(kℓ) △

= ([J−1]k:ℓ)
−1, where Ak:ℓ is a submatrix of A that

consists of the rows and columns k, k + 1, . . . , ℓ of A. By applying the

matrix inversion lemma to the matrix (5.88) (cf. Lemma K.2, with A
△

= J

and diagonal submatrices A11
△

= J1:2 and A22
△

= J3:8), we have:

J(38) △

= ([J−1]3:8)
−1 (5.92)

=

f33
2 + f33

3 + f33
6 f34

6 f35
6 f36

6 0 0

f43
6 f44

4 + f44
6 f45

6 f46
6 0 0

f53
6 f54

6 f55
5 + f55

6 f56
6 0 0

f63
6 f64

6 f65
6 f66

6 + f66
8 f67

8 f68
8

0 0 0 f76
8 f77

7 + f77
8 f78

8

0 0 0 f86
8 f87

8 f88
8

−

[
f31
2 0 0 0 0 0
f32
2 0 0 0 0 0

]T[
f11
1 + f11

2 f12
2

f21
2 f22

2

]−1[
f31
2 0 0 0 0 0
f32
2 0 0 0 0 0

]

(5.93)

=

µf2→X3
+ f33

3 + f33
6 f34

6 f35
6 f36

6 0 0

f43
6 f44

4 + f44
6 f45

6 f46
6 0 0

f53
6 f54

6 f55
5 + f55

6 f56
6 0 0

f63
6 f64

6 f65
6 f66

6 + f66
8 f67

8 f68
8

0 0 0 f76
8 f77

7 + f77
8 f78

8

0 0 0 f86
8 f87

8 f88
8

, (5.94)

where

µf2→X3

△

=

f11
1 + f11

2 f12
2 f13

2

f21
2 f22

2 f23
2

f31
2 f32

2 f33
2

−1

33

−1

(5.95)

= f33
2 −

[
f31
2 f32

2

]

[

f11
1 + f11

2 f12
2

f21
2 f22

2

]−1

·
[

f31
2 f32

2

]T
. (5.96)

Also in (5.96), we used the matrix inversion lemma. The matrix µf2→X3

summarizes the smallest dashed box on the left in Fig. 5.1. We now

5.3. Cramér-Rao-Type Bounds From Joint Densities 213

X1

X6

X2

X7

X3

X8X4

X5
=

f1

f6

f2

f7

f3

f8

f4

f5
y1

y3 y4

y5

y7

Figure 5.1: Factor graph of (5.87).

y5

X1y1

y3 y4

y5

y7

X6

X2

X7

X3

X8X4

X5
=

f1

f6

f2

f7

f3

f8

f4

f5µf2→X3

µX3→f6

µf6→X6
µf8→X6

Figure 5.2: Summary propagation for computing BCRB.

214 Chapter 5. Computing Cramér-Rao-Type Bounds

define
µX3→f6

△

= µf2→X3
+ f33

3 . (5.97)

As a consequence

J(38) =

µX3→f6
+ f33

6 f34
6 f35

6 f36
6 0 0

f43
6 f44

4 + f44
6 f45

6 f46
6 0 0

f53
6 f54

6 f55
5 + f55

6 f56
6 0 0

f63
6 f64

6 f65
6 f66

6 + f66
8 f67

8 f68
8

0 0 0 f76
8 f77

7 + f77
8 f78

8

0 0 0 f86
8 f87

8 f88
8

. (5.98)

The matrix µX3→f6
is a summary of the second largest dashed box on the

left in Fig. 5.1. Similarly as in (5.92)–(5.96), we obtain J(68) from J(38):

J(68) =

µf6→x6
+ f66

8 f67
8 f68

8

f76
8 f77

7 + f77
8 f78

8

f86
8 f87

8 f88
8

, (5.99)

where

µf6→X6

△

=

µX3→f6
+ f33

6 f34
6 f35

6 f36
6

f43
6 f44

4 + f44
6 f45

6 f46
6

f53
6 f54

6 f55
5 + f55

6 f56
6

f63
6 f64

6 f65
6 f66

6

−1

44

−1

. (5.100)

The matrix µf6→X6
is a summary of the largest dashed box left in Fig. 5.1.

Eventually, we obtain J(66) from J(68), again by means of the matrix in-
version lemma:

J(66) = µf6→X6
+ µf8→X6

, (5.101)

where

µf8→X6

△

=

f66
8 f67

8 f68
8

f76
8 f77

7 + f77
8 f78

8

f86
8 f87

8 f88
8

−1

11

−1

. (5.102)

The matrix µf8→X6
summarizes the right box in Fig. 5.1. Since J(66) △

=
([J−1]6:6)

−1, it follows from (5.101)

[J−1]66
△

= [J−1]6:6 = (µf6→X6
+ µf8→X6

)−1. (5.103)

5.3. Cramér-Rao-Type Bounds From Joint Densities 215

In conclusion, the updates (5.94)–(5.100) can be considered as “closing”
the dashed boxes in Fig. 5.1. Eventually, [J−1]66 is obtained from both
summaries arriving at the edge X6 as in (5.103). It is easy to verify that
the other diagonal elements [J−1]kk can be computed similarly.

From this example, it is but a small step to the summary propagation
algorithm for computing standard unconditional BCRBs. We consider
the summaries as messages that are sent out of the corresponding box,
as is illustrated in Fig. 5.2.

At nodes representing differentiable functions, messages are computed
according to the following rule.

Standard unconditional BCRB Summary Rule:
The message out of the node g(x1, . . . , xℓ, y) (see Fig. 5.3(a)) along
the edge Xℓ is the matrix

µg→Xℓ
=
([

(G + M)−1
]

ℓℓ

)−1
, (5.104)

where

M = diag(µX1→g, . . . ,µXℓ−1→g, 0) (5.105)

Gij
△

= −EXY [∇xi
∇T

xj
log g(X1, . . . , Xℓ, Y)] (5.106)

= −
∫

x,y

p(x, y)∇xi
∇T

xj
log g(x1, . . . , xℓ, y)dxdy, (5.107)

where it is assumed that the integrals (5.108) exist ∀i and j = 1, . . . , ℓ.

The expression (5.104) can be written in several ways; one can permute
rows and corresponding columns of the matrices M and G (Lemma K.5).
The expectations (5.108) can most often be simplified, since the local
node g typically does not depend on the whole observation vector y, but
on a small number of components yk instead. Nevertheless, a closed-
form expression for the expectations (5.108) may not exist; the expec-
tations (5.108) may then be evaluated by numerical integration or by
Monte Carlo methods. In the Monte-Carlo approach, one first draws a

list of samples
{
(x̂(j), ŷ(j))

}N

j=1
from the joint pdf p(x, y). Then, one

216 Chapter 5. Computing Cramér-Rao-Type Bounds

evaluates (5.108) as an average over the samples
{
(x̂(j), ŷ(j))

}N

j=1
:

Ĝij
△

= −
N∑

j=1

∇xi
∇T

xj
log g(x

(j)
1 , . . . , x

(j)
ℓ , y(j)). (5.108)

It is usually easy to draw samples from p(x, y); one may generate a
sample (x̂, ŷ) from p(x, y) as follows:

a) Draw a sample x̂ from p(x),

b) Simulate the channel p(y|x) with as input x̂; this results in a sam-
ple ŷ from p(y|x̂).

X1

Xℓ−1

Xℓ
g...

(a) Generic node

Xℓ

g

(b) Terminal node.

X1

Xℓ−1

Xℓ
=

...

(c) Equality constraint node.

g2g1
Xk

(d) Edge Xk.

Figure 5.3: Summary propagation.

The message out of a terminal node g(xℓ, y) (see Fig. 5.3(b)) is defined
as

µg→Xℓ

△

= −EXℓY [∇xℓ
∇T

xℓ
log g(Xℓ, Y)] (5.109)

= −
∫

xℓ,y

p(xℓ, y)∇xℓ
∇T

xℓ
log g(xℓ, y)dxℓdy. (5.110)

Half edges do not carry a message towards the (single) node attached to
them; alternatively, they might be thought of as carrying a zero matrix

5.3. Cramér-Rao-Type Bounds From Joint Densities 217

as message. For the equality constraint node (see Fig. 5.3(c)), the inte-

grals (5.108) do not exist, since the node “function” f=(x1, x2, . . . , xℓ)
△

=
δ(x1 − x2)δ(x2 − x3) . . . δ(xℓ−1 − xℓ) is not differentiable. The equality
constraint node has its own update rule; the outgoing message µ =→Xℓ

is the sum of the incoming messages µXk→ = (k = 1, . . . , ℓ− 1):

µ =→Xℓ
=

ℓ−1∑

k=1

µXk→ = . (5.111)

Deterministic nodes are handled by boxing (cf. Section 4.9.3). Eventu-
ally, the expression [J−1]kk is computed from the two messages µg1→Xk

and µg2→Xk
along the edge Xk (see Fig. 5.3(d)):

[J−1]kk = (µg1→Xk
+ µg2→Xk

)−1, (5.112)

resulting in the bound:

Ekk � [J−1]kk = (µg1→Xk
+ µg2→Xk

)−1. (5.113)

In the above, we have proposed a message-passing algorithm to compute
standard unconditional Bayesian Cramér-Rao bounds. If one wishes to
compute other Cramér-Rao-type bounds, one needs to slightly modify
the algorithm. More precisely, the rules (5.104), (5.110) and (5.113)
need to be adapted, the other rules remain unchanged. In the following,
we explain how the rules (5.104) (5.110), and (5.113) should be modified
for several other Cramér-Rao type bounds.

5.3.2 Conditional BCRBs

Suppose we wish to compute the conditional Bayesian Cramér-Rao bounds

Ekk(y) � [J−1(y)]kk, (5.114)

and
n∑

k=1

wkEkk(y) �
n∑

k=1

wk[J−1(y)]kk. (5.115)

The elements [J−1(y)]kk can be computed by the message-passing algo-
rithm of Section 5.3.1, where the update rule (5.104) is replaced by the
following rule.

218 Chapter 5. Computing Cramér-Rao-Type Bounds

Conditional BCRB Summary Rule:
The message out of the node g(x1, . . . , xℓ, y) (see Fig. 5.3(a)) along
the edge Xℓ is the matrix

µg→Xℓ
=
([

(G + M)−1
]

ℓℓ

)−1
, (5.116)

where

M=diag(µX1→g, . . . ,µXℓ−1→g, 0) (5.117)

Gij
△

=−EX|Y [∇xi
∇T

xj
log g(X1, . . . , Xℓ, y)] (5.118)

=−
∫

x

p(x|y)∇xi
∇T

xj
log g(x1, . . . , xℓ, y)dx, (5.119)

where it is assumed that the integrals (5.119) exist ∀i and j = 1, . . . , ℓ.

In addition, the rules (5.110) and (5.113) need to be replaced by

µg→Xℓ

△

= −EXℓ|Y [∇xℓ
∇T

xℓ
log g(Xℓ, y)] (5.120)

= −
∫

xℓ

p(xℓ|y)∇xℓ
∇T

xℓ
log g(xℓ, y)dxℓ, (5.121)

and
Ekk(y) � [J−1(y)]kk = (µg1→Xk

+ µg2→Xk
)−1. (5.122)

respectively. Note that the expressions (5.119) and (5.121) involve avera-
ging w.r.t. the posterior pdf p(x|y), whereas (5.108) and (5.110) involve
averaging over the joint pdf p(x, y). If a closed-form expression for (5.119)
and (5.121) is not available, one may resort to approximative methods
such as numerical integration or Monte-Carlo methods. In the latter
approach, the integrals in (5.119) and (5.121) are replaced by averages
over a list of samples from the posterior p(x|y). Note that it is usually
substantially more difficult to sample from p(x|y) than from p(x, y).

5.3.3 Alternative Unconditional BCRBs

We consider now the alternative unconditional Bayesian Cramér-Rao
bounds

Ekk � EY

[
[J−1(Y)]kk

]
, (5.123)

5.3. Cramér-Rao-Type Bounds From Joint Densities 219

and
n∑

k=1

wkEkk �
n∑

k=1

wkEY

[
[J−1(Y)]kk

]
. (5.124)

If the elements EY

[
[J−1(Y)]kk

]
can not be computed analytically, they

can be evaluated as an average over a list of samples
{
ŷ(j)
}N

j=1
from the

pdf p(y):

EY

[
[J−1(Y)]kk

]
=

N∑

j=1

[J−1(ŷ(j))]kk. (5.125)

Each expression [J−1(y(ℓ))]kk may be determined by the message passing
algorithm of Section 5.3.2.

5.3.4 Standard CRBs

Standard Cramér-Rao bounds for the MSE of a particular parameter θk

can be computed by the message passing algorithm of Section 5.3.1,
where the update rule (5.104) is replaced by the following rule.

Standard CRB Summary Rule:
The message out of the node g(θ1, . . . , θℓ, y) (see Fig. 5.4) along the
edge Θℓ is the matrix

µg→Θℓ
=
([

(G + M)−1
]

ℓℓ

)−1
, (5.126)

where

M = diag(µΘ1→g, . . . ,µΘℓ−1→g, 0) (5.127)

Gij
△

= −EY |Θ[∇θi
∇T

θj
log g(θ1, . . . , θℓ, Y)] (5.128)

= −
∫

y

p(y|θ)∇θi
∇T

θj
log g(θ1, . . . , θℓ, y)dy, (5.129)

where it is assumed that the integrals (5.129) exist ∀i and j = 1, . . . , ℓ.

220 Chapter 5. Computing Cramér-Rao-Type Bounds

Θ1

Θℓ−1

Θℓ
g...

Figure 5.4: Generic node.

The rules (5.110) and (5.113) are replaced by:

µg→Θℓ

△

= −EY |Θ[∇θℓ
∇T

θℓ
log g(θℓ, Y)] (5.130)

= −
∫

y

p(y|θ)∇θℓ
∇T

θℓ
log g(θℓ, Y)dy, (5.131)

and

Ekk(θ) � [F−1(θ)]kk = (µg1→Xk
+ µg2→Xk

)−1. (5.132)

respectively. Note that (5.129) and (5.131) involve averaging w.r.t. the
pdf p(y|θ). If the expressions (5.129) and (5.131) are intractable, they
can be evaluated by numerical intregration or Monte Carlo integration.
Note that it is usually easy to sample from the pdf p(y|θ).

We illustrate the above summary propagation algorithms by two simple
examples.

Example 5.4. (Example 5.1 and 5.2 revisited)
We (re-)derive the (B)CRBs of Example 5.1 and 5.2 by mechanically
applying the message-passing algorithms we described in the above. First,
we derive the CRB (5.15), then, we derive the BCRBs (5.44), (5.45)
and (5.46).

The CRB (5.15) may be computed by the summary-propagation proce-
dure shown in Fig. 5.5. The messages µp→Θk

along the edges Θk are
computed according to the rule (5.131), resulting in:

µp→Θk

△

= −EY |Θ

[
d2

dθ2
log p(Y |θk)

]

= 1/σ2. (5.133)

The message µ =→Θ follows from the update rule (5.111) for equality

5.3. Cramér-Rao-Type Bounds From Joint Densities 221

y1 yNy2

=

. . .

Θ

Θ1 Θ2 ΘN

p(y1|θ1) p(y2|θ2) p(yN |θN)

Figure 5.5: Computing the CRB (5.15) by message passing.

constraint nodes:

µ =→Θ
△

=
N∑

k=1

µp→Θk
(5.134)

△

= −
N∑

k=1

EY |Θ

[
d2

dθ2
log p(Y |θk)

]

(5.135)

= N/σ2. (5.136)

The CRB follows from (5.132):

E(θ) � [F−1(θ)] = (µ =→Θ)−1 = σ2/N. (5.137)

We now derive the standard unconditional BCRB (5.44) (see Fig. 5.6).
The messages µp→Xk

along the edges Xk are obtained from (5.110):

µp→Xk

△

= −EXkY

[
d2

dx2
k

log p(Y |Xk)

]

= 1/σ2. (5.138)

The message µ =→X is computed according to the update rule (5.111)
for equality constraint nodes:

µ =→X
△

=

N∑

k=1

µp→Xk
(5.139)

△

= −
N∑

k=1

EXkY

[
d2

dx2
log p(Y |Xk)

]

(5.140)

= N/σ2. (5.141)

222 Chapter 5. Computing Cramér-Rao-Type Bounds

y1 yNy2

=

. . .

X

X1 X2 XN

p(y1|x1) p(y2|x2) p(yN |xN)

p(x)

Figure 5.6: Computing the standard unconditional BCRB (5.44) by
message passing.

The message µX→ = follows from (5.110):

µX→ = = −EXY

[
d2

dx2
log p(X)

]

= −EX

[
d2

dx2
log p(X)

]

. (5.142)

The standard unconditional BCRB for X follows from (5.113):

E � [J−1] (5.143)

=
(
µ =→X + µX→ =

)−1
(5.144)

=

(

N/σ2 − EX

[
d2

dx2
log p(X)

])−1

. (5.145)

The BCRBs (5.45) and (5.46) are computed in a similar fashion. �

Example 5.5. ((B)CRBs for (unmodulated) constant phase)
We consider again the model:

Yk
△

= ejΘ +Nk, (5.146)

where Nk is complex white Gaussian noise with (known) variance 2σ2
N ,

i.e., σ2
N per dimension, and Θ ∈ [0, 2π). We investigate the CRB for the

problem of estimating the phase Θ from N observations y1, . . . , yN .

The factor graph of Fig. 5.7 depicts the conditional pdf p(y|θ). The

5.3. Cramér-Rao-Type Bounds From Joint Densities 223

factors p(yk|θk) are defined as

p(yk|θk)
△

=
1

2πσ2
N

e−|yk−ejθk |2/2σ2
N . (5.147)

Since the factor graph of Fig. 5.7 is identical to the one of Fig. 5.5,

y1 yNy2

=

. . .

Θ

Θ1 Θ2 ΘN

p(y1|θ1) p(y2|θ2) p(yN |θN)

Figure 5.7: Computing the CRB for estimating a constant phase.

the CRB of the problem (5.146) is computed by the message-passing
procedure we applied to obtain the CRB (5.15). The resulting CRB is
identical to (5.15), as easily can be verified.

For the problem (5.146), the CRB (5.15) is invalid at finite SNR: Θ
takes values in a finite interval, and all estimators are therefore biased.
On the other hand, the CRB (5.15) is valid for all Θ ∈ (0, 2π) as σ2 → 0
or N → ∞.

Note also that the MSE is not a suitable error measure if θ 6= π, since
the phase Θ is defined up to a multiple of 2π. A similar but suitable
error measure is given by:

E(θ)
△

=

∫

y

[s(θ̂(y) − θ)]2p(y|θ)dy (5.148)

△

= EY |Θ

[

s(θ̂(Y) − θ)]2
]

, (5.149)

where θ and θ̂(Y) ∈ [0, 2π), and s(·) is a periodic sawtooth function with
period 2π, as depicted in Fig. 5.8.

If the MSE is not a suitable error measure for the estimation problem

224 Chapter 5. Computing Cramér-Rao-Type Bounds

0 1 2 3 4 5 6

−4

−3

−2

−1

0

1

2

3

θ

s(
θ)

Figure 5.8: Periodic sawtooth function s(θ) with period 2π; one period
is shown.

(5.146), is the CRB (5.15) relevant at all for the problem (5.146)? For-
tunately, the answer is “yes”. Note first of all that

E(π) = E(π)
△

= EY |Θ=π

[(

θ̂(Y) − π
)2
]

, (5.150)

where θ̂(Y) ∈ [0, 2π).

Moreover, due to symmetry,

E(θ) = E(π), ∀θ ∈ [0, 2π). (5.151)

As a consequence of (5.150) and (5.151),

E(θ) = EY |Θ=π

[(

θ̂(Y) − π
)2
]

, ∀θ ∈ [0, 2π). (5.152)

Therefore, the CRB (5.15), which also holds for Θ = π, is a (“high-SNR”)
lower bound for E(θ), for all θ ∈ [0, 2π). �

5.3.5 Hybrid CRBs

Hybrid Cramér-Rao bounds for the MSE of a particular variable Zk

(random variable or parameter) can be computed by the message-passing
algorithm of Section 5.3.1, where the update rule (5.104) is replaced by
the following rule.

5.3. Cramér-Rao-Type Bounds From Joint Densities 225

Hybrid CRB Summary Rule:
Consider the generic node g(z1, . . . , zℓ, y) (see Fig. 5.9), where the

variable Zk (k = 1, 2 . . . , ℓ) is a parameter (i.e., Zk
△

= Θk) or a random

variable (i.e., Zk
△

= Xk). The message out of the node along the edge
Zℓ is the matrix

µg→Zℓ
=
([

(G + M)−1
]

ℓℓ

)−1
, (5.153)

where

M=diag(µZ1→g, . . . ,µZℓ−1→g, 0) (5.154)

Gij
△

=−EXY |Θ[∇zi
∇T

zj
log g(Z1, . . . , Zℓ, Y)] (5.155)

=−
∫

x,y

p(x, y|θ)∇zi
∇T

zj
log g(z1, . . . , zℓ, y)dxdy, (5.156)

where it is assumed that the integrals (5.156) exist ∀i and j = 1, . . . , ℓ.

Z1

Zℓ−1

Zℓ
g...

Figure 5.9: Generic node.

The rules (5.110) and (5.113) are replaced by

µg→Zℓ

△

= −EXY |Θ[∇zℓ
∇T

zℓ
log g(Zℓ, Y)]. (5.157)

and

EXY |Θ

[
(ẑk(Y) − Zk)(ẑk(Y) − Zk)T

]
� (µg1→Zk

+ µg2→Zk
)−1. (5.158)

respectively.

The expressions (5.156) and (5.157) involve averaging w.r.t. the pdf
p(x, y|θ). If the expressions (5.156) and (5.157) are intractable, they
can be evaluated by numerical intregration or Monte Carlo integration.
Note that it is usually easy to sample from the pdf p(x, y|θ).

226 Chapter 5. Computing Cramér-Rao-Type Bounds

In the following sections, we compute standard unconditional BCRBs for
“standard” estimation problems:

a) Filtering in state-space models (Section 5.3.6)

b) Smoothing in state-space models (Section 5.3.6)

c) Estimation of the parameters of state-space models (Section 5.3.7).

The extension to the other BCRBs is straightforward.

5.3.6 Estimation in State-Space Models

We consider a state-space model with freely evolving state Xk. The pdf
p(x, y) of such a system is given by

p(x, y) = p0(x0)

N∏

k=1

p(xk|xk−1)p(yk|xk), (5.159)

its factor graph is shown in Fig. 5.14(a). Filtering corresponds to forward
sum-product message passing through this factor graph. The standard
unconditional BCRB for filtering is also computed in a forward sweep, as
illustrated in Fig. 5.14(b) (ignore at this point the backward messages µ̃B

and µB); by applying the update rules (5.104) and (5.111) to the factor
graph of Fig. 5.14(a), one obtains the recursion (k = 0, . . . , N − 1):

µ̃
F
k+1 =

([(
G + diag(µF

k , 0)
)−1
]

22

)−1

(5.160)

=

(([
µ

F
k + Gk,11 Gk,12

Gk,21 Gk,22

]−1
)

22

)−1

(5.161)

= Gk,22 − Gk,21(µ
F
k + Gk,11)

−1Gk,12 (5.162)

µ
F
k+1 = µ̃

F
k+1 + µ

Y
k+1, (5.163)

where:

Gk,11
△

= EXY [−∇xk
∇T

xk
log p(Xk+1|Xk)] (5.164)

Gk,12
△

= [Gk,21]
T=EXY [−∇xk

∇T
xk+1

log p(Xk+1|Xk)] (5.165)

Gk,22
△

= EXY [−∇xk+1
∇T

xk+1
log p(Xk+1|Xk)] (5.166)

µ
Y
k

△

= EXY [−∇xk
∇T

xk
log p(Yk|Xk)]. (5.167)

5.3. Cramér-Rao-Type Bounds From Joint Densities 227

The recursion is initialized by:

µ
F
0 = EX0 [−∇x0∇T

x0
log p0(X0)]. (5.168)

If the expectations (5.164)–(5.167) cannot be evaluated analytically, they
can easily be evaluated by Monte-Carlo methods; indeed, in most appli-
cations, it is easy to sample from p(xk, xk+1) and p(xk, yk). The standard
unconditional BCRB for filtering is then (k = 1, . . . , N):

EXY [(x̂k(Y) −Xk)(x̂k(Y) −Xk)T]
△

= Ekk �
(
µ

F
k

)−1
, (5.169)

which was derived earlier in [192]. We have thus shown that the recur-
sion of [192] can be viewed as forward-only message passing on the factor
graph of (5.159). In the following, we derive the standard unconditional
BCRB for smoothing, which to our knowledge is novel. Smoothing cor-
responds to updating messages according to the sum-product rule in a
forward and a backward sweep [119]. Not surprisingly, the correspon-
ding standard unconditional BCRB is also computed by a forward and
backward sweep (Fig. 5.14(b)); the forward recursion is given by (5.160)–
(5.168), the backward recursion for µ̃

B
k and µ

B
k is analogous. The back-

ward recursion is initialized by µ̃
B
N = 0. The standard unconditional

BCRB for smoothing is given by (k = 1, . . . , N):

Ekk �
(
µ̃

F
k + µ̃

B
k + µ

Y
k

)−1
. (5.170)

Example 5.6. (BCRB for unmodulated time-variant phase)
We consider a channel of the form:

Yk = ejΘk +Nk, (5.171)

where Nk is an i.i.d. complex Gaussian random variable with (known)
variance 2σ2

N , i.e., σ2
N per dimension. The evolution of the phase Θk is

modelled as a random-walk process:

Θk = (Θk−1 +Wk) mod 2π, (5.172)

where Wk is a zero-mean (real) Gaussian random variable with known
variance σ2

W . The joint pdf of the system is given by

p(θ, y) = p0(θ0)

N∏

k=1

p(θk|θk−1)p(yk|θk), (5.173)

228 Chapter 5. Computing Cramér-Rao-Type Bounds

=

yk

ΘkΘk−1.

p(yk|θk)

p(θk|θk−1)

Figure 5.10: Factor graph of (5.173).

where

p(θk|θk−1)
△

= (2πσ2
W)−1/2

∑

n∈Z

e−((θk−θk−1)+n2π)2/2σ2
W , (5.174)

and

p(yk|zk)
△

= (2πσ2
N)−1 e−|yk−zk|

2/2σ2
N . (5.175)

In the following, we will assume that p0(θ0) = 1/2π for all Θ0 ∈ [0, 2π). A
factor graph of the model (5.173) is shown in Fig. 5.10. The figure shows
only one section (“time slice”) of the graph; the total graph consists of
many such sections, one for each time index k.

We investigate here the unconditional BCRB for the problem of esti-
mating the phase Θ from N observations y1, . . . , yN . The system (5.173)
is a state-space model with freely evolving state, hence, we can apply the
update rules we derived earlier in this section. In this case,

Gkk
k = EΘ

[

− d2

dθ2k
log p(Θk+1|Θk)

]

≈ 1

σ2
W

(5.176)

Gk k+1
k = −Gkk

k (5.177)

Gk+1 k+1
k = Gk k

k (5.178)

µ
Y
k = EΘY

[

− d2

dθ2k
log p(Yk+1|Θk+1)

]

=
1

σ2
N

. (5.179)

No closed-form expression exists for Gkk
k ; the approximation (5.176) is

satisfactory as long as σ2
W ≤ 1, as can be seen from Fig. 5.11. We obtain

5.3. Cramér-Rao-Type Bounds From Joint Densities 229

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σW

G
k
k

k
·σ

2 W

Figure 5.11: Gkk
k · σ2

W as a function of σW .

the forward and backward recursion

µ̃
F
k =

1

σ2
W

− 1

σ4
W

(

µ
F
k−1 +

1

σ2
W

)−1

(5.180)

µ
F
k = µ̃

F
k +

1

σ2
N

(5.181)

µ̃
B
k =

1

σ2
W

− 1

σ4
W

(

µ
B
k+1 +

1

σ2
W

)−1

(5.182)

µ
B
k = µ̃

B
k +

1

σ2
N

. (5.183)

The standard unconditional BCRB for filtering and smoothing is given
by (5.169) and (5.170), where the involved messages are given by (5.180)–
(5.183). In Fig. 5.12, those BCRBs are shown for particular values of σ2

N

and σ2
W . As can be seen from Fig. 5.12, the BCRB for filtering (forward

sweep) decreases as k increases; the BCRB eventually converges to a
steady-state value—as one would expect. The same holds for the BCRB
of the backward sweep. The BCRB for smoothing attains the largest
values at both ends of the block (i.e., for k = 1 and k = N); it evolves
to a steady-state value towards the middle of the block. The standard
unconditional BCRB for the MSE averaged over a block of length N=
100 is shown in Fig. 5.13. As expected, the BCRB decreases as the
variances σ2

N and σ2
W decrease.

Note that the BCRBs are only valid as σ2
N → 0, since the prior p(θ)

230 Chapter 5. Computing Cramér-Rao-Type Bounds

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

k

B
C

R
B

[r
a
d

2
]

Figure 5.12: BCRBs for unmodulated random-walk phase model with

N = 100, σN = 0.446 rad (4dB) and σ2
W = 10−4 rad2;

Shown are the BCRB of the forward sweep, i.e., filter-
ing (dashed line), BCRB of the backward sweep (dashed-
dotted), and BCRB of smoothing (solid).

defined as:

p(θ)
△

= p0(θ0)

N∏

k=1

p(θk|θk−1), (5.184)

is non-zero at the boundary of its support.

�

So far, we have considered state-space models with freely evolving state.
We now focus on general state-space models, i.e., input-driven state-
space models. The pdf p(u, x, y) of such a system is given by:

p(u, x, y) = p0(x0)

N∏

k=1

p(uk, xk, yk|xk−1), (5.185)

where U is the input process. The factor graph of (5.185) is shown
in Fig. 5.15(a), where pk stands for the factor p(uk, xk, yk|xk−1), for k =
1, 2, . . . Applying the update rule (5.104) to this factor graph amounts

5.3. Cramér-Rao-Type Bounds From Joint Densities 231

−1 0 1 2 3 4
10

−3

10
−2

10
−1

10
0

σ
W

 = 0
σ

W
 = 0.001

σ
W

 = 0.01
σ

W
 = 0.1

σ
W

 = 1

SNR [dB]

B
C

R
B

[r
a
d

2
]

Figure 5.13: BCRB for the MSE averaged over a block of length N =

100, with σ2
W = 0, 10−6, 10−4, 10−2, and 1 rad2.

to the forward recursion (see Fig. 5.15(b)) (k = 0, . . . , N − 1):

µ
F
k+1 =

([(
G + diag(µF

k , 0, 0)
)−1
]

22

)−1

(5.186)

=

µ
F
k + Gk,11 Gk,12 Gk,13

Gk,21 Gk,22 Gk,23

Gk,31 Gk,32 Gk,33

−1

22

−1

(5.187)

and a similar backward recursion (k = 0, . . . , N − 1):

µ
B
k =

([(
G + diag(0,µB

k+1, 0)
)−1
]

11

)−1

(5.188)

=

Gk,11 Gk,12 Gk,13

Gk,21 Gk,22 + µ
B
k+1 Gk,23

Gk,31 Gk,32 Gk,33

−1

11

−1

, (5.189)

where:

Gk,11
△

= EUXY [−∇xk
∇T

xk
log p(Uk+1, Yk+1, Xk+1|Xk)] (5.190)

232 Chapter 5. Computing Cramér-Rao-Type Bounds

X1

p0(x0)

X2

p(y1|x1) p(y2|x2)

p(x1|x0) p(x2|x1)

==
X0

. . .

y1 y2

(a) Factor graph.

== . . .

µ̃
B
0 µ

B
2µ

B
1 µ̃

B
2µ̃

B
1

µ
F
0 µ̃

F
2µ̃

F
1 µ

F
2µ

F
1

µ
Y
1 µ

Y
2

y1 y2

(b) Summary propagation.

Figure 5.14: State space model with freely evolving state.

5.3. Cramér-Rao-Type Bounds From Joint Densities 233

Gk,12
△

= EUXY [−∇xk
∇T

xk+1
log p(Uk+1, Yk+1, Xk+1|Xk)] (5.191)

Gk,13
△

= EUXY [−∇xk
∇T

uk+1
log p(Uk+1, Yk+1, Xk+1|Xk)] (5.192)

Gk,22
△

= EUXY [−∇xk+1
∇T

xk+1
log p(Uk+1, Yk+1, Xk+1|Xk)] (5.193)

Gk,23
△

= EUXY [−∇xk+1
∇T

uk+1
log p(Uk+1, Yk+1, Xk+1|Xk)] (5.194)

Gk,33
△

= EUXY [−∇uk+1
∇T

uk+1
log p(Uk+1, Yk+1, Xk+1|Xk)], (5.195)

and Gk,ij = [Gk,ji]
T

for i, j = 1, 2 and 3. To compute the expecta-
tions (5.190)–(5.195), the joint pdf p(uk+1, xk, xk+1, yk+1) is required. It
is usually straightforward to sample from p(uk+1, xk, xk+1, yk+1). There-
fore, when a closed-form expression for the expectations (5.190)–(5.195)
does not exist, they may be evaluated by Monte Carlo methods, as in
state-space models with freely evolving state. The forward recursion is
initialized by:

µ
F
0 = EX0 [−∇x0∇T

x0
log p0(X0)]. (5.196)

The backward recursion is initialized by µ
B
N = 0.

p0(x0)
p1

y1 y2

p2

X0 X1 X2

U1 U2

. . .

(a) Factor graph.

y1 y2

. . .

µ
B
0

µ
F
0

µ
B
1

µ
F
1

µ
B
2

µ
F
2

µ
U
1 µ

U
2

(b) Summary propagation.

Figure 5.15: General state-space model.

234 Chapter 5. Computing Cramér-Rao-Type Bounds

The standard unconditional BCRB for filtering Xk is again given by
(5.169), where the messages µ

F
k are now updated according to (5.186)–

(5.187); the standard unconditional BCRB for smoothing Xk is of the
form (k = 1, . . . , N):

EXkY [(x̂k(Y) −Xk)(x̂k(Y) −Xk)T] �
(
µ

F
k + µ

B
k

)−1
. (5.197)

The messages µ
U
k (see Fig. 5.15(b)) are computed from the messages µ

F
k

and µ
B
k as (k = 0, . . . , N − 1):

µ
U
k+1 =

([(
G + diag(µF

k ,µ
B
k+1, 0)

)−1
]

33

)−1

(5.198)

=

Gk,11 + µ
F
k Gk,12 Gk,13

Gk,21 Gk,22 + µ
B
k+1 Gk,23

Gk,31 Gk,32 Gk,33

−1

33

−1

. (5.199)

The standard unconditional BCRB for filtering and smoothing the in-
put Uk is given by (k = 1, . . . , N):

EUkY [(ûk(Y) − Uk)(ûk(Y) − Uk)T] �
[
µ

U
k

]−1
. (5.200)

The message µ
B
k+1 in (5.199) is a zero matrix in the case of filtering; for

smoothing, µ
B
k+1 is computed by the recursion (5.188)–(5.189).

Example 5.7. (BCRB for dynamical systems perturbed by ad-
ditive Gaussian noise)
We consider the (non-linear) dynamical system:

Xk+1 = fk(Xk) +Wk (5.201)

Yk = hk(Xk) +Nk, (5.202)

where Xk ∈ R
n, Yk ∈ R

m, fk(·) and hk(·) are in general non-linear func-
tions, and Wk ∈ Rn and Nk ∈ Rm are i.i.d. zero-mean Gaussian random
vectors with (known) covariance matrices Qk ∈ Rn×n and Rk ∈ Rm×m

respectively. A factor graph of (5.201)–(5.202) is depicted in Fig. 5.16(a).
The figure shows only one section (“time slice”) of the graph; the total
graph consists of many such sections, one for each time index k. In
the following, we compute the standard unconditional BCRB for esti-
mating the state Xk from observations y1, . . . , yN . We can not directly
apply the BCRB summary-propagation algorithm to the factor graph
of Fig. 5.16(a), since the graph contains deterministic nodes, i.e., two ad-
dition nodes and the (deterministic nodes) corresponding to fk and hk.

5.3. Cramér-Rao-Type Bounds From Joint Densities 235

+

=+

yk

N

N

hk

Wk

Nk

fk

XkXk−1

(a) Factor graph with deterministic nodes.

=

+

+

yk

N

N

hk

Wk

Nk

fk

XkXk−1

p(yk|xk)

p(xk|xk−1)

(b) Boxing.

Figure 5.16: Factor graph of (5.201)–(5.202).

236 Chapter 5. Computing Cramér-Rao-Type Bounds

We solve this problem by combining the deterministic nodes with conti-
nuous nodes (“boxing”) as illustrated in Fig. 5.16(b). The upper dashed
box stands for the factor:

p(xk|xk−1)
△

=
1

√

(2π)n |Qk|
e−1/2(xk−fk(xk−1))

T Q
−1
k

(xk−fk(xk−1))(5.203)

= N (xk | fk(xk−1),Qk) (5.204)

the other dashed box stands for the factor:

p(yk|xk)
△

=
1

√

(2π)m |Rk|
e−1/2(yk−hk(xk))T R−1

k
(xk−hk(xk)) (5.205)

= N (yk | h(xk),Rk) . (5.206)

By applying the update rules of Section 5.3.1 to the graph of Fig. 5.16(b),
one obtains the forward recursion (5.160)–(5.163), and a similar back-
ward recursion, where:

Gk,11
△

= EXY [−∇xk
∇T

xk
log p(Xk+1|Xk)] (5.207)

= EX [CT
k+1Q

−1
k Ck+1] (5.208)

Gk,12
△

= [Gk,21]
T=EXY [−∇xk

∇T
xk+1

log p(Xk+1|Xk)] (5.209)

= −EX [CT
k+1]Q

−1
k (5.210)

Gk,22
△

= EXY [−∇xk+1
∇T

xk+1
log p(Xk+1|Xk)] (5.211)

= Q−1
k (5.212)

µ
Y
k

△

= EXY [−∇xk
∇T

xk
log p(Yk|Xk)] (5.213)

= EX [DT
k+1R

−1
k+1Dk+1], (5.214)

with

CT
k+1 = ∇xk

fT
k (xk) (5.215)

DT
k+1 = ∇xk+1

hT
k+1(xk+1). (5.216)

The forward recursion (5.160)–(5.163) can be written as:

µ
F
k+1 = Q−1

k − Q−1
k EX [Ck+1](µ

F
k + EX [CT

k+1Q
−1
k Ck+1])

−1

·EX [CT
k+1]Q

−1
k + EX [DT

k+1R
−1
k+1Dk+1]. (5.217)

The forward recursion (5.217) was derived earlier in [192]. The backward
recursion is similar. The standard unconditional BCRB for filtering and
smoothing is given by (5.169) and (5.170) respectively.

5.3. Cramér-Rao-Type Bounds From Joint Densities 237

+

=+

yk

N

N

Bk

Wk

Nk

Ak

XkXk−1

Figure 5.17: Factor graph of (5.218) (5.219).

We now consider the linear dynamical system8 (see Fig. 5.17):

Xk+1 = AkXk +Wk (5.218)

Yk = BkXk +Nk, (5.219)

where the matrices Ak and Bk are known (“given”). Note that the two
factors (5.205) and (5.206) are in this case Gaussian distributions in X
and Y :

p(xk|xk−1)
△

=
1

√

(2π)n |Qk|
e−1/2(xk−Akxk−1)

T Q
−1
k

(xk−Akxk−1) (5.220)

p(yk|xk)
△

=
1

√

(2π)m |Rk|
e−1/2(yk−Bkxk)T R−1

k
(xk−Bkxk) (5.221)

Therefore, the joint pdf p(x, y) is Gaussian.

The expressions (5.207)–(5.214) reduce to:

Gk,11
△

= EXY [−∇xk
∇T

xk
log p(Xk+1|Xk)] (5.222)

= AT
k+1Q

−1
k Ck+1 (5.223)

Gk,12
△

= [Gk,21]
T=EXY [−∇xk

∇T
xk+1

log p(Xk+1|Xk)] (5.224)

= −BT
k+1Q

−1
k (5.225)

8Estimation in linear dynamical systems is reviewed in Appendix H.

238 Chapter 5. Computing Cramér-Rao-Type Bounds

Gk,22
△

= EXY [−∇xk+1
∇T

xk+1
log p(Xk+1|Xk)] (5.226)

= Q−1
k (5.227)

µ
Y
k

△

= EXY [−∇xk
∇T

xk
log p(Yk|Xk)] (5.228)

= BT
k+1R

−1
k+1Bk+1, (5.229)

and the recursion (5.217) becomes:

µ
F
k+1 = Q−1

k − Q−1
k Ak+1(µ

F
k + AT

k+1Q
−1
k Ak+1)

−1

·AT
k+1Q

−1
k + BT

k+1R
−1
k+1Bk+1. (5.230)

The recursion (5.230) may look familiar to the reader who has some
background in Kalman filtering (see Appendix H). Indeed, the recur-
sion (5.230) is nothing but the Kalman update rule for inverse covariance
matrices. Table H.3 contains the Kalman update rules for two standard
(compound) nodes; the update rules for the mean (m), covariance ma-
trix (V) and inverse covariance matrix (W) are given. If one applies the
update rules 5 and 6 for W to the graph of Fig. 5.17, one obtains (5.230).
This does not come as a surprise: We underlined earlier that the joint
pdf p(x, y) of the system (5.218)–(5.219) is Gaussian; the standard un-
conditional BCRB (5.25) holds with equality if p(x, y) is Gaussian, as we
mentioned at the beginning of this chapter. �

5.3.7 Cyclic Graphical Models

So far, we have developed message passing algorithms for computing
Cramér-Rao-type bounds for systems represented by cycle-free graphs.
Many systems, however, are most naturally represented by cyclic factor
graphs, e.g., coupled state-space models, which are ubiquitous in signal
processing. Since the summary propagation algorithms of Section 5.3.1
to 5.3.5 perform local update rules, they could in principle also be ap-
plied to a cyclic graph. Because of the cycle(s), the algorithms would be
iterative with no natural termination; in addition, one would not obtain
the exact (B)CRBs. In order to obtain the exact (B)CRBs, one needs
to transform the cyclic factor graph into a cycle-free graph, for exam-
ple by clustering or stretching certain nodes and edges [103]. Compu-
ting (B)CRBs by applying the summary propagation algorithm on the
resulting cycle-free graph is most often feasible, since the computational
complexity scales cubically (not exponentially!) with the cluster size.

5.3. Cramér-Rao-Type Bounds From Joint Densities 239

As an illustration, we compute the standard unconditional BCRBs for
the problem of estimating the parameters of a state-space model, which
is a standard problem in signal processing; we first consider constant
parameters, then, time-variant parameters. For the model with constant
parameters, we will derive the standard unconditional BCRBs explicitly
by applying the matrix inversion lemma to the unconditional Bayesian
information matrix. This will amount to message passing on a cycle-free
factor graph obtained by clustering. For the model with time-variant
parameters, we will list the message update rules for computing the stan-
dard unconditional BCRBs (without deriving them explicitly).

From both examples, it will become clear how the general update rule
(5.104) for standard unconditional BCRBs (and likewise for the other
(B)CRB update rules) can be extended to factor graphs in which some
of the variables are represented by several edges, as is often the case after
clustering or stretching [103].

State-Space Model with Constant Parameters

As a first example, we consider a state-space model whose transition
probabilities p(xk|xk−1, θ) are parametrized by an unknown constant pa-
rameter vector Θ with prior pΘ(θ). Such a system is in general described
by the pdf

p(θ, x, y)
△

= pΘ(θ)p0(x0)

N∏

k=1

p(xk|xk−1, θ)p(yk|xk). (5.231)

A factor graph that represents (5.231) withN = 4 is shown in Fig. 5.18(a).
As an illustration, we compute the standard unconditional BCRB for the
variable X3 and Θ; the other variables Xk (k = 0, 1, 2, 4) can be handled
similarly. As in Section 5.3.1, we will determine the BCRBs by recur-
sively applying the matrix inversion lemma (Lemma K.2). It will amount
to BCRB summary propagation on the tree depicted in Fig. 5.18(c), ob-
tained by clustering the state variables Xk and the parameter Θ, as
shown in Fig. 5.18(b).

240 Chapter 5. Computing Cramér-Rao-Type Bounds

y1 y2 y3 y4

= =

==

= =

==Θ
pθ(Θ)

p0(x0)

p(x1|x0, θ) p(x2|x1, θ) p(x3|x2, θ) p(x4|x3, θ)

p(y1|x1) p(y2|x2) p(y3|x3) p(y4|x4)

X0

X1 X2 X3 X4

(a) Factor graph.

y1 y2 y3 y4

= =

==

= =

==Θ

X0

X1 X2 X3 X4

(b) Clustering.

y1 y2 y3 y4

====
µ

F
0 µ̃

F
1 µ

F
1 µ̃

F
2

µ
F
2 µ̃

F
3 µ

F
3

µ̃
B
3 µ

B
4

µ
U
1 µ

U
2 µ

U
3 µ

U
4

(X0,Θ) (X1,Θ) (X2,Θ) (X3,Θ) (X4,Θ)

(c) Summary propagation.

Figure 5.18: Estimation of (constant) parameters of a state-space
model.

5.3. Cramér-Rao-Type Bounds From Joint Densities 241

The unconditional Bayesian information matrix of (5.231) equals:

J=

f00
0 +f00

1 f01
1 0 0 f0θ

1 0

f10
1 y11

1 +f11
1 +f11

2 f12
2 0 f1θ

1 +f1θ
2 0

0 f21
2 y22

2 +f22
2 +f22

3 f23
3 f2θ

2 +f2θ
3 0

0 0 f32
3 y33

3 +f33
3 +f33

4 f3θ
3 +f3θ

4 f34
4

fθ0
1 fθ1

1 +fθ1
2 fθ2

2 +fθ2
3 fθ3

3 +fθ3
4 fθθ

θ +
P4

i=1f
θθ
i fθ4

4

0 0 0 f43
4 f4θ

4 y44
4 +f44

4

,

(5.232)
where

f00
0

△

= −EX [∇x0∇T
x0

log p0(X0)], (5.233)

fθθ
θ

△

= −EΘ[∇θ∇T
θ log pΘ(Θ)], (5.234)

and for k = 1, . . . , 4,

ykk
k

△

= −EXY Θ[∇xk
∇T

xk
log p(Yk|Xk)], (5.235)

f ij
k

△

= −EXΘ[∇xi
∇T

xj
log p(Xk|Xk−1,Θ)], (5.236)

f iθ
k

△

= −EXΘ[∇xi
∇T

θ log p(Xk|Xk−1,Θ)], (5.237)

fθi
k

△

=
[
f iθ
k

]T
, (5.238)

fθθ
k

△

= −EXΘ[∇θ∇T
θ log p(Xk|Xk−1,Θ)]. (5.239)

The first four rows and columns of J correspond to X0 through X3,
whereas the fifth and the sixth row and column correspond to Θ and X4

respectively. Obviously, one has the freedom to order the rows and
columns in the Bayesian information matrix as one wishes. We have cho-
sen this specific order to make the connection to BCRB summary propa-
gation as clear as possible. From the standard unconditional BCRB (5.25)
and the definition (5.232) of the unconditional Bayesian information ma-
trix, it follows:

EXY [(x̂3(Y) −X3)(x̂3(Y) −X3)
T] � [J−1]44 (5.240)

EΘY [(θ̂(Y) − Θ)(θ̂(Y) − Θ)T] � [J−1]55. (5.241)

In the following, we compute [J−1]44 and [J−1]55 by means of the ma-
trix inversion lemma. First, we apply this lemma to J (cf. Lemma K.2

242 Chapter 5. Computing Cramér-Rao-Type Bounds

with A
△

= J, A11
△

= J1:1 and A22
△

= J2:6), which leads to

J(26) △

=([J−1]2:6)
−1 (5.242)

=

y11
1 +f11

1 +f11
2 f12

2 0 f1θ
1 +f1θ

2 0

f21
2 y22

2 +f22
2 +f22

3 f23
3 f2θ

2 +f2θ
3 0

0 f32
3 y33

3 +f33
3 +f33

4 f3θ
3 +f3θ

4 f34
4

fθ1
1 +fθ1

2 fθ2
2 +fθ2

3 fθ3
3 +fθ3

4 fθθ
θ +

P4
i=1f

θθ
i fθ4

4

0 0 f43
4 f4θ

4 y44
4 +f44

4

−
[

f10
1 0 0 0 fθ0

1

]T (
f00
0 + f00

1

)−1
[

f10
1 0 0 0 fθ0

1

]

(5.243)

=

µ
F
1,11+f11

2 f12
2 0 µ

F
1,12+f1θ

2 0

f21
2 y22

2 +f22
2 +f22

3 f23
3 f2θ

2 +f2θ
3 0

0 f32
3 y33

3 +f33
3 +f33

4 f3θ
3 +f3θ

4 f34
4

µ
F
1,21+fθ1

2 fθ2
2 +fθ2

3 fθ3
3 +fθ3

4 µ
F
1,22+

P4
i=2 fθθ

i fθ4
4

0 0 f43
4 f4θ

4 y44
4 +f44

4

,

where
µ

F
1

△

= µ̃
F
1 + µ

U
1 , (5.244)

with

µ̃
F
1

△

=

[

µ̃
F
1,11 µ̃

F
1,12

µ̃
F
1,21 µ̃

F
1,22

]

(5.245)

△

=

f00
0 + f00

1 f01
1 f0θ

1

f10
1 f11

1 f1θ
1

fθ0
1 fθ1

1 fθθ
θ + fθθ

1

−1

2:3

−1

, (5.246)

and

µ
U
1

△

=

[

y11
1 0

0 0

]

. (5.247)

We now define

µ
F
0

△

=

[

µ
F
0,11 µ

F
0,12

µ
F
0,21 µ

F
0,22

]

△

=

[
f00
0 0
0 fθθ

θ

]

, (5.248)

therefore

µ̃
F
1 =

(([
MF

0 + F1

]−1
)

2:3

)−1

, (5.249)

5.3. Cramér-Rao-Type Bounds From Joint Densities 243

where

MF
0

△

=

µ
F
0,11 0 µ

F
0,12

0 0 0

µ
F
0,21 0 µ

F
0,22

 , (5.250)

and

F1
△

=

f00
1 f01

1 f0θ
1

f10
1 f11

1 f1θ
1

fθ0
1 fθ1

1 fθθ
1

 . (5.251)

The matrix µ
F
0 is the summary of the left most dashed box in Fig. 5.18(b),

whereas µ̃
F
1 summarizes the two left most dashed boxes. One obtains

the message µ
F
1 from µ̃

F
1 by incorporating the observation y1 accor-

ding to (5.244). The latter is nothing but the BCRB message update
rule (5.111) for equality constraint nodes, applied to the component X1;
the entries corresponding to Θ remain unchanged.

Along the same lines, one obtains

J(36) △

= ([J−1]3:6)
−1 (5.252)

=

y22
2 + f22

2 + f22
3 f23

3 f2θ
2 + f2θ

3 0

f32
3 y33

3 + f33
3 + f33

4 f3θ
3 + f3θ

4 f34
4

fθ2
2 + fθ2

3 fθ3
3 + fθ3

4 µ
F
1,22 +

P4
i=2 fθθ

i fθ4
4

0 f43
4 f4θ

4 y44
4 + f44

4

−h

f21
2 0 0 fθ1

2

iT (
µ

F
1,11 + f

11
2

�−1
h
f21
2 0 0 fθ1

2

i
(5.253)

=

µ
F
2,11 + f22

3 f23
3 µ

F
2,12 + f2θ

3 0

f32
3 y33

3 + f33
3 + f33

4 f3θ
3 + f3θ

4 f34
4

µ
F
2,21 + fθ2

3 fθ3
3 + fθ3

4 µ
F
2,22 +

P4
i=3 fθθ

i fθ4
4

0 f43
4 f4θ

4 y44
4 + f44

4

, (5.254)

where

µ
F
2

△

= µ̃
F
2 + µ

U
2 , (5.255)

µ̃
F
2

△

=

[

µ̃
F
2,11 µ̃

F
2,12

µ̃
F
2,21 µ̃

F
2,22

]

△

=
(([

MF
1 + F2

]−1
)

2:3

)−1

, (5.256)

244 Chapter 5. Computing Cramér-Rao-Type Bounds

and

µ
U
2

△

=

[

y22
2 0

0 0

]

, (5.257)

with

MF
1

△

=

µ
F
1,11 0 µ

F
1,12

0 0 0

µ
F
1,21 0 µ

F
1,22

 , (5.258)

and

F2
△

=

f11
2 f12

2 f1θ
2

f21
2 f22

2 f2θ
2

fθ1
2 fθ2

2 fθθ
2

 , (5.259)

The matrices µ̃
F
2 and µ̃

F
2 can be interpreted as messages, as depicted

in Fig. 5.18(c). The message µ
F
2 is computed from µ̃

F
2 by incorporating

the observation y2 according to (5.255), which is completely analogous
to (5.244).

One obtains J(46) from J(36) as follows

J(46) △

= ([J−1]4:6)
−1 (5.260)

=

µ
F
3,11 + f33

4 µ
F
3,12 + f3θ

4 f34
4

µ
F
3,21 + fθ3

4 µ
F
3,22 + fθθ

4 fθ4
4

f43
4 f4θ

4 y44
4 + f44

4

(5.261)

where
µ

F
3

△

= µ̃
F
3 + µ

U
3 , (5.262)

µ̃
F
3

△

=

[

µ̃
F
3,11 µ̃

F
3,12

µ̃
F
3,21 µ̃

F
3,22

]

(5.263)

△

=
(([

MF
2 + F3

]−1
)

2:3

)−1

, (5.264)

and

µ
U
3

△

=

[

y33
3 0

0 0

]

, (5.265)

5.3. Cramér-Rao-Type Bounds From Joint Densities 245

with

MF
2

△

=

µ
F
2,11 0 µ

F
2,12

0 0 0

µ
F
2,21 0 µ

F
2,22

 , (5.266)

and

F3
△

=

f22
3 f23

3 f2θ
3

f32
3 f33

3 f3θ
3

fθ2
3 fθ3

3 fθθ
3

 . (5.267)

Similarly, J(45) is given by

J(45) △

= ([J−1]4:5)
−1 (5.268)

△

= µ
tot
3

△

= µ
F
3 + µ̃

B
3 (5.269)

=

[

µ
F
3,11 + µ̃

B
3,11 µ

F
3,12 + µ̃

B
3,12

µ
F
3,21 + µ̃

B
3,21 µ

F
3,22 + µ̃

B
3,22

]

, (5.270)

where

µ̃
B
3

△

=

[

µ̃
B
3,11 µ̃

B
3,12

µ̃
B
3,21 µ̃

B
3,22

]

(5.271)

△

=

f33
4 f3θ

4 f34
4

fθ3
4 fθθ

4 fθ4
4

f43
4 f4θ

4 y44
4 + f44

4

−1

1:2

−1

. (5.272)

We now define

µ
B
4

△

=

[

µ
B
4,11 µ

B
4,12

µ
B
4,21 µ

B
4,22

]

△

=

[
0 0
0 y44

4

]

. (5.273)

As a consequence,

µ̃
B
3 =

f33
4 f3θ

4 f34
4

fθ3
4 µ

B
4,11 + fθθ

4 µ
B
4,12 + fθ4

4

f43
4 µ

B
4,21 + f4θ

4 µ
B
4,22 + f44

4

−1

1:2

−1

(5.274)

246 Chapter 5. Computing Cramér-Rao-Type Bounds

=

µ
B
4,11 + f44

4 f43
4 µ

B
4,12 + f4θ

4

f34
4 f33

4 f3θ
4

µ
B
4,21 + fθ4

4 fθ3
4 µ

B
4,22 + fθθ

4

−1

2:3

−1

. (5.275)

=
(([

MB
4 + F4

]−1
)

2:3

)−1

, (5.276)

with

MB
4 =

µ
B
4,11 0 µ

B
4,120

0 0 0

µ
B
4,21 0 µ

B
4,22

 , (5.277)

and

F4 =

f33
4 f3θ

4 f34
4

fθ3
4 fθθ

4 fθ4
4

f43
4 f4θ

4 f44
4

 . (5.278)

The equality (5.275) follows from Lemma K.5. Note that the back-
ward recursion (5.276) is analogous to the forward message update equa-
tions (5.249), (5.256), and (5.264).

Eventually,
[
J−1

]

44
is obtained as

[
J−1

]

44
=

[

µ
tot
3,11 µ

tot
3,12

µ
tot
3,21 µ

tot
3,22

]−1

11

. (5.279)

The diagonal elements
[
J−1

]

kk
corresponding to the other coordinatesXk

(k = 1, 2, 3) can be determined along the same lines. The diagonal ele-
ment

[
J−1

]

55
, corresponding to Θ, is given by

[
J−1

]

55
=

[

µ
tot
3,11 µ

tot
3,12

µ
tot
3,21 µ

tot
3,22

]−1

22

. (5.280)

In conclusion: the diagonal elements of the inverse unconditional Bayesian
information matrix can be computed by message passing, as illustrated
in Fig. 5.18(c). The messages are computed in a forward and backward
sweep.

5.3. Cramér-Rao-Type Bounds From Joint Densities 247

The forward messages are updated in two steps: first, the intermediate
messages µ̃

F
k are obtained from µ

F
k−1 (cf. (5.249), (5.256), and (5.264))

(k = 1, . . . , N):

µ̃
F
k

△

=

[

µ̃
F
k,11 µ̃

F
k,12

µ̃
F
k,21 µ̃

F
k,22

]

(5.281)

△

=
(([

MF
k−1 + Fk

]−1
)

2:3

)−1

. (5.282)

where

MF
k−1

△

=

µ
F
k−1,11 0 µ

F
k−1,12

0 0 0

µ
F
k−1,21 0 µ

F
k−1,22

 , (5.283)

and

Fk
△

=

fk−1 k−1
k fk−1 k

k fk−1 θ
k

fk k−1
k fkk

k fkθ
k

fθ k−1
k fθk

k fθθ
k

 . (5.284)

Next, the messages µ
F
k are computed from µ̃

F
k and µ

U
k (cf. (5.244),

(5.255), and (5.262)) (k = 1, . . . , N):

µ
F
k

△

= µ̃
F
k + µ

U
k , (5.285)

where

µ
U
k

△

=

[

ykk
k 0

0 0

]

. (5.286)

The backward messages µ̃
B
k and µ

B
k (k = 1, . . . , N) are determined like-

wise.

The forward recursion is initialized as:

µ
F
0

△

=

[

µ
F
0,11 µ

F
0,12

µ
F
0,21 µ

F
0,22

]

△

=

[
f00
0 0
0 fθθ

θ

]

, (5.287)

the backward recursion is initialized as:

µ̃
B
N

△

=

[

µ̃
B
N,11 µ̃

B
N,12

µ̃
B
N,21 µ̃

B
N,22

]

△

=

[
0 0
0 0

]

. (5.288)

248 Chapter 5. Computing Cramér-Rao-Type Bounds

We define the messages µ
tot
k as (k = 1, . . . , N):

µ
tot
k

△

= µ̃
F
k + µ

B
k (5.289)

= µ
F
k + µ̃

B
k . (5.290)

The standard unconditional BCRB for the variable Xk is then obtained
as (k = 1, . . . , N):

EXY [(x̂k(Y) −Xk)(x̂k(Y) −Xk)T] (5.291)

�

[

µ
tot
k,11 µ

tot
k,12

µ
tot
k,21 µ

tot
k,22

]−1

11

−1

(5.292)

= µ
tot
k,11 −

(
µ

tot
k,21

)T (
µ

tot
k,22

)−1
µ

tot
k,12. (5.293)

Similarly, the standard unconditional BCRB for Θ is given by

EΘY [(θ̂(Y) − Θ)(θ̂(Y) − Θ)T] (5.294)

�

[

µ
tot
k,11 µ

tot
k,12

µ
tot
k,21 µ

tot
k,22

]−1

22

−1

(5.295)

= µ
tot
k,22 −

(
µ

tot
k,12

)T (
µ

tot
k,11

)−1
µ

tot
k,21, (5.296)

where k is arbitrary, i.e., the standard unconditional BCRB for Θ can
be obtained from any message µ

tot
k (k = 1, . . . , N).

State-Space Model with Time-Dependent Parameters

As a second example, we again consider a state-space model whose tran-
sition probabilities p(xk|xk−1, θk) are parametrized by an unknown pa-
rameter vector Θk. Now, the parameter vector Θk is time-variant : it is
described by a state-space model. The pdf of such a system is given by:

p(θ, x, y)
△

= p0(x0)

(
N∏

k=1

p(xk|xk−1, θk)p(yk|xk)

)

p1(θ1)

(
N∏

k=2

p(θk|θk−1)

)

,

(5.297)
which is depicted in Fig. 5.19(a). The system (5.297) consists of two
(coupled) state-space models: one for Xk, the other for Θk.

5.3. Cramér-Rao-Type Bounds From Joint Densities 249

The BCRBs can be computed by message passing on the tree shown
in Fig. 5.19(c), which was obtained by clustering the state variables Xk

with the parameters Θk (see Fig. 5.19(b)).

In the following, we will list the message update rules for the standard
unconditional BCRBs; they can be derived by means of the matrix inver-
sion lemma, as in the previous example. The extension to other BCRBs
it straightforward.

The messages are updated in two steps; first, the (intermediate) mes-
sages µ̃

F
k are obtained from µ

F
k−1 as (k = 1, . . . , N − 1):

µ̃
F
k

△

=

[

µ̃
F
k,11 µ̃

F
k,12

µ̃
F
k,21 µ̃

F
k,22

]

(5.298)

△

=
(([

MF
k−1 + Fk

]−1
)

2:3

)−1

, (5.299)

where

MF
k−1

△

=

µ
F
k−1,11 0 µ

F
k−1,12

0 0 0

µ
F
k−1,21 0 µ

F
k−1,22

 (5.300)

Fk
△

=

fk−1 k−1
k fk−1 k

k fk−1 k̂
k

fk k−1
k fkk

k fkk̂
k

f k̂ k−1
k f k̂k

k f k̂k̂
k

 , (5.301)

and

f ij
k

△

= −EXΘ[∇xi
∇T

xj
log p(Xk|Xk−1,Θk)]

△

=
[

f ji
k

]T

(5.302)

f ik̂
k

△

= −EXΘ[∇xi
∇T

θk
log p(Xk|Xk−1,Θk)]

△

=
[

f k̂i
k

]T

(5.303)

f k̂k̂
k

△

= −EXΘ[∇θk
∇T

θk
log p(Xk|Xk−1,Θk)]. (5.304)

Then, the messages µ
F
k are computed from µ̃

F
k as (k = 1, . . . , N):

µ
F
k

△

=

µ

F
k,11 µ

F
k,12

µ
F
k,21 µ

F
k,22

 (5.305)

250 Chapter 5. Computing Cramér-Rao-Type Bounds

= =

=== . . .

. . .

Θ1 Θ2 Θ3p1(θ1)

p0(x0)

p(x1|x0, θ1) p(x2|x1, θ2) p(x3|x2, θ3)

p(θ2|θ1) p(θ3|θ2)

p(y1|x1) p(y2|x2)

y1 y2

X0

X1 X2

(a) Factor graph.

=

=

=

==

. . .

. . .
Θ1 Θ2 Θ3

y1 y2

X0

X1 X2

µ
U
1 µ

U
2

(b) Clustering.

. . .

y1 y2

µ
F
0 µ̃

F
1 µ

F
1 µ̃

F
2 µ

F
2 µ

F
3

µ
B
0 µ

B
1 µ̃

B
1 µ

B
2 µ̃

B
2 µ

B
3

µ
U
1 µ

U
2

(X0, θ1) (X1, θ1) (X1, θ2) (X2, θ2) (X2, θ3) (X3, θ3)

X1 X2

(c) Summary propagation.

Figure 5.19: Estimation of (time-dependent) parameters of a state-
space model.

5.3. Cramér-Rao-Type Bounds From Joint Densities 251

△

=

(([

M̃F
k + MU

k + Gk+1

]−1
)

1:2

)−1

, (5.306)

where

M̃F
k

△

=

µ̃
F
k,11 0 µ̃

F
k,12

0 0 0

µ̃
F
k,21 0 µ̃

F
k,22

 (5.307)

MU
k

△

= diag(µU
k , 0, 0) (5.308)

Gk+1
△

=

0 0 0

0 gk̂+1 k̂+1
k+1 gk̂+1 k̂

k+1

0 gk̂ k̂+1
k+1 gk̂ k̂

k+1

, (5.309)

and

µ
U
k

△

= −EXY [∇xk
∇T

xk
log p(Yk|Xk)] (5.310)

gŝt̂
k

△

= −EXΘ[∇θs
∇T

θt
log p(Θk|Θk−1)]

△

=
[

gt̂ŝ
k

]T

. (5.311)

The backward messages µ̃
B
k and µ

B
k (k = 1, . . . , N) are updated similarly.

The forward recursion is initialized as:

µ
F
0

△

=

[

µ
F
0,11 µ

F
0,12

µ
F
0,21 µ

F
0,22

]

(5.312)

△

=

[

−EX0 [∇x0∇T
x0

log p0(X0)] 0

0 −EΘ1 [∇θ1∇T
θ1

log p1(Θ1)]

]

, (5.313)

The backward recursion is initialized as

µ̃
B
N

△

=

[

µ̃
B
N,11 µ̃

B
N,12

µ̃
B
N,21 µ̃

B
N,22

]

△

=

[
0 0
0 0

]

. (5.314)

We define the messages µ
tot
k as (k = 1, . . . , N):

µ
tot
k

△

= µ̃
F
k + µ

B
k (5.315)

= µ
F
k + µ̃

B
k . (5.316)

252 Chapter 5. Computing Cramér-Rao-Type Bounds

The standard unconditional BCRB for the variable Xk is then obtained
as (k = 1, . . . , N):

EXY [(x̂k(Y) −Xk)(x̂k(Y) −Xk)T] (5.317)

�
(([

µ
tot
k,11 µ

tot
k,12

µ
tot
k,21 µ

tot
k,22

]−1
)

11

)−1

(5.318)

= µ
tot
k,11 −

(
µ

tot
k,21

)T (
µ

tot
k,22

)−1
µ

tot
k,12. (5.319)

Similarly, the standard unconditional BCRB for the variable Θk is given
by (k = 1, . . . , N):

EΘY [(θ̂k(Y) − Θk)(θ̂k(Y) − Θk)T] (5.320)

�
(([

µ
tot
k,11 µ

tot
k,12

µ
tot
k,21 µ

tot
k,22

]−1
)

22

)−1

(5.321)

= µ
tot
k,22 −

(
µ

tot
k,12

)T (
µ

tot
k,11

)−1
µ

tot
k,21. (5.322)

5.3.8 Cramér-Rao-type Update Rules Revisited

Clustering and stretching typically amounts to graphs in which some
of the variables are represented by several edges (e.g., Θ in Fig. 5.18(c)
and Θk in Fig. 5.19(c)). The generic update rules of Section 5.3.1 to 5.3.5,
however, are only applicable to factor graphs where each variable corres-
ponds to one edge. From the previous two examples, we can learn how
the update rule (5.104) (for standard unconditional BCRBs) can be ex-
tended: one simply needs to generalize the update rules (5.282), (5.299),
and (5.306). In the following, we investigate how the rule (5.104) (for
standard unconditional BCRBs) should be adapted; the update rules for
the other (B)CRBs are modified similarly.

First, we need to introduce some definitions. Let S be a set of n vari-

ables, i.e., S
△

= {x1, x2, . . . , xn}. Suppose g(x1, x2, . . . , xn) is a real-
valued function of these variables. In Fig. 5.20, a factor graph of g is
shown, where Sk (k = 1, . . . , ℓ) stands for a (non-empty) subset of S,

such that S = S1 ∪ S2 . . . ∪ Sℓ. Let Sℓ
△

= {x1, x2, . . . , xm} (m ≤ n),
without any loss of generality. The messages µk along the edges Sk

are Nk ×Nk block matrices, where Nk is the cardinality of Sk. Each row
and column of the block matrix µk corresponds to one variable in Sk.

5.3. Cramér-Rao-Type Bounds From Joint Densities 253

PSfrag replacemen
S1

Sℓ−1

Sℓ

g. . .

Figure 5.20: BCRB update rule.

We denote the submatrix of µk at row s and column t by µk,st. We
define the n× n block matrices Mk as (k = 1, . . . , ℓ− 1):

Mk,ij
△

=

{
µk,st if row s and column t of µk correspond to xi and xj ,

0 otherwise,
(5.323)

where Mk,ij is the submatrix on the i-th row and j-th column of Mk.
The i-th row and column of Mk correspond thus to Xi.

We define the matrix G:

G
△

=

G11 . . . G1 n−1 G1n

... . . .
...

...
Gn−1 1 . . . Gn−1 n−1 Gn−1 n

Gn1 . . . Gn n−1 Gnn

, (5.324)

where

Gij
△

= −EXY [∇xi
∇T

xj
log g(X1, . . . , Xn, Y)] (5.325)

= −
∫

x,y

p(x1, . . . , xn, y)∇xi
∇T

xj
log g(x1, . . . , xn, y)dxdy, (5.326)

assuming this integral exist ∀i and j = 1, . . . , n.

We are now able to state the generic update rule.

254 Chapter 5. Computing Cramér-Rao-Type Bounds

Extended standard unconditional BCRB Summary Rule:
The message µn, leaving the node g along the edge Sk, is computed
as

µn =
((

(G + M)−1
)

1:m

)−1

, (5.327)

where

M
△

=

ℓ−1∑

k=1

Mk. (5.328)

The expression (5.327) can be written in several ways; one can permute
rows and corresponding columns of the matrices Mk and G (Lemma K.5).

We illustrate the rule (5.327) by a simple example.

Example 5.8. (Extended BCRB Summary Rule)
We derive the update rule (5.306) (for standard unconditional BCRBs)

from (5.327) (see Fig. 5.19 and Fig. 5.21). In this case, ℓ = 3, S
△

=

{Xk,Θk,Θk+1}, S1
△

= {Xk,Θk}, S2
△

= {Xk+1}, S3
△

= {Xk,Θk}, m = 2,

N1 = 2, N2 = 1, N3 = 2, X1
△

= Xk, X2
△

= Θk, X3
△

= Θk+1, and

g(xk, θk, θk+1)
△

= p(θk+1|θk). (5.329)

The involved messages are:

µ1
△

= µ̃
F
k (5.330)

µ2
△

= µ
U
k (5.331)

µ3
△

= µ
F
k . (5.332)

The matrices Mk (cf. (5.323)) equal:

M1
△

= M̃F
k (5.333)

M2
△

= MU
k , (5.334)

where MF
k and MU

k are given by (5.307) and (5.309) respectively. The
matrix G (5.324) of the node function (5.329) is given by (5.309). With
the previous definitions, the rule (5.327) boils down to (5.306).

�

5.3. Cramér-Rao-Type Bounds From Joint Densities 255

(Xk,Θk) (Xk,Θk+1)

µ̃
F
k µ

F
k

µ
U
k

Xk

yk

Figure 5.21: BCRB update rule (5.327): example.

Example 5.9. (Hybrid CRBs for estimation in AR-models)
We consider the following problem.9 Let X1, X2, . . . be a real random
process (“auto-regressive (AR) model”) defined by:

Xk = a1Xn−1 + a2Xk−2 + · · · + aMXk−M + Uk, (5.335)

where a1, . . . , aM are unknown real parameters, and U1, U2, . . . are real
zero-mean Gaussian random variables with variance σ2

U . We observe:

Yk = Xk +Wk, (5.336)

where Wk is (real) zero-mean white Gaussian noise with variance σ2
W .

We write (5.335) and (5.336) in state-space form as:

Xk = AXn−1 + bUk (5.337)

Yk = cT Xk +Wk, (5.338)

with

Xk
△

= [Xk, . . . , Xk−M+1]
T (5.339)

A
△

=

[

aT

I 0

]

(5.340)

b
△

= c
△

= [1, 0, . . . , 0]T (5.341)

a
△

= [a1, . . . , aM]T . (5.342)

In (5.340), the matrix I is the (M − 1)× (M − 1) identity matrix and 0
is a zero vector of dimension M − 1. The AR model (5.337)–(5.338) is

9Here, we will denote vectors in bold for convenience.

256 Chapter 5. Computing Cramér-Rao-Type Bounds

often used in signal processing, for example, to model speech signals or
biomedical signals (e.g., EEG (ElectroEncephalogram) signals).

In the following, we consider the hybrid CRBs for the joint estimation of
the state Xk, the coefficients a1, . . . , aM , and the variances σ2

U and σ2
W .

More precisely, we consider the hybrid CRBs obtained from the infor-
mation matrix of the joint pdf p(x, y, u, w|a, σ2

W , σ2
U). We will show that

those hybrid CRBs are unfortunately loose. In Section 5.4.6, we will de-
rive tighter Cramér-Rao-type bounds for this estimation problem, based
on the information matrix of marginals of p(x, y, u, w|a, σ2

W , σ2
U).

The probability density function of the model (5.337)–(5.338) is given
by:

p(x, y, u, w|a, σ2
W , σ2

U)

= p(x0)
N∏

k=1

p(xk|xk−1, uk,a)p(yk|xk, wk)p(uk|σ2
U)p(wk|σ2

W),

(5.343)

where:

p(xk|xk−1, uk,a) = δ(xk − buk − Axk−1) (5.344)

p(wk|σ2
W) = N

(
wk | 0, σ2

W

)
(5.345)

p(uk|σ2
U) = N

(
uk | 0, σ2

U

)
(5.346)

p(yk|xk, wk) = δ(yk − cT xk − wk). (5.347)

In the following, we will assume that no prior p(x0) is specified (i.e., the
prior p(x0) is “uniform”). A factor graph for the system model (5.337)–
(5.338) is depicted in Fig. 5.22; the figure shows only one section of the
graph.

Note that the graph of Fig. 5.22 is cyclic and contains deterministic
nodes, i.e., two addition nodes, and three matrix multiplication nodes.
We need to convert the cyclic graph into a cycle-free graph before we
can apply the summary propagation algorithm to compute the hybrid
CRBs. In addition, we need to eliminate the deterministic nodes. By
clustering and boxing, as shown in Fig. 5.23, we obtain the cycle-free
graph of Fig. 5.24. The box f1,k stands for the factor (k = M, . . . , N):

f1(xk,xk−1,a, σ
2
U) =

∫

uk

δ(xk − buk − Axk−1)N
(
uk | 0, σ2

U

)
duk(5.348)

5.3. Cramér-Rao-Type Bounds From Joint Densities 257

= N0,σ2
U
(xk − Axk−1) (5.349)

= N
(

xk −
M∑

n=1

anxk−n | 0, σ2
U

)

(5.350)

= f1(xk, . . . , xk−M ,a, σ2
U), (5.351)

whereas the box f2,k represents the factor (k = 1, . . . , N):

f2(xk, yk, σ
2
W) =

∫

wk

δ(yk − cT xk − wk)N
(
wk | 0, σ2

W

)
dwk (5.352)

= N
(
yk − cTxk | 0, σ2

W

)
(5.353)

= N
(
yk − xk | 0, σ2

W

)
(5.354)

△

= f2(xk, σ
2
W , yk). (5.355)

We are now ready to apply the (extended) hybrid CRB summary propa-
gation algorithm to the graph of Fig. 5.23. As a first step, we determine
the matrices G(1) and G(2) (cf. (5.324) and (5.327)), defined as:

G
(1)
ij

△

= −EXY |a σ2
W σ2

U
[∇zi

∇T
zj

log f1(Xk, . . . , Xk−M−1,a, σ
2
U)] (5.356)

= −
∫

x,y

p(x, y|a, σ2
W , σ2

U)

·∇zi
∇T

zj
log f1(xk, . . . , xk−M ,a, σ2

U)dxdy (5.357)

G
(2)
ij

△

= −EXY |a σ2
W σ2

U
[∇zi

∇T
zj

log f2(Xk, σ
2
W , Yk)] (5.358)

= −
∫

z,y

p(x, y|a, σ2
W , σ2

U)∇zi
∇T

zj
log f2(xk, σ

2
W , yk)dxdy, (5.359)

with Zi ∈ {Xk, . . . , Xk−M , a1, . . . , aM , σ2
U , σ

2
W }.

After some straightforward algebra (see Appendix K), one obtains the

258 Chapter 5. Computing Cramér-Rao-Type Bounds

+

+

=

=

=

=

a

σ2
U

σ2
W

b

cT

XkXk−1

Uk

Wk

yk

N

N

. . .

. . .

. . .

. . .

. . .

.

. . .

A

Figure 5.22: Factor graph of (5.337)–(5.338).

5.3. Cramér-Rao-Type Bounds From Joint Densities 259

+

+

=

=

=

=

a

σ2
U

σ2
W

b

cT

XkXk−1

Uk

Wk

yk

. . .

. . .

. . .

. . .

. . .

.

. . .

N

N

f1,k f2,k

A

Figure 5.23: Clustering and boxing.

.

f1,k
f2,k

(Xk−1,a, σ
2
U , σ

2
W) (Xk,a, σ

2
U , σ

2
W)(Xk,a, σ

2
U , σ

2
W)

yk

Figure 5.24: Tree representing the AR-model (5.337)–(5.338).

260 Chapter 5. Computing Cramér-Rao-Type Bounds

matrix G(1):

G(1) =

1

σ2
U

−
a1
σ2

U

−
a2
σ2

U

. . . −
aM

σ2
U

0 0 . . . 0 0 0

−
a1
σ2

U

a2
1

σ2
U

a1a2
σ2

U

. . .
a1aM

σ2
U

0 0 . . . 0 0 0

−
a2
σ2

U

a1a2
σ2

U

a2
2

σ2
U

. . .
a2aM

σ2
U

0 0 . . . 0 0 0

.

.

.
.
.
.

.

.

. . . .
.
.
.

.

.

.
.
.
. . . .

.

.

.
.
.
.

.

.

.

−
aM

σ2
U

a1aM

σ2
U

a1aM

σ2
U

. . .
a2

M

σ2
U

0 0 . . . 0 0 0

0 0 0 . . . 0
C11
σ2

U

C12
σ2

U

. . .
C1M

σ2
U

0 0

0 0 0 . . . 0
C21
σ2

U

C22
σ2

U

. . .
C2M

σ2
U

0 0

.

.

.
.
.
.

.

.

. . . .
.
.
.

.

.

.
.
.
. . . .

.

.

.
.
.
.

.

.

.

0 0 0 . . . 0
CM1
σ2

U

CM2
σ2

U

. . .
CMM

σ2
U

0 0

0 0 0 0 0 0 0 0 0 1

2σ4
U

0

0 0 0 0 0 0 0 0 0 0 0

,

(5.360)
where

Cij
△

= E[Xk−iXk−j]. (5.361)

The matrix G(2) equals:

G(2) =

1

σ2
W

0 0 0 0 0 0 0 0 0

0 0 0 . . . 0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0 . . . 0 0 0

.

.

.
.
.
.

.

.

. . . .
.
.
.

.

.

.
.
.
. . . .

.

.

.
.
.
.

.

.

.

0 0 0 . . . 0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0 . . . 0 0 0

.

.

.
.
.
.

.

.

. . . .
.
.
.

.

.

.
.
.
. . . .

.

.

.
.
.
.

.

.

.

0 0 0 . . . 0 0 0 . . . 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

2σ4
W

. (5.362)

Given the matrices G(1) and G(2), it is straightforward to derive the
hybrid BCRBs:

E
[
(σ̂U (Y) − σU)2

]
≥ 2σ4

U

N
(5.363)

5.4. Cramér-Rao-Type Bounds From Marginal Densities 261

E
[
(σ̂W (Y) − σW)2

]
≥ 2σ4

W

N −M
(5.364)

E
[
(ân(Y) − an)2

]
≥ 0. (5.365)

We leave the derivation of the hybrid BCRBs for Xk as an exercise for
the reader. The resulting hybrid BCRBs are loose; this may directly
be seen from the matrices G(1) and G(2), i.e., even without computing
the bounds explicitly. The off-diagonal submatrices of G(1) and G(2) are
zero; this implies, for example, that the hybrid CRB forXk is identical to
the unconditional BCRB for Xk with known AR parameters a1, . . . , aM ,
σ2

U and σ2
W . In other words, the hybrid CRB for Xk does not take the

fact into account that the AR parameters are unknown, hence, the bound
is loose. The same holds for the hybrid CRBs for the AR parameters
a1, . . . , aM and the variances σ2

U and σ2
W ; for example, the hybrid CRB

for σ2
U does not depend on σ2

W and it does not take the fact into account
that X is unkown. In Section 5.4.6 (cf. Example 5.10), we will derive
tighter Cramér-Rao-type bounds for this estimation problem (from the
information matrix of marginals). We will numerically evaluate those
bounds together with the hybrid CRBs we have derived here. �

5.4 Cramér-Rao-Type Bounds From Mar-
ginal Densities

So far, we have derived Cramér-Rao-type bounds from the inverse infor-
mation matrix of the joint pdf of the system at hand. In this section,
we derive such bounds from inverse information matrices of marginal
pdfs. The resulting bounds are often intractable; we present numerical
algorithms to evaluate the bounds.

5.4.1 Standard CRB

We consider a system consisting of random variables X and parame-
ters Θ. The joint pdf of the system is given by p(x, y|θ). We wish to
compute the standard Cramér-Rao bound for Θ (cf. (5.80)):

E
(XΘ)
11

△

= EY |Θ

[

(θ̂(Y) − θ)(θ̂(Y) − θ)T
]

262 Chapter 5. Computing Cramér-Rao-Type Bounds

� F−1(θ) (5.366)

△

= EY |Θ

[
∇θ log p(Y |θ)∇T

θ log p(Y |θ)
]−1

(5.367)

= −EY |Θ

[
∇θ∇T

θ log p(Y |θ)
]−1

, (5.368)

where

p(y|θ) △

=

∫

x

p(x, y|θ)dx. (5.369)

The following lemma paves the road to a numerical algorithm for compu-
ting the bound (5.366)–(5.368).

Lemma 5.3. If the integral
∫

x
p(x, y|θ)dx is differentiable under the

integral sign (w.r.t. θ), then

EY |Θ

[
∇θ log p(Y |θ)∇T

θ log p(Y |θ)
]

= EY |Θ

[

EX|ΘY [∇θ log p(X,Y |θ)] EX|ΘY[∇θ log p(X,Y |θ)]T
]

.

(5.370)

�

An equality similar to (5.370) has been proved earlier in the context of
code-aided synchronization [149]. The expression in the RHS of (5.370)
is usually as difficult to evaluate (analytically) as the expression in the
LHS, in fact, both expressions are often intractable. One may then resort
to numerical methods; the expression in the RHS of (5.370) suggests the
following (numerical) algorithm to determine the bound (5.366)–(5.368):

a) Generate a list of samples {ŷ(j)}N
j=1 from p(y|θ).

b) Evaluate the expression:

EX|ΘY

[

∇θ log p(X, ŷ(j)|θ)
]

(5.371)

for j = 1, . . . , N .

c) Compute the matrix F̂(N)(θ):

F̂(N)(θ)
△

=
1

N

N∑

j=1

[

EX|ΘY

[

∇θ log p(X, ŷ(j)|θ)
]

· EX|ΘY

[

∇θ log p(X, ŷ(j)|θ)
]T
]

.

(5.372)

5.4. Cramér-Rao-Type Bounds From Marginal Densities 263

The matrix F̂(N)(θ) is an approximation of the Fisher information ma-
trix F(θ). The approximation becomes more accurate as the number of
samples N increases:

lim
N→∞

F̂(N)(θ) = F(θ). (5.373)

Eventually, we replace the Fisher information matrix F(θ) in (5.366)–

(5.368) by the approximation F̂(N)(θ):

E
(XΘ)
11

△

= EY |Θ

[

(θ̂(Y) − θ)(θ̂(Y) − θ)T
]

�
[

F̂(N)(θ)
]−1

. (5.374)

Remarks:

• It is usually easy to sample from p(y|θ).

• The expression (5.371) is sometimes available in closed form (see,
e.g., Example 5.10). If the expression (5.371) is intractable, one
may use Monte-Carlo methods: the expression (5.371) is then eval-
uated as an average over a list of samples from p(x|θ, y(j)).

In the following, we list expressions similar to (5.370) for other Cramér-
Rao-type bounds. They can be used to evaluate the (B)CRBs numeri-
cally, similarly as in (5.372) and (5.374).

5.4.2 Standard Unconditional BCRB

We now consider a system with random vectors X and Z; the joint pdf
is given by p(x, z, y). We wish to compute the standard unconditional
BCRB for X (cf. (5.59)):

E
△

= EXY [(x̂(Y) −X)(x̂(Y) −X)T]

� J−1 (5.375)

△

= EXY

[
∇x log p(X,Y)∇T

x log p(X,Y)
]−1

(5.376)

= −EXY

[
∇x∇T

x log p(X,Y)
]−1

, (5.377)

264 Chapter 5. Computing Cramér-Rao-Type Bounds

where

p(x, y)
△

=

∫

z

p(x, z, y)dz. (5.378)

An expression similar to (5.370) can be derived.

Lemma 5.4. If the integral
∫

z
p(x, z, y)dz is differentiable under the

integral sign (w.r.t. x), then

EXY

[
∇x log p(X,Y)∇T

x log p(X,Y)
]

= EXY

[

EZ|XY [∇x log p(X,Z, Y)] EZ|XY [∇x log p(X,Z, Y)]
T
]

.

(5.379)

�

Lemma 5.4 amounts to the following algorithm to determine the bound
(5.375)–(5.377):

a) Generate a list of samples {x̂(j), ŷ(j)}N
j=1 from p(x, y).

b) Evaluate the expression:

EZ|XY

[

∇x log p(x̂(j), Z, ŷ(j))
]

(5.380)

for j = 1, . . . , N .

c) Compute the matrix Ĵ(N):

Ĵ(N) △

=
1

N

N∑

j=1

[

EZ|XY

[

∇x log p(x̂(j), Z, ŷ(j))
]

· EZ|XY

[

∇x log p(x̂(j), Z, ŷ(j))
]T]

.

(5.381)

The bound (5.375)–(5.377) is eventually computed as:

E
△

= EXY [(x̂(Y) −X)(x̂(Y) −X)T]

�
[

Ĵ(N)
]−1

. (5.382)

5.4. Cramér-Rao-Type Bounds From Marginal Densities 265

5.4.3 Conditional BCRB

We again consider a system with joint pdf p(x, z, y). Now, we wish to
compute the conditional BCRB for X :

E(y)
△

= EX|Y [(x̂(y) −X)(x̂(y) −X)T]

� J−1(y) (5.383)

△

= EX|Y

[
∇x log p(X |y)∇T

x log p(X |y)
]−1

(5.384)

= EX|Y

[
∇x log p(X, y)∇T

x log p(X, y)
]−1

(5.385)

= −EX|Y

[
∇x∇T

x log p(X |y)
]−1

(5.386)

= −EX|Y

[
∇x∇T

x log p(X, y)
]−1

, (5.387)

where

p(x|y) △

=

∫

z

p(x, z|y)dz. (5.388)

To this end, we slightly modify Lemma 5.4.

Lemma 5.5. If the integral
∫

z
p(x, z, y)dz is differentiable under the

integral sign (w.r.t. x), then

EX|Y

[
∇x log p(X, y)∇T

x log p(X, y)
]

= EX|Y

[

EZ|XY [∇x log p(X,Z, y)] EZ|XY [∇x log p(X,Z, y)]T
]

.

(5.389)

�

A numerical algorithm for computing (5.383)–(5.387) follows directly
from Lemma 5.5. The algorithm is analogous to the algorithm (5.380)–
(5.382) for standard unconditional BCRBs. We leave the details as an
exercise for the reader.

5.4.4 Alternative unconditional BCRB

Lemma 5.5 can also be used to compute the alternative unconditional
BCRB:

E
△

= EXY [(x̂(y) −X)(x̂(y) −X)T]

266 Chapter 5. Computing Cramér-Rao-Type Bounds

� EY

[
J−1(y)

]
(5.390)

△

= EY

[

EX|Y

[
∇x log p(X, y)∇T

x log p(X, y)
]−1
]

(5.391)

� −EY

[

EX|Y

[
∇x∇T

x log p(X, y)
]−1
]

. (5.392)

The expectation EX|Y [·] in (5.391) can be evaluated according to (5.389).
The resulting algorithm for computing (5.390)–(5.392) is strikingly simi-
lar to the algorithm (5.380)–(5.382) for computing standard uncondi-

tional BCRB (5.375)–(5.377). Instead of the matrix Ĵ(N) (5.372), one

computes the matrix Ĵ
(N)
inv :

Ĵ
(N)
inv

△

=
1

N

N∑

j=1

[

EZ|XY

[

∇x log p(x̂(j), Z, ŷ(j))
]

· EZ|XY

[

∇x log p(x̂(j), Z, ŷ(j))
]T
]−1

.

(5.393)

The bound (5.390)–(5.392) is eventually evaluated as:

E
△

= EXY [(x̂(y) −X)(x̂(y) −X)T]

� Ĵ
(N)
inv . (5.394)

In words: the bound (5.394) is determined by averaging inverse matrices,
whereas the bound (5.382) is determined as the inverse of an average
matrix. The bound (5.394) involves numerous matrix inversions, whereas
the bound (5.382) requires only one matrix inversion; the bound (5.394)
is therefore more costly to evaluate (but tighter!) than (5.382).

5.4.5 Hybrid BCRB

We now consider a system with random vectors X and Z, and parame-
ters Θ; the joint pdf is given by p(x, z, y|θ). We wish to compute the
hybrid BCRB for X :

EXY |Θ[(x̂(Y) −X)(x̂(Y) −X)T]
△

= E
(XΘ)
22 �

[
H−1(θ)

]

22
,

(5.395)

5.4. Cramér-Rao-Type Bounds From Marginal Densities 267

where

H(θ)
△

=

[
H11(θ) H12(θ)
H21(θ) H22(θ)

]

, (5.396)

H11(θ) = EXY |Θ

[
∇θ log p(X,Y |θ)∇T

θ log p(X,Y |θ)
]

(5.397)

H12(θ) = EXY |Θ

[
∇θ log p(X,Y |θ)∇T

x log p(X,Y |θ)
]

(5.398)

H12(θ) = [H21(θ)]
T (5.399)

H22(θ) = EXY |Θ

[
∇x log p(X,Y |θ)∇T

x log p(X,Y |θ)
]
, (5.400)

and

p(x, y|θ) △

=

∫

z

p(x, z, y|θ)dz. (5.401)

The expressions (5.397)–(5.400) can be evaluated as follows.

Lemma 5.6. If the integral
∫

z
p(x, z, y|θ)dz is differentiable under the

integral sign (w.r.t. x and θ), then

EXY |Θ

[
∇θ log p(X,Y |θ)∇T

θ log p(X,Y |θ)
]

= EXY |Θ

[

EZ|XY Θ[∇θ log p(X,Z, Y |θ)] EZ|XY Θ[∇θ log p(X,Z, Y |θ)]T
]

(5.402)

EXY |Θ

[
∇θ log p(X,Y |θ)∇T

x log p(X,Y |θ)
]

= EXY |Θ

[

EZ|XY Θ[∇θ log p(X,Z, Y |θ)] EZ|XY Θ[∇x log p(X,Z, Y |θ)]T
]

(5.403)

EXY |Θ

[
∇x log p(X,Y |θ)∇T

x log p(X,Y |θ)
]

= EXY |Θ

[

EZ|XY Θ[∇x log p(X,Z, Y |θ)] EZ|XY Θ[∇x log p(X,Z, Y |θ)]T
]

.

(5.404)

�

A numerical algorithm to compute the bound (5.395) may readily be
extracted from Lemma 5.6. We leave the details as an exercise for the
reader.

268 Chapter 5. Computing Cramér-Rao-Type Bounds

5.4.6 Parameter Estimation in State-Space Models

In Section 5.3.7, we determined BCRBs for estimation in state-space
models. We derived those bounds from the joint pdf p(x, θ, y). Here,
we derive such bounds from marginal pdfs. We investigate the standard
unconditional BCRB for Θ (cf. (5.377)):

EΘY [(θ̂(Y) − Θ)(θ̂(Y) − Θ)T]

� J−1 (5.405)

△

= EΘY

[
∇θ log p(Θ, Y)∇T

θ log p(Θ, Y)
]−1

(5.406)

= −EΘY

[
∇θ∇T

θ log p(Θ, Y)
]−1

, (5.407)

where

p(θ, y)
△

=

∫

x

p(θ, x, y)dx. (5.408)

First, we consider the state-space model with constant parameters; its
pdf p(θ, x, y) equals (see Fig. 5.18(a)):

p(θ, x, y)
△

= pΘ(θ)p0(x0)

N∏

k=1

p(xk|xk−1, θ)p(yk|xk). (5.409)

By applying Lemma 5.4, we have:

EΘY

[
∇θ log p(Θ, Y)∇T

θ log p(Θ, Y)
]

= EΘY

[

EX|ΘY [∇θ log p(Θ, X, Y)] EX|ΘY [∇θ log p(Θ, X, Y)]
T
]

.

(5.410)

We rewrite the expression EX|ΘY [∇θ log p(Θ, X, Y)] in the RHS of (5.410)
as:

EX|ΘY [∇θ log p(Θ, X, Y)]

= EX|ΘY [∇θ log pΘ(θ)] +
N∑

k=1

EX|ΘY [∇θ log p(Xk|Xk−1, θ)] (5.411)

= ∇θ log pΘ(θ) +

N∑

k=1

EX|ΘY [∇θ log p(Xk|Xk−1, θ)] . (5.412)

5.4. Cramér-Rao-Type Bounds From Marginal Densities 269

y1

θθθ

y2 y3

= =

==

=

=Θ
pθ(Θ)

p0(x0)

p(x1|x0, θ) p(x2|x1, θ) p(x3|x2, θ)

p(y1|x1) p(y2|x2)

X0
X1 X2 X3

. . .

. . .

Figure 5.25: Unconditional BCRB for estimating (constant) parame-
ters of a state-space model.

The expression EX|ΘY [∇θ log p(Xk|Xk−1, θ)] in the RHS of (5.412) can
be computed as:

EX|ΘY [∇θ log p(Xk|Xk−1, θ)]

= EXk−1Xk|ΘY [∇θ log p(Xk|Xk−1, θ)] (5.413)

=

∫

xk−1

∫

xk

p(xk, xk−1|θ, y)∇θ log p(xk|xk−1, θ)dxk−1dxk, (5.414)

where the joint pdf p(xk, xk−1|θ, y) may be determined by the sum-
product algorithm, as depicted in Fig. 5.25:

p(xk, xk−1|θ, y)

=
µXk−1→pk

(xk−1)µXk→pk
(xk)p(xk|xk−1, θ)

∫

xk−1

∫

xk
µXk−1→pk

(xk−1)µXk→pk
(xk)p(xk|xk−1, θ)dxk−1dxk

.

(5.415)

As a consequence, the expression (5.410) may be evaluated by the fol-
lowing algorithm:

a) Generate a list of samples {θ̂(j), ŷ(j)}N
j=1 from p(θ, y).

b) For j = 1, . . . , N :

270 Chapter 5. Computing Cramér-Rao-Type Bounds

i) Compute the messages µXk→pk−1
and µXk→pk

by a forward
and backward sum-product sweep.

ii) Evaluate the expression:

EX|ΘY

[

∇θ log p(X, θ̂(j), ŷ(j))
]

, (5.416)

using (5.411)–(5.415), and the messages computed in i).

c) Compute the matrix Ĵ(N):

Ĵ(N) △

=
1

N

N∑

j=1

[

EX|ΘY

[

∇θ log p(X, θ̂(j), ŷ(j))
]

· EX|ΘY

[

∇θ log p(X, θ̂(j), ŷ(j))
]T
]

.

(5.417)

Eventually, we evaluate the bound (5.405)–(5.407) as:

EΘY [(θ̂(Y) − Θ)(θ̂(Y) − Θ)T]

�
[

Ĵ(N)
]−1

. (5.418)

The algorithm can straightforwardly be extended to state-space models
with time-dependent parameters: one needs to slightly modify the expres-
sions (5.412)–(5.415); the computation of (5.416) then involves a forward
and backward sum-product sweep in the factor graph of Fig. 5.26.

Example 5.10. (CRBs for estimation in AR model)
In Example 5.9, we computed hybrid CRBs for the joint estimation of
the state and parameters of AR models; we derived those hybrid CRBs
from the information matrix of the joint pdf of the AR model. Here, we
derive Cramér-Rao-type bounds (for the same estimation problem) from
the information matrix of marginals. We outline a (numerical) method to
compute the CRB (5.368) for the parameters a1, . . . , aM , σ2

U and σ2
W . In

Appendix K, we propose a similar method to compute the hybrid CRB
(5.395) for Xk. We compute both bounds numerically, since they are

not tractable analytically; on the other hand, the bounds of Example 5.9
are tractable, but unfortunately loose.

5.4. Cramér-Rao-Type Bounds From Marginal Densities 271

= =

===

. . .

. . .
Θ1 Θ2 Θ3p1(θ1)

p0(x0)

p(x1|x0, θ1) p(x2|x1, θ2) p(x3|x2, θ3)

p(θ2|θ1) p(θ3|θ2)

p(y1|x1) p(y2|x2)

y1 y2

X0
X1 X2

θ1 θ2 θ3

Figure 5.26: Unconditional BCRB for estimating (time-dependent) pa-
rameters of a state-space model.

The CRB (5.368) for Θ
△

= (a1, . . . , aM , σ2
U , σ

2
W) can be determined by the

algorithm of Section 5.4.1. We outline how the expression (5.371) may
be evaluated for the AR model (5.343). Substituting (5.343) in (5.371)
amounts to:

EX|ΘY [∇θ log p(θ,X, y)] =
N∑

k=1

EX|ΘY

[
∇θ log f1(Xk, . . . , Xk−M ,a, σ2

U)
]

+

N∑

k=1

EX|ΘY

[
∇θ log f2(Xk, yk, σ

2
W)
]
,

(5.419)

where f1 and f2 are given by (5.350) and (5.354) respectively. The expres-
sion EX|ΘY [∇θ log f1,k] and EX|ΘY [∇θ log f2,k] in the RHS of (5.419)
can be computed from sum-product messages arriving at the nodes f1
and f2 (cf. (5.414) and (5.415)). Those messages are computed for a
given observation vector y, and for given values of the parameters a, σ2

W ,
and σ2

U .10 As a consequence, the sum-product messages are available
in closed-form: they are Gaussian messages, computed in a forward and
backward Kalman recursion (cf. Appendix H). In Appendix K, we ex-
plain how the expectations EX|ΘY [∇θ log f1,k] and EX|ΘY [∇θ log f2,k]

10In the estimation problem at hand, the parameters are obviously not given; they
need to be estimated.

272 Chapter 5. Computing Cramér-Rao-Type Bounds

+

+

=

a

σ2
U

σ2
W

b

cT

XkXn−1

Uk

Wk

yk

N

N

. A

Figure 5.27: Computing Gaussian messages (along the edges Xk) in
a forward and backward Kalman recursion, for a given
observation vector y, and given parameters a, σ2

W , and σ2
U .

may be computed from the Gaussian messages.

In summary, the algorithm we propose for computing the bound (5.368)

for Θ
△

= (a1, . . . , aM , σ2
U , σ

2
W) performs the following steps:

a) Generate a list of samples {ŷ(j)}N
j=1 from p(y|a, σ2

W , σ2
U).

b) For j = 1, . . . , N :

i) Compute the Gaussian messages µXk→f1,k
and µXk→f2,k

by a
forward and backward Kalman recursion.

ii) Evaluate the expression:

EX|aσ2
W σ2

U Y

[

∇θ log p(X, ŷ(j)|a, σ2
W , σ2

U)
]

(5.420)

using (K.152)–(K.157), and the messages computed in bi.

c) Compute the matrix F̂(N)(θ):

F̂(N)(θ)
△

=
1

N

N∑

j=1

[

EX|a σ2
W

σ2
U

Y

[

∇θ log p(X, ŷ(j)|a, σ2
W , σ2

U)
]

5.4. Cramér-Rao-Type Bounds From Marginal Densities 273

· EX|a σ2
W

σ2
U

Y

[

∇θ log p(X, ŷ(j)|a, σ2
W , σ2

U)
]T
]

.

(5.421)

The CRB (5.368) for Θ is computed as the inverse of F̂(N)(θ).

Along similar lines, one can compute the hybrid CRB (5.395) forXk (k =
1, . . . , N) from the marginal p(xk, y|a, σ2

W , σ2
U). We refer to Appendix K

for more information.

In Fig. 5.28 to Fig. 5.35, we present numerical results. In Fig. 5.28, the
standard CRB for a is shown for several values of σ2

W and N ; we consider
the case where σ2

U and σ2
W are known as well as the case where those

two parameters are unknown, i.e., where they need to be estimated. In
Fig. 5.29, we compare the standard CRB for a (for the case where σ2

U

and σ2
W are unknown) to the MSE of a practical estimation algorithm,

i.e., the grid-based algorithm of [101] that jointly estimates the state X
and the parameters a, σ2

U and σ2
W . The grid-based algorithm of [101] is

complex, therefore, we could only average its squared estimation error
over 100 simulations; the dashed curves are therefore rather “noisy”.

In Fig. 5.30, the standard CRB and the hybrid CRB for σ2
U (with un-

known a and σ2
W) are shown for several values of σ2

W and N . As we
pointed out before, the hybrid CRB for σ2

U does not depend on σ2
W .

In Fig. 5.31, we show the standard CRB for σ2
U for the case of known

(unknown) a and σ2
W . In Fig. 5.32, we compare the standard CRB

for σ2
U (with unknown a and σ2

W) to the MSE of the grid-based algo-
rithm of [101].

The standard CRB and the hybrid CRB for σ2
W are shown in Fig. 5.33 for

several values of σ2
W andN (where a and σ2

U are assumed to be unknown).
In Fig. 5.31, the standard CRB for σ2

W for the case of known/unknown
a and σ2

U are shown. Fig. 5.35 shows the standard CRB for σ2
W (with

unknown a and σ2
U) together with the MSE of the grid-based algorithm

of [101].

Note that the standard CRBs are nicely tight; they allow us to certify
that the grid-based algorithm of [101] is close to optimal.

�

274 Chapter 5. Computing Cramér-Rao-Type Bounds

100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

N

C
R

B

Figure 5.28: Standard CRB for a with known (dashed) and un-
known (solid) σ2

U and σ2
W ; σ2

U = 0.1 and σ2
W =

0.1/0.01/0.001/0.0001/0.00001. The CRBs for known
σ2

U = 0.1 and σ2
W = 0.0001, 0.00001 coincide (dashed

lines).

5.4.7 Code-Aided Channel Estimation

We now consider the problem of code-aided channel estimation; sym-
bols Uk, protected by an error-correcting code (with indicator func-
tion I(u)), are transmitted over a channel with memory; the state of
the channel is denoted by Xk, whereas Yk stands for the channel ob-
servation at time k. The probability function of this system is given
by

p(u, x, y) = p0(x0)

N∏

k=1

p(xk, yk|uk, xk−1)I(u), (5.422)

as depicted in Fig. 5.36. The box at the top represents the indica-
tor function I(u), the row of nodes at the bottom stands for the fac-
tors p0(x0) and p(xk, yk|uk, xk−1). We wish to compute the standard
unconditional BCRB for the estimation of Xk (the extension to other
BCRBs is straightforward).

In principle, one could compute the standard unconditional y the algo-
rithm of Section 5.4.3 (with Z = U). With the pdf (5.422), the expec-

5.4. Cramér-Rao-Type Bounds From Marginal Densities 275

100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

N

C
R

B

Figure 5.29: Standard CRB for a with unknown σ2
U and σ2

W (solid)
together with the MSE of the grid-based algorithm of [100]
(dashed); σ2

U = 0.1 and σ2
W = 0.1/0.01/0.001. Also shown

is the standard CRB for a with known σ2
U = 0.1 and

σ2
W = 0 (dashed-dotted line).

100 200 300 400 500 600 700 800 900 1000

10
−4

10
−3

N

C
R

B

Figure 5.30: Hybrid CRB (dashed) and standard CRB (solid) for σ2
U ;

σ2
U = 0.1 and σ2

W = 0.1/0.01/0.001/0.0001/0.00001.

276 Chapter 5. Computing Cramér-Rao-Type Bounds

100 200 300 400 500 600 700 800 900 1000

10
−4

10
−3

N

C
R

B

Figure 5.31: Standard CRB for σ2
U ; σ2

U = 0.1 and σ2
W =

0.1/0.01/0.001/0.0001/0.00001; known (dashed) and un-
known (solid) σ2

W and a.

100 200 300 400 500 600 700 800 900 1000

10
−4

10
−3

10
−2

N

C
R

B

Figure 5.32: Standard CRB (solid) for σ2
U together with the MSE of

the grid-based algorithm of [100] (dashed); σ2
U = 0.1 and

σ2
W = 0.1/0.01/0.001.

5.4. Cramér-Rao-Type Bounds From Marginal Densities 277

100 200 300 400 500 600 700 800 900 1000
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

N

C
R

B

Figure 5.33: Hybrid CRB (dashed) and standard CRB (solid) for σ2
W ;

σ2
U = 0.1 and σ2

W = 0.1/0.01/0.001/0.0001/0.00001.

100 200 300 400 500 600 700 800 900 1000
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

N

C
R

B

Figure 5.34: Standard CRB for σ2
W ; σ2

U = 0.1 and σ2
W =

0.1/0.01/0.001/0.0001/0.00001; known (dashed) and un-
known (solid) σ2

W and a.

278 Chapter 5. Computing Cramér-Rao-Type Bounds

100 200 300 400 500 600 700 800 900 1000
10

−7

10
−6

10
−5

10
−4

10
−3

N

C
R

B

Figure 5.35: Standard CRB (solid) for σ2
W together with the MSE of

the grid-based algorithm of [100] (dashed); σ2
U = 0.1 and

σ2
W = 0.1/0.01/0.001.

tation EU|XY [∇x log p(X,U, Y)] in the RHS of (5.379) can be evaluated
as:

EU|XY [∇xlog p(X,U, Y)]

= ∇xlog p0(X0) +

N∑

k=1

EUk|XY [∇xlog p(Xk, Yk|Xk−1, Uk)] . (5.423)

An expression similar to (5.423) has been derived in [148]. The second
term in the RHS of (5.423) involves the marginals p(uk|x, y). For most
practical probabilistic codes (e.g., LDPC codes or turbo-codes), those
marginals are hard to obtain—with exception of (short-memory) convo-
lutional codes. Note that replacing the exact marginals by marginals
by approximations obtained from an iterative decoder (as suggested in,
e.g., [148] for standard CRBs) does not amount to the (exact) BCRBs.
One may obtain accurate approximations of the marginals by means of
Gibbs sampling, which is, however, a time-consuming procedure.

Whereas it is often difficult to compute the exact BCRBs for code-aided
channel estimation, it is usually feasible to derive upper and lower bounds
on the BCRB. Upper bounds are obtained by assuming that the symbols
are independent and uniformly distributed (i.u.d.). On the other hand,

5.4. Cramér-Rao-Type Bounds From Marginal Densities 279

p0(x0)

Error-correcting code

p(x1, y1|u1, x0) p(x2, y2|x1, u2) p(xN , yN |uN , xN−1)

X0 XNX1 X2 . . .

U1 U2 UN

Figure 5.36: Code-aided channel estimation.

if one assumes that the symbols are known, one obtains lower bounds
(so-called “modified” BCRBs (MBCRB)). At sufficiently high SNR, the
modified BCRBs coincide with the (true) BCRBs; at high SNR, the bit
(and frame) error rates are low (e.g., BER < 10−2), and the symbols can
therefore be considered as (almost) “known”. Communications systems
usually operate at low bit (and frame) error rates, therefore, modified
BCRBs typically suffice.

Example 5.11. (Modulated random-walk phase model)
We consider here the (modulated) random-walk phase model (4.1)–(4.2).
The BCRBs for this model are intractable, however, modified BCRBs
are easy to obtain. In fact, we already computed the modified (standard
unconditional) BCRB in Example 5.6, where we investigated the unmo-
dulated random-walk phase model (cf. Fig. 5.13). In Fig. 5.37, we show
this modified BCRB (for the MSE averaged over a block of length 100)
together with:

• an upper bound based on i.u.d. symbols,

• a result obtained by substituting approximate marginals (from an
LDPC-decoder) in (5.423),

• the MSE of a practical message-passing estimator, i.e., an estimator
that uses adaptive quantization (see Section 4.7.2).

As can be seen from Fig. 5.37, the upper bound (based on i.u.d. symbols)
is loose; the curve obtained from approximative marginals is (at low SNR)
not a lower bound on the BCRB: for SNR values below −1dB, the curve

280 Chapter 5. Computing Cramér-Rao-Type Bounds

−1 0 1 2 3 4
10

−3

10
−2

10
−1

Modified BCRB (Known Symbols)
Upper Bound (Uniform Prior)
Approximate Marginals
Adaptive Quantization

SNR [dB]

B
C

R
B

[r
a
d

2
]

Figure 5.37: Lower and upper bounds on the BCRB for the modu-
lated random-walk phase model with N = 100, and
σ2

W = 10−4 rad2.

lies above the MSE of the practical estimator. At high SNR (i.e., SNR ≥
3dB), the curve obtained from approximative marginals coincides with
the modified BCRB. Also the MSE of the practical estimator coincides
with the modified BCRB for those SNR values. In other words, we can
certify that the practical estimator is close to optimal for SNR ≥ 3dB.
The latter SNR region is the most relevant: the BER at 3dB and 4dB
is about 10−2 and 10−3 respectively (not shown here); at SNR values
below 3dB, the error rates are too high for most practical purposes.

In Fig. 5.38, we show the modified BCRB for filtering and smoothing as a
function of the position k inside the block (for σN = 0.446 rad (4dB) and
σW = 10−2 rad); also shown is the MSE of the practical phase estimator.
It can be seen from this figure that the MSE of the practical estimator
coincides with the modified BCRB . �

5.4. Cramér-Rao-Type Bounds From Marginal Densities 281

10 20 30 40 50 60 70 80 90 100

10
−2

10
−1

k

B
C

R
B

[r
a
d

2
]

Figure 5.38: Modified BCRBs for the modulated random-walk phase
model with N = 100, σN = 0.446 rad (4dB) and
σW = 10−2 rad; Shown are the MBCRB of the forward
sweep, i.e., filtering (dashed line), MBCRB of the back-
ward sweep (dashed-dotted), and MBCRB of smooth-
ing (solid). Also shown is the MSE of the phase estimator
that uses adaptive quantization (diamonds).

282 Chapter 5. Computing Cramér-Rao-Type Bounds

5.5 Summary

We summarize here the main results of this chapter.

• We started by reviewing the three main types of Cramér-Rao
bounds (CRB): standard, Bayesian, and hybrid Cramér-Rao
bounds, which are applicable to parameters, random variables and
the joint estimation of parameters and random variables respec-
tively.

• We outlined the two main strategies to compute Cramér-Rao
bounds: one may derive Cramér-Rao bounds from the inverse in-
formation matrix of the joint pdf; alternatively, one may obtain
such bounds from inverse information matrices of marginals.

• We proposed novel algorithms to compute CRBs:

– following each of both strategies,

– for each of the three types of CRBs.

Our methods are message-passing algorithms, operating on the
factor graph of the system at hand. We derived the local update
rules, each time starting from a simple working example.

• We treated several applications:

– filtering in (general) state-space models,

– smoothing in (general) state-space models,

– estimation of the parameters of state-space models,

– code-aided channel estimation.

We considered various examples of state-space models:

– linear and non-linear dynamial systems,

– the (modulated and unmodulated) random-walk phase model,

– AR models.

5.6. Outlook 283

5.6 Outlook

• In this chapter, we have exclusively focused on the squared error
loss function. Cramér-Rao-type bounds have recently been derived
for other types of loss functions , i.e., for loss functions that are
bounded below by a function of the form g(x) = |x|ℓ for ℓ ≥ 2 [167].
It needs be verified whether our methods can also be applied to
Cramér-Rao-type bounds for those loss functions.

• Our methods seem to apply to several other types of bounds,
i.e., Weiss-Weinstein bounds [208], Bobrobsky-Zakai bounds [25],
and Bhattacharyya bounds [21]. Those bounds are often tighter
(at low SNR) than the Cramér-Rao-type bounds, however, they
are more complicated. Recently, Reece et al. evaluated those three
bounds for the problem of filtering in state-space models [169] (see
also [168]); they obtained forward recursions that are similar to the
forward recursion of [192], i.e., the standard unconditional BCRB
for filtering. It should be straightforward to extend the results
of [169] (and [168]) to general estimation problems, following the
line of thought of this chapter. Interestingly, the Weiss-Weinstein
bound also applies to discrete variables.

• Information matrices are not only the key to Cramér-Rao-type
bounds, they also play an important role in information geo-
metry. Information geometry deals a.o. with the geometry of the
(non-Euclidean) space of parametrized statistical models (with pa-
rameters Θ). The (unique) invariant metric of this parameter space
turns out to be the Fisher information matrix. By means of the
Fisher information matrix, one can for example define the distance
between distributions or the steepest-descent direction (in the pa-
rameter space) of a function f(θ). Since the parameter space is
non-Euclidian (“curved”), the steepest-descent direction of f(θ) is
not given by its (Euclidean) gradient, but by its natural gra-
dient [7] [8], defined as

∇̃θf(θ)
△

= F−1(θ)∇θf(θ). (5.424)

Amari [7] proposed optimization algorithms based on the natural
gradient (“natural-gradient adaption”); for several interesting ap-
plications (e.g., training of feed-forward neural networks), those
optimization methods converge significantly faster (up to three or-
ders of magnitude!) than the standard gradient methods (based

284 Chapter 5. Computing Cramér-Rao-Type Bounds

on the Euclidean gradient) [156]. The chief drawback of natural-
gradient adaption, however, is that it requires the inverse of the
Fisher information matrix. For many sophisticated probabilistic
models, this matrix is not tractable. However, as we have shown,
the Fisher information matrix can often readily be computed nu-
merically, which could lead to novel natural-gradient algorithms.

Note that natural-gradient algorithms may conveniently be deri-
ved in context of factor graphs and summary propagation;
we have shown in Section 4.8 how (Euclidean) gradients can be
computed by message passing; in this chapter, we have developed
message-passing algorithms for computing Fisher information ma-
trices (cf. Section 5.4).

As we pointed out, the computation of Fisher information matrices
often involves sum-product messages. If it is not feasible to com-
pute the latter exactly, they may be computed approximately by
sum-product message passing on cyclic graphs; this amounts to
approximate Fisher information matrices, which, obviously,
do not lead to the correct Cramér-Rao bounds; those approximate
Fisher information matrices, however, can be the basis for (low-
complexity) natural-gradient algorithms.

A potential application is estimation in single- or multi-channel
AR(MA) models (cf. Example 5.10), which are useful models
for blind source separation and blind deconvolution [34]; re-
cursive (“online”) natural-gradient algorithms for (single- or multi-
channel) AR(MA) models can readily be derived (cf. Example 5.10);
simulations are required to assess the complexity-performance trade-
off of such algorithms. More generally, natural-gradient algorithms
may become an (even more) important tool in model-based signal
processing.

• The Fisher information matrix can also be used to derive so-called
Fisher kernels (proposed by Jaakkola et al. [89]) from probabilis-
tic models.11 For a given probability model p(y|θ) with parameters
Θ and observations Y , the Fisher kernel is defined as:

κ(yi, yj)
△

= ∇T
θ log p(yi|θ)F−1(θ)∇θ log p(yj |θ). (5.425)

The main difficulty is also here the computation of the inverse in-
formation matrix. Our methods for computing information matrix

11For a brief introduction to kernel methods and for a discussion on how kernels
can be computed from graphical models, we refer to Appendix D.

5.6. Outlook 285

allow us to derive Fisher kernels from sophisticated probabilistic
models—also for this purpose, one may use iterative sum-product
message passing, amounting to approximate Fisher information ma-
trices. The inversion of (dense) Fisher information matrices can be
carried out approximately but efficiently by imposing structure
on those matrices.

In general, our methods for computing Fisher information matrices
(with our without approximations) may lead to novel kernel-based
algorithms for classification, compression and clustering of images
and biomedical and speech signals.

Chapter 6

Computing Information
Rates of Continuous
Channels with Memory

We present here a numerical method to compute information rates of
continuous channels with memory. We will apply the method to the
random-walk phase model. The results of this chapter are based on [49].

6.1 Introduction

We consider the problem of computing the information rate1

I(X ;Y)
△

= lim
n→∞

1

n
I(X1, . . . , Xn;Y1, . . . , Yn) (6.1)

between the input process X = (X1, X2, . . .) and the output process
Y = (Y1, Y2, . . .) of a time-invariant discrete-time channel with memory.

Let xn
k

△

= (xk, xk+1, . . . , xn) and xn △

= (x1, x2, . . . , xn). We will assume

1Basic notions from information theory are reviewed in Appendix B.

287

288 Chapter 6. Computing Information Rates of Continuous Channels

that there is an ergodic stochastic process S = (S0, S1, S2, . . .) such that

p(xn, yn, sn
0) = p(s0)

n∏

k=1

p(xk, yk, sk|sk−1) (6.2)

for all n > 0 and with p(xk, yk, sk|sk−1) not depending on k.

For finite input alphabet X (= range of Xk) and finite state space S
(= range of Sk), a practical method for computing the information rate
(6.1) was proposed in [12] [179] and [160].2 In [13], this method was
described in greater generality and extended to the computation of upper
and lower bounds on the information rate of very general channels (see
also [10]). Another method to compute an upper bound was presented
in [11]. A method to approximately compute information rates of finite-
state channels is proposed in [181]; and it is based on generalized belief
propagation [223].

In this chapter, we extend the methods of [12] and [13] to continuous state
spaces S. For the sake of clarity, we will assume that S is a bounded
subset of Rν , the ν-dimensional Euclidean space; the input alphabet X
may also be continuous. The key to this extension is the use of Monte-
Carlo integration methods (“particle filters”) [59] (cf. Section 4.6.4).

This chapter is structured as follows. In Section 6.2, we review the basic
idea of [12] as presented in [13]. In Section 6.3, we show how particle
methods allow to deal with a continuous state space; in Section 6.4,
we apply the resulting algorithm to the random-walk phase model. In
Section 6.5, we summarize this chapter.

6.2 Review of Basic Method

We briefly review the basic idea of [12] as presented in [13]. We first
note that, as a consequence of the Shannon-McMillan-Breiman theo-
rem (cf. Theorem B.6 and B.7), the sequence − 1

n log p(Xn) converges
with probability 1 to the entropy rate H(X), the sequence − 1

n log p(Y n)
converges with probability 1 to the differential entropy rate h(Y), and
the sequence − 1

n log p(Xn, Y n) converges with probability 1 to H(X) +

2See [62] for an alternative approach).

6.2. Review of Basic Method 289

S0

-

X1

y1

S1

-

X2

y2

S2

-

X3

y3

S3

- . . .

Figure 6.1: Computation of p(yn) by message passing through the fac-
tor graph of (6.2).

h(Y |X). From these observations, the quantity I(X ;Y) = h(Y) −
h(Y |X) can be computed as follows:

a) Sample two “very long” sequences xn and yn.

b) Compute log p(xn), log p(yn), and log p(xn, yn). If h(Y |X) is known
analytically, then it suffices to compute log p(yn).

c) Conclude with the estimate

Î(X ;Y)
△

=
1

n
log p(xn, yn) − 1

n
log p(xn) − 1

n
log p(yn) (6.3)

or, if h(Y |X) is known analytically, Î(X ;Y)
△

= − 1
n log p(yn) −

h(Y |X).

The computations in Step 2 can be carried out by forward sum-product
message passing through the factor graph of (6.2), as is illustrated in
Fig. 6.1. If the state space S is finite, this computation is just the forward
sum-product recursion of the BCJR algorithm [15].

Consider, for example, the computation of

p(yn) =

∫

xn

∫

sn
0

p(xn, yn, sn
0), (6.4)

where
∫

x g(x)dx stands for the summation of g(x) over its support if x
is discrete, otherwise, it stands for integration. Define the state metric

µk(sk)
△

= p(sk, y
k). By straightforward application of the sum-product

290 Chapter 6. Computing Information Rates of Continuous Channels

algorithm, we recursively compute the messages (state metrics)

µk(sk) =

∫

xk

∫

sk−1

µk−1(sk−1) p(xk, yk, sk|sk−1)dxkdsk−1 (6.5)

=

∫

xk

∫

sk−1
0

p(xk, yk, sk)dxkdsk−1
0 (6.6)

for k = 1, 2, 3, . . . The desired quantity (6.4) is then obtained as

p(yn) =

∫

sn

µn(sn), (6.7)

the sum of (or the integral over) all final state metrics.

For large k, the state metrics µk computed according to (6.5) quickly
tend to zero. In practice, the recursion (6.5) is therefore changed to

µk(sk) = λk

∫

xk

∫

sk−1

µk−1(sk−1) p(xk, yk, sk|sk−1)dxkdsk−1, (6.8)

where λ1, λ2, . . . are positive scale factors (cf. Remark3.3). We will
choose these factors such that

∫

sk

µk(sk) = 1 (6.9)

holds for all k. It then follows that

1

n

n∑

k=1

logλk = − 1

n
log p(yn). (6.10)

The quantity − 1
n log p(yn) thus appears as the average of the logarithms

of the scale factors, which converges (almost surely) to h(Y).

If necessary, the quantities log p(xn) and log p(xn, yn) can be computed
by the same method, see [13].

6.3 A Particle Method

If both the input alphabet X and the state space S are finite sets, then
the method of the previous section is a practical algorithm. However,

6.3. A Particle Method 291

we are now interested in the case where S (and perhaps also X) are
continuous, as stated in the introduction. In this case, the computation
of (6.8) is a problem.

This problem can be addressed by Monte-Carlo methods known as par-
ticle filtering [59]. Such algorithms may be viewed as message-passing al-
gorithms where the messages (which represent probability distributions)
are represented by a list of samples (“particles”) from the distribution
(cf. Section 4.6.4). In particular, we will represent the message µk by

a list {ŝk,ℓ}N
ℓ=1 of N samples and we will represent the distribution

µk−1(sk−1) p(xk, sk|sk−1) by a list of N three-tuples (ŝk−1,ℓ, x̂k,ℓ, ŝk,ℓ).
From (6.8) and (6.9), we then obtain

λ−1
k =

∫

sk

∫

xk

∫

sk−1

µk−1(sk−1) p(xk, sk|sk−1) p(yk|xk, sk, sk−1)dskdxkdsk−1

(6.11)

≈ 1

N

N∑

ℓ=1

pYk|Xk,Sk,Sk−1
(yk|x̂k,ℓ, ŝk,ℓ, ŝk−1,ℓ). (6.12)

The recursive computation of (6.8) is then accomplished as follows.

a) Begin with a list {ŝk−1,ℓ}N
ℓ=1 that represents µk−1.

b) Extend each particle ŝk−1,ℓ to a three-tuple (ŝk−1,ℓ, x̂k,ℓ, ŝk,ℓ) by
sampling from p(xk, sk|sk−1).

c) Compute an estimate of λk using (6.12).

d) Resampling: draw N samples from the list {(ŝk−1,ℓ, x̂k,ℓ, ŝk,ℓ)}N
ℓ=1

by choosing each three-tuple with probability proportional to
pYk|Xk,Sk,Sk−1

(yk|x̂k,ℓ, ŝk,ℓ, ŝk−1,ℓ).

e) Drop ŝk−1,ℓ and x̂k,ℓ of each new three-tuple and obtain the new

list {ŝk,ℓ}N
ℓ=1.

Remark 6.1. (Applicability of the particle method)
In Step 2 of the above algorithm, one needs to draw samples from
p(xk, sk|sk−1). A closed-form expression for p(xk, sk|sk−1) is not required
for that. The state transitions may for example be described by a sto-
chastic difference equation (e.g., (2.89)–(2.95)). The required samples are

292 Chapter 6. Computing Information Rates of Continuous Channels

then generated by “simulating” the stochastic difference equation. For
example, simulating the model (2.89)–(2.95) involves drawing samples nk

and zk from N0,σ2
N

and N0,σ2
Z

respectively (cf. (2.94) and (2.95)). The
state transitions may also be modeled by a stochastic differential equa-
tion (e.g., (2.59) or (2.82)). First the “continuous” time axis is replaced
by a “discrete” time axis, i.e., the stochastic differential equation is con-
verted into a stochastic difference equation (e.g., by the Euler-Maruyama
method [84]). Then the resulting stochastic difference equation is simu-
lated. Alternatively, the samples may in principle be obtained by mea-
surements; the particle method may thus even be applied in complete
absence of a mathematical model for the state transitions.
The observation model pYk|Xk,Sk,Sk−1

, however, has to be available in
closed-form (cf. Step 3 and 4).

6.4 A Numerical Example

We consider the random-walk phase model (4.1)–(4.2). The input sym-
bols are i.u.d; the signal constellation is 4-PSK. For this channel, the
application of the method of Section 6.3 is straightforward; the results
are shown in Figure 6.2. For these computations, we simulated chan-
nel input/output sequences of length n = 105–106 and used N = 104

particles.

Also shown in Figure 6.2 is a tight lower bound on the information rate,
which is obtained from using a quantized-phase channel model (with 5000
quantization bins) as an auxiliary channel in the bound of [13]. Note
that the results of both approaches practically coincide. Also shown is
the information rate for the case where σ2

W = 0, i.e., for the complex
AWGN channel with i.u.d. 4-PSK input signals. It is noteworthy that
the curves for σ2

W = 0 and σ2
W = 0.01 coincide.

Figure 6.3 depicts the estimate Î(X ;Y) as a function of the number of
iterations; we consider ten runs of the particle method and ten runs of
the method based on the quantized-phase channel model.

6.4. A Numerical Example 293

−20 −15 −10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

SNR[dB]

In
fo

rm
at

io
n

ra
te

 [b
its

/c
ha

nn
el

 u
se

] σ
W

 = 0
σ

W
 = 0.01 Particle Filter

σ
W

 = 0.1 Particle Filter
σ

W
 = 0.5 Particle Filter

σ
W

 = 1 Particle Filter
σ

W
 = 0.01 Quantization

σ
W

 = 0.1 Quantization
σ

W
 = 0.5 Quantization

σ
W

 = 1 Quantization

Figure 6.2: Information rates for the channel (4.1)–(4.2) with i.u.d. 4-
PSK input symbols.

10
1

10
2

10
3

10
4

10
5

0.6

0.8

1

1.2

1.4

1.6

1.8

2

k

Î
(X

;Y
)

Figure 6.3: Î(X ;Y) as a function of the iteration number k for ten runs
of the particle method (dashed) and ten runs of the quan-
tization method (auxiliary-channel bound of [13]) (solid);
SNR = 10dB and σW = 0.5 rad.

294 Chapter 6. Computing Information Rates of Continuous Channels

6.5 Summary

We summarize here the main results of this chapter.

• By using particle methods, we have extended the method of
[12] to channels with a continuous state space. Such methods
can also be used to compute the auxiliary-channel bounds of [13].
In contrast to methods based on quantization, particle methods
remain practical for high-dimensional state spaces.

• The particle methods allow us to compute information rates of
state-space models whose state transitions are described by sto-
chastic differential equations or stochastic difference equa-
tions. For such models, the previous methods (e.g., [12]) only lead
to bounds on the information rates.

• The accuracy of our methods depends not only on the sequence
length n, but also on the number of particles N .

Chapter 7

Capacity of Continuous
Memoryless Channels

We present a numerical method to compute lower and upper bounds on
the capacity of continuous memoryless channels. We present numerical
results for the Gaussian channel with peak-power and average-power con-
straints; we outline how the method can be extended to channels with
memory such as channels with phase noise (e.g., random-walk phase
model). The results of this chapter are based on [39].

7.1 Introduction

We consider the problem of computing lower and upper bounds on the
capacity [178]1

C
△

= sup
p(x)

∫

x

∫

y

p(x)p(y|x) log
p(y|x)
p(y)

△

= sup
p(x)

I(X ;Y) (7.1)

of a memoryless channel p(y|x) with input X and output Y , where p(y)
△

=
∫

x p(x)p(y|x). Both X and Y may be discrete or continuous. If x is dis-

1Basic notions from information theory are reviewed in Appendix B.

295

296 Chapter 7. Capacity of Continuous Memoryless Channels

crete,
∫

x
g(x) stands for the summation of g(x) over its support, other-

wise, it stands for integration.

For memoryless channels with finite input alphabets X and finite output
alphabets Y, the capacity (7.1) can be computed by the Blahut-Arimoto
algorithm [9] [23]. Recently Matz et al. [125] proposed two modifica-
tions of the Blahut-Arimoto algorithm that often converge significantly
faster than the standard Blahut-Arimoto algorithm. Vontobel et al. [204]
extended the Blahut-Arimoto algorithm to channels with memory and
finite input alphabets and state spaces.

For memoryless channels with continuous input and/or output alphabets,
the Blahut-Arimoto algorithm is not directly applicable. In this paper,
we extend the Blahut-Arimoto algorithm to such channels. It is similar
in spirit as the algorithm of Chapter 6 for computing information rates
of continuous channels with memory. The key idea is again to repre-
sent probability distributions by lists of samples (“particles” or “mass
points”; see Section 4.6). In the proposed algorithm, the input distrib-
ution p(x) is represented as a particle list LX . The list LX is updated
by alternating maximization [187]: first the weights of the particles are
updated while the positions of the particles are kept fixed; the Blahut-
Arimoto algorithm [9] [23] (or one of the extensions of [125]) can be used
for this purpose. Next the positions of the particles are optimized while
their weights remain fixed; this can be carried out by several iterations
of a gradient method such as steepest ascent or the Newton-Raphson
method [19].

The proposed algorithm is related to the algorithm presented in [4]. The
latter, however, becomes unstable for certain SNR-values; our algorithm
does not suffer from numerical instabilities. Our algorithm is also similar
to the algorithm proposed by Chang et al. [31]; also there, the input
distribution is represented as a particle list LX . The algorithm of [31]
determines all local maxima x̂max of the relative entropy D(p(y|x)‖p̂(y))
after each update of the weights, where p̂(y) is the output distribution
corresponding to LX ; those maxima are subsequently appended to the
particle list. Finding all local maxima of a function is unfortunately often
infeasible, especially in high dimensions. In addition, there may be an
infinite number of local maxima. The algorithm of [31] is therefore often
impractical. Lafferty et al. [105] proposed an alternative algorithm based
on Markov-Chain-Monte-Carlo methods (MCMC). The MCMC-based
algorithm of [105] is significantly more complex than our algorithm: the

7.2. Review of the Blahut-Arimoto Algorithm and Extensions 297

complexity of the former grows quadratically in the number of iterations,
whereas the complexity of our algorithm depends linearly on the number
of iterations; both algorithms seem to converge after about the same
number of iterations. In addition, each iteration of the MCMC-based
algorithm requires vastly more computations compared to our method.

This chapter is structured as follows. In Section 7.2, we briefly review
the Blahut-Arimoto algorithm [9] [23] and two recently proposed alter-
natives [125]. In Section 7.3, we outline our particle-based algorithm.
We present numerical examples in Section 7.4. We summarize the main
results of this chapter in Section 7.5. In Section 7.6, we list topics for
future research.

7.2 Review of the Blahut-Arimoto Algorithm
and Extensions

We start by reviewing the Blahut-Arimoto algorithm [9] [23] and the two
extensions of [125]. The Blahut-Arimoto algorithm is an alternating-
maximization algorithm [187] for computing the capacity (7.1). One
starts with an arbitrary probability (mass or density) function p(0)(x).
At each iteration k, the probability function p(k)(x) is updated according
to the rule:

p(k)(x) =
1

Z(k)
p(k−1)(x) exp

(

D
(
p(y|x)‖p(k−1)(y)

))

, (7.2)

where D (q(·)‖p(·)) is the Kullback-Leibler divergence (or “relative en-
tropy”; cf. Appendix B) defined as

D (q(·)‖p(·)) △

=

∫

x

q(x) log
q(x)

p(x)
, (7.3)

the expression p(k)(y) is given by

p(k)(y)
△

=

∫

x∈X

p(k)(x)p(y|x), (7.4)

and the factor Z(k) normalizes the probability function p(k)(x):

Z(k) △

=

∫

x∈X

p(k−1)(x) exp
(

D
(
p(y|x)‖p(k)(y)

))

. (7.5)

298 Chapter 7. Capacity of Continuous Memoryless Channels

The mutual information I(k) corresponding to the input probability func-
tion p(k)(x) is given by:

I(k) △

=

∫

x∈X

p(k)(x)D
(
p(y|x)‖p(k)(y)

)
. (7.6)

If after n iterations the gap between I(n), which is a lower bound on the
capacity (7.1), and maxx∈X D

(
p(y|x)‖p(n)(y)

)
, which is an upper bound

on (7.1), is sufficiently small, i.e., when

max
x∈X

D
(
p(y|x)‖p(n)(y)

)
− I(n) < ε, (7.7)

where ε a “small” positive real number (e.g., ε = 10−5), one halts the
algorithms and concludes with the estimate Ĉ = I(n).

Matz et al. [125] proposed two related algorithms for computing the
capacity of memoryless channels, i.e., the so-called “natural-gradient-
based algorithm” and the “accelerated Blahut-Arimoto algorithm”. Both
algorithms often converge significantly faster than the standard Blahut-
Arimoto algorithm.

In the natural-gradient-based algorithm, the probability function p(k)(x)
is recursively updated by the rule [125]

p(k)(x) = p(k−1)(x)
[

1 + µ(k) ·
(

D
(
p(y|x)‖p(k−1)(y)

)
− I(k−1)

)]

, (7.8)

where µ(k) is a positive real number (“step size”). Note that p(k)(x)
in (7.8) is guaranteed to be normalized. The accelerated Blahut-Arimoto
algorithm updates p(k)(x) as [125]

p(k)(x) =
1

Z(k)
p(k−1)(x) exp

(

µ(k) ·D
(
p(y|x)‖p(n)(y)

))

, (7.9)

where Z(k) is a normalization constant.

Many channels have an associated expense of using each of the input
symbols. A common example is the power associated with each input
symbol. A constrained channel is a channel with the requirement that
the average expense be less than or equal to some specified number Emax.
The capacity at expense E is defined as [23]

C(E)
△

= sup
p(x)∈PE

∫

x

∫

y

p(x)p(y|x) log
p(y|x)

∫

x p(x)p(y|x)
△

= sup
p(x)∈PE

I(X ;Y),

(7.10)

7.2. Review of the Blahut-Arimoto Algorithm and Extensions 299

where

PE
△

=
{

p : K
m → R :

∫

x

p(x) = 1, p(x) ≥ 0, E
△

=

∫

x

p(x)e(x) ≤ Emax
}

,

(7.11)
and K = R or C. The Blahut-Arimoto algorithm can be extended to
constrained channels; the recursion (7.2) is replaced by [23]

p(k)(x) =
1

Z(k)
p(k−1)(x) exp

(

D
(
p(y|x)‖p(n)(y)

)
− se(x)

)

, (7.12)

where s a positive real number [23]. After n iterations of (7.12), one
obtains the following bounds on C(E) [23]:

I(n) ≤ C(E) ≤ max
x∈X

[

D
(
p(y|x)‖p(n)(y)

)
− se(x)

]

+ sE(n), (7.13)

where

E(k) △

=

∫

x

p(k)(x)e(x). (7.14)

Note that p(n) and hence E(n) depend on s. One chooses s so that (1) the
condition E(n) ≤ Emax is satisfied; (2) the gap between the upper and
lower bound (7.16) is as small as possible. To that end, the parameter s
may be adjusted after each update (7.12).

When there are multiple constraints Ej
△

=
∫

x
p(x)ej(x) ≤ Emax

j (j =
1, . . . , L), the recursion (7.2) is replaced by

p(k)(x) =
1

Z(k)
p(k−1)(x) exp

(

D
(
p(y|x)‖p(n)(y)

)
−

L∑

j=1

sjej(x)
)

(7.15)

and (7.16) is adapted as

I(n) ≤ C(E) ≤ max
x∈X

D
(
p(y|x)‖p(n)(y)

)
−

L∑

j=1

sjej(x)

+

L∑

j=1

sjE
(n)
j .

(7.16)

The two Blahut-Arimoto-type algorithms of [125] can similarly be ex-
tended to constrained memoryless channels.

300 Chapter 7. Capacity of Continuous Memoryless Channels

7.3 A Particle Method

When X and Y are discrete, the Blahut-Arimoto-type algorithms re-
viewed in the previous section are practical. Otherwise, the Blahut-
Arimoto updates (7.2), (7.8), and (7.9) cannot be carried out as such.
We tackle this problem in a straightforward fashion: we represent the
input distribution p(x) by a (“long”, but finite) particle list

LX
△

=
{
(x̂1, w1), (x̂2, w2), . . . , (x̂N , wN)

}
. (7.17)

For some channels, the capacity-achieving input distribution is known to
be discrete (see e.g., [30] and references therein); the capacity-achieving
input distribution can then exactly be represented by a (finite) list LX .
On the other hand, if the capacity-achieving input distribution is conti-
nuous, it can obviously not exactly be represented by a (finite) list LX ;
nevertheless, it may be well approximated by such a list, especially if N
is large (e.g., N = 106) and the dimension of the input space X is small.

If one represents the input distribution p(x) by a particle list LX , the
original infinite-dimensional optimization problem (7.1) reduces to the
finite-dimensional optimization problem:

Ĉ
△

= max
x̂,w

I(x̂, w), (7.18)

where w
△

= (w1, . . . , wN), x̂
△

= (x̂1, . . . , x̂N), and the expression I(x̂, w)
stands for

I(x̂, w)
△

=
N∑

i=1

∫

y

wi p(y|x̂i) log
p(y|x̂i)

p̂(y)
. (7.19)

The output distribution p̂(y) corresponds to the input distribution p(x)
△

=
LX , i.e.,

p̂(y)
△

=

N∑

i=1

wi p(y|x̂i). (7.20)

The mutual information I(x̂, w) (7.19) involves integrals that are often
intractable; they may be evaluated by numerical integration (e.g., by the
trapezoidal rule) or by Monte-Carlo integration. In the latter approach,
the expression (7.19) is computed as:

I(x̂, w) =
1

M

N∑

i=1

M∑

j=1

wi log
p (ŷi,j |x̂i)

p̂(ŷi,j)
, (7.21)

7.3. A Particle Method 301

where ŷi,j for j = 1, . . . ,M are samples from the conditional pdfs p(y|x̂i).

The estimate Ĉ (7.18) is a lower bound on the capacity (7.1). Note that
the mutual information I(X ;Y) is concave w.r.t. the distribution p(x),
whereas I(x̂, w) is non-convex w.r.t. the positions x̂ and the weights w.
The list of particles L∗X that achieves Ĉ (7.18) is given by:

L∗X
△

=
{
(x̂∗1, w

∗
1), (x̂∗2, w

∗
2), . . . , (x̂

∗
N , w

∗
N)
}

△

= argmax
x̂,w

I(x̂, w). (7.22)

The maximization in (7.22) is carried out over the positions x̂ and over
the weights w. In principle, one can solve (7.22) by alternating maximi-
zation [187]:

w(k) △

= argmax
w

I
(
x̂(k−1), w

)
(W-step) (7.23)

x̂(k) △

= argmax
x̂

I
(
x̂, w(k)

)
(X-step), (7.24)

where x̂(k) △

= (x̂
(k)
1 , . . . , x̂

(k)
N) and w(k) △

= (w
(k)
1 , . . . , w

(k)
N) are the positions

and weights respectively at the k-th iteration. In the W-step (7.23), the
weights w are optimized while the positions x̂(k−1) of the particles are
kept fixed. The W-step can be accomplished by the Blahut-Arimoto al-
gorithm [9] [23] or one of the two extensions proposed in [125], since the

input alphabet X △

= x̂(k−1) is discrete. In the X-step (7.24), the posi-
tions x̂ are optimized while the weights ŵ(k) of the particles remain fixed;
this optimization problem is non-convex and often difficult. Therefore,
instead of performing the maximization (7.24), we select the positions
x̂(k) such that

D(p(y|x(k)
i)‖p(k)(y)) ≥ D(p(y|x(k−1)

i)‖p(k−1/2)(y)), (7.25)

for i = 1, . . . , N with

p̂(y)(k−1/2) △

=
N∑

i=1

w
(k)
i p(y|x̂(k−1)

i). (7.26)

From (7.25) it follows:

I
(
x̂(k), w(k)

)
≥ I
(
x̂(k−1), w(k)

)
. (7.27)

Positions x̂(k) that fulfill the condition (7.25) can be obtained by means
of a gradient method as, e.g., steepest ascent or the Newton-Raphson

302 Chapter 7. Capacity of Continuous Memoryless Channels

method [19]. In steepest ascent for example, the alphabet x̂ is updated
according to the rule:

x̂
(k)
i = x̂

(k−1)
i + λk

∂

∂x̂i
D(p(y|x̂i)‖p̂(y))

∣
∣
∣
∣
x̂(k−1),w(k)

, (7.28)

where λk (“step size”) is a positive real number that in general depends
on k; note that the pdf p̂(y) (cf. (7.20)), which appears in the RHS

of (7.28), depends on x̂
△

= (x̂1, . . . , x̂N).

By adapting the step size λk according to the Armijo rule [19], one can
guarantee (7.25) and hence (7.27). The partial derivative occurring in
the RHS of (7.28) can be evaluated as:

∂

∂x̂i
D(p(y|x̂i)‖p̂(y)) =

∫

y

p(y|x̂i)
∂

∂x̂i
log p(y|x̂i)

·
(

1 + log
p(y|x̂i)

p̂(y)
− wi

p(y|x̂i)

p̂(y)

)

.

(7.29)

If the integral in the RHS of (7.29) is not available in closed-form, it
may be computed by means of numerical integration or Monte-Carlo
integration. In the update rule (7.29), the positions x̂(k) are obtained
from the positions x̂(k−1) by a single steepest-ascent step; obviously, the
positions x̂(k) may also be determined by multiple subsequent steepest-
ascent steps.

In summary, we propose the following algorithm:

a) Start with an initial list of mass points

L(0) △

=
{
(x̂

(0)
1 , w

(0)
1), (x̂

(0)
2 , w

(0)
2), . . . , (x̂

(0)
N , w

(0)
N)
}
,

with uniform weights w
(0)
i = 1/N for i = 1, . . . , N , where N is

sufficiently large.

b) W-step:
Determine the new weights w(k) by solving (7.23); this can be done
by means of the Blahut-Arimoto algorithm [9] [23] or one of the
extensions of [125].

7.3. A Particle Method 303

c) X-step:
While the weights w(k) remain fixed, move the points x̂(k−1) in or-
der to increase I

(
x̂(k−1), w(k)

)
(e.g., by means of a gradient method),

which results in a new set of points x̂(k).

d) Iterate 2–3.

After n iterations, a lower bound L(n) for the capacity (7.1) is eventually
obtained as:

C ≥ L(n) △

= I
(
x̂(n), w(n)

)
. (7.30)

An upper bound on the capacity (7.1) is given by

U (n) △

= max
x∈X

D
(
p(y|x)‖p(n)(y)

)
≥ C, (7.31)

where p(n)(y) is the output distribution corresponding to the input dis-

tribution p(x)
△

= L(n)
X (cf. (7.20)).

Since the sequence I(k) is non-decreasing, i.e., I(k+1) ≥ I(k) and mu-
tual information is bounded from above, the algorithm converges to a
local maximum of I(x,w). The algorithm may converge to the capa-
city-achieving input distribution if the latter is discrete, especially if the
number N of particles is sufficiently large, the dimension of the input
space X is small, and the initial list L(0) sufficiently covers the input
space X . Convergence to the capacity-achieving input distribution is
only guaranteed, however, in the limit of an infinite number of particles.

The proposed algorithm can straightforwardly be extended to constrained
channels (cf. Section 7.2): in the W-step, one iterates the recursion (7.12)
(or one of the extensions of [125]); after each W-step, one may adjust the
parameter s (cf. (7.12)). In the X-step, one moves the points x̂(k−1) in
order to increase I

(
x̂(k−1), w(k)

)
+ sE

(
x̂(k−1), w(k)

)
(e.g., by means of a

gradient method), where

E
(
x̂, w

)
△

=

N∑

i=1

wie(x̂i). (7.32)

After n iterations, one obtains the following lower bound on the capacity
C(E) (7.10):

C(E) ≥ L(n)(E)
△

= I
(
x̂(n), w(n)

)
. (7.33)

304 Chapter 7. Capacity of Continuous Memoryless Channels

An upper bound on C(E) (7.10) is given by:

U (n)(E)
△

= max
x∈X

[

D
(
p(y|x)‖p(n)(y) − se(x)

)]

+ sE
(
x̂(n), w(n)

)
≥ C(E).

(7.34)

7.4 Numerical Example: Gaussian Channel

By means of the above algorithm, we computed the capacity of a Gaussian
channel described by the equation

Yk = Xk +Nk, (7.35)

where Xk ∈ R, and Nk is an i.i.d. zero-mean real Gaussian random
variable, independent of Xk, with (known) variance σ2

0 . We considered
the average-power constraint E[X2] ≤ P and two different peak-power
constraints, i.e., Pr[|X | > A] = 0 and Pr[0 ≤ X ≤ A] = 1.

In the simulations, we used 100 particles x̂ and between 100 and 1000
alternating-maximization iterations;2 each such iteration consisted of
1000 accelerated Blahut-Arimoto iterations (W-step) and 20 steepest
descent updates (X-step). Our experiments have shown that, for the
problem at hand, the accelerated Blahut-Arimoto algorithm converges
faster than the natural-gradient based Blahut-Arimoto algorithm [125];

we optimized the constant step size µ(k) △

= µ (for all k) of the accelerated
Blahut-Arimoto algorithm (cf. (7.9)), resulting in the value µ = 3 (for
all k). We compute I(x̂, w) (7.19) by numerical integration.

In order to assess the performance of our method, we considered a channel
for which the capacity and corresponding input distribution are available
in closed-form, i.e., the Gaussian channel (7.35) with average-power con-
straint E[X2] ≤ P . As is well known, the capacity C (in bits per channel
use) of that channel is given by [178]:

C =
1

2
log2

(

1 +
P

σ2
0

)

. (7.36)

Fig. 7.1(a) shows the expression (7.36) (for P = 1) together with the
lower bound L(n)(E) (7.33), where the signal-to-noise ratio (SNR) is

2The number of required iterations increases with the SNR.

7.4. Numerical Example: Gaussian Channel 305

−2 0 2 4 6 8 10 12 14

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

SNR [dB]

C
a
p
a
ci

ty
[b

it
s/

ch
a
n
n
el

u
se

]

(a) Capacity.

−10 −5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p
(x

)

x

(b) Input distribution.

Figure 7.1: Gaussian channel with constraint E[X2] ≤ 1.

defined as

SNR[dB]
△

= 10 log10

(
P

σ2
0

)

. (7.37)

Also shown in Fig. 7.1(a) is an approximation Û (n)(E) of the upper
bound U (n)(E). Since the input alphabet X is unbounded, the upper
bound U (n)(E) (7.34) is intractable; the estimate Û (n)(E) of U (n)(E) is
obtained by restricting the maximization (7.34) to the interval [-10,10],
i.e.,

Û (n)(E)
△

= max
x∈[−10,10]

[

D
(
p(y|x)‖p(n)(y)

)
− se(x)

]

+ sE
(
x̂(n), w(n)

)
.

(7.38)
It can be seen from Fig. 7.1(a) that Û (n)(E) and L(n)(E) are practically
equal to the capacity C. The deviation between L(n), Û (n) and C is
about 10−5 bits/channel use. The accuracy could in fact be improved by
increasing the number of particles and iterations.

It is well known that the capacity-achieving input distribution is a zero-
mean Gaussian distribution N (0, P) with variance P [178]. In Fig. 7.1(b),
this distribution is shown together with the particle-based approximation
(for P = 1). Again, the exact and the numerical results practically coin-
cide.

Fig. 7.2 shows the results for Gaussian channel with average-power con-
straint E[X2] ≤ P and peak-power constraint Pr[|X | > A] = 0 (A = 1
and P = 0.5). Fig. 7.2(a) shows the lower bound L(n) and upper bound
U (n) on the channel capacity as a function of the SNR (7.37). It can

306 Chapter 7. Capacity of Continuous Memoryless Channels

be seen from Fig. 7.2(a) that both bounds coincide. In Fig. 7.2(b),
the capacity-achieving input distributions are depicted: the dots are the
constellation points, their probability mass is encoded in the grayscale
(white: p = 0; black: p = 0.5). The capacity-achieving input distribution
for this channel is discrete (see e.g., [30] and references therein). Note
that our algorithm does not make use of that fact: it has to determine
both the number and the position of the mass points of the capacity-
achieving input distribution. As an illustration, the capacity-achieving
cumulative input distribution F (x) is depicted in Fig. 7.2(c) for SNR =
13dB. Fig. 7.2(d) shows how the particles explore the input space du-
ring the iterations: initially, the particles are uniformly distributed in
the interval [−1, 1]; they gradually move towards the signal points of the
capacity-achieving input distribution (cf. Fig. 7.2(c)).

−2 0 2 4 6 8 10 12 14

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

SNR [dB]

C
a
p
a
ci

ty
[b

it
s/

ch
a
n
n
el

u
se

]

(a) Capacity.

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

SNR [dB]

x

(b) Input distribution.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

(c) Cumulative input distribution
at SNR=13dB.

−1 −0.5 0 0.5 1

100

200

300

400

k

x(k)

(d) Particles.

Figure 7.2: Gaussian channel with constraints E[X2] ≤ 0.5 and
Pr[|X | > 1] = 0.

7.4. Numerical Example: Gaussian Channel 307

Fig. 7.3 shows the results for the Gaussian channel with peak-power
constraint Pr[|X | > A] = 0 (with A = 1). Fig. 7.3(a) shows the lower
bound L(n) and upper bound U (n) on the channel capacity as a function

of the SNR, which is defined as SNR[dB]
△

= 10 log10

(
A2

σ2
0

)

; both bounds

again coincide. Fig. 7.3(b) shows the corresponding input probability
mass functions.

−2 0 2 4 6 8 10 12 14

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

SNR [dB]

C
a
p
a
ci

ty
[b

it
s/

ch
a
n
n
el

u
se

]

(a) Capacity.

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

SNR [dB]
x

(b) Input distribution.

Figure 7.3: Gaussian channel with constraint Pr[|X | > 1] = 0.

Fig. 7.4 shows the results for the Gaussian channel with peak-power con-
straints Pr[0 ≤ X ≤ A] = 1 (with A = 1). This channel is a simple
model for free-space optical communication. Before we discuss the re-
sults, we briefly elaborate on free-space optical communication. (We
will closely follow [140].) Free-space optical communication systems are
nowadays commercially available (see [161], and references therein); they
are mostly used for short metropolitan links, as illustrated in Fig. 7.4(a).
The transmission of the input signal is performed by light emitting diodes
(LED) or laser diodes (LD), as depicted in Fig. 7.4(b) [161]; conventional
diodes emit light in the infrared spectrum. The main characteristic of a
free-space optical communications channel is that the impact by noise is
mostly due to ambient light, other noise sources can often be neglected;
therefore, the noise can be assumed to be independent of the input. The
direct line-of-sight path is often dominant, as a consequence, the im-
pact of inter-symbol interference due to multi-path propagation can be
neglected. Due to eye safety and the danger of potential thermal skin
damage, the optical peak-power has to be constrained.3

3See, e.g., http://www.lasermet.com/resources/classification-overview.html.

308 Chapter 7. Capacity of Continuous Memoryless Channels

Fig. 7.4(c) shows (1) the lower bound L(n) and upper bound U (n) on the
channel capacity, which, as before, coincide; (2) analytical upper and
lower bounds by Moser et al. [140]4; (3) the information rates correspon-
ding to the input constellation X = {0, 1} (“ON/OFF keying”), which
is frequently used in practical free-space optical communications sys-
tems [161]. In Fig. 7.4(d), the capacity-achieving input constellations are
depicted. Note that ON/OFF keying achieves capacity for SNR-values
below 11dB, which are realistic SNR-values [161].

(a) Application.

Input optical fiber Output optical fiber
Infrared beam

Receiver unitTransmitter unit

(b) Communications system [161].

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

Capacity
ON/OFF
Lower [Moser et al.]
Upper [Moser et al.]

SNR [dB]

C
a
p
a
ci

ty
[b

it
s/

ch
a
n
n
el

u
se

]

(c) Capacity.

0 5 10 15 20
−0.5

0

0.5

1

1.5

SNR [dB]

x

(d) Input distribution.

Figure 7.4: Gaussian channel with Pr[0 ≤ X ≤ 1] = 1.

4We have plotted the low-power bounds proposed in [140]. The high-power lower
bound of [140] is for A = 1 looser than the low-power lower bound. The high-power
upper bound only holds for large values of A, it is trivial for A = 1.

7.5. Summary 309

7.5 Summary

• We proposed a simple numerical algorithm to compute (lower
and upper bounds on) the capacity of continuous memoryless
channels. The input distribution is represented by a finite list
of mass points; the list is computed by alternating maximiza-
tion: first, the weights of the mass points are updated by means
of the Blahut-Arimoto algorithm (with the current positions of the
mass points as input alphabet), then, the positions of the mass
points are optimized (while the weights of the mass points are
fixed); this non-convex optimization problem is handled by gra-
dient methods.

• We have presented numerical results for the Gaussian channel
with average-power and/or peak-power constraints. The algorithm
seems to lead to accurate results both for discrete and for conti-
nuous capacity-achieving input distributions. Note that the algo-
rithm does not need to know in advance whether the capacity-
achieving input distribution is discrete or continuous.

• The algorithm is not guaranteed to converge to the capacity-
achieving input distribution, in practice however, it usually does if
the capacity-achieving input distribution is discrete.

7.6 Outlook

• The methods of this chapter can be extended to channels with
memory, e.g., inter-symbol-interference channels (ISI). The gen-
eral idea is again simple: one interleaves the Blahut-Arimoto-type
algorithm of [204] (W-step) with gradient ascent (X-step). The
resulting algorithm involves forward and backward sweeps in which
sum-product messages and gradients of sum-product messages are
computed (cf. Section 4.8.1). We have implemented such algo-
rithms and we obtained promising preliminary results. Further
investigation of those algorithms is needed.

• It would be interesting to extend our methods to the computation
of rate distortion functions [178].

Chapter 8

Analog Electronic Circuit
for PN-Synchronization

This chapter is not directly related to the problem of carrier-phase esti-
mation. However, it is strongly related to (1) the problem of synchroniza-
tion, more specifically, pseudo-noise (PN) synchronization; (2) message
passing on factor graphs, in particular, the implementation of message-
passing algorithms as dynamical systems (analog electrical circuits).

More precisely, we present a clockless low-power analog circuit that syn-
chronizes to pseudo-noise (PN) signals. The circuit operates in conti-
nuous time and does not contain a digital clock; in other words, it avoids
the problem of timing synchronization.

The circuit is derived by translating a discrete-time message-passing al-
gorithm into continuous time. The circuit exhibits the phenomenon of
entrainment—we thus establish a connection between entrainment and
statistical state estimation.

The results of this chapter are based on joint work with Matthias Frey,
Neil Gershenfeld, Tobias Koch, Patrick Merkli and Benjamin Vigoda [201].
My personal contribution concerns the statistical estimation aspect, and
not the hardware implementation nor measurement of the circuit.

311

312 Chapter 8. Analog Circuit for PN-Synchronization

8.1 Introduction

Pseudo-random signals play an important role in spread-spectrum com-
munications [182] [139] in various measurement systems. In such systems,
the synchronization of pseudo-random (“pseudo noise”) signals is a pro-
blem of significant interest. The standard solution to this problem is
based on correlating the incoming signal with (a segment of) the pseudo-
random signal, which leads to a long acquisition time if the period of the
signal is large.

Perhaps the most popular class of pseudo-random signals are generated
by linear-feedback shift registers (LFSRs). Both Gershenfeld and Grin-
stein [74] and Yang and Hanzo [219] [220] observed that LFSR sequences
can be synchronized by means of a “soft” or “analog” LFSR. The ap-
proach of [74] is system theoretic: the soft LFSR is a dynamical system
with entrainment capabilities (cf. [158] [38] [3]) obtained by embedding
the discrete state space of the LFSR into a continuous state space. In
contrast, the (better) soft LFSR of [219] [220], which was independently
obtained also in [50], is derived from statistical estimation; it achieves
quick synchronization—e.g., after 150 samples at 0 dB for an LFSR with
a period of 215−1 samples—at very low computational cost. Related algo-
rithms, some of them more complex and more powerful, were presented
in [50] [51] [133] [32] [224].

Here, we connect the dynamical systems view of [74] with the statistical
view of [219] [220], both in discrete time and in continuous time. First,
we derive the soft LFSR of [219] [220] as forward-only message passing in
the corresponding factor graph. We then propose a new continuous-time
analog of both the LFSR and the soft LFSR, both suitable for realization
as electronic circuits. We actually implemented one such circuit, and we
report some measurements. It is thus demonstrated that continuous-
time dynamical systems (such as clockless electronic circuits) with good
entrainment properties can be derived from message passing algorithms
for statistical state estimation. Such systems/circuits may have substan-
tial advantages in terms of speed and/or power consumption over digital
implementations in some applications, and they may enable entirely new
applications. However, such applications are outside the scope of this
thesis.

This chapter is organized as follows. We begin by stating the discrete-

8.2. Noisy LFSR Sequences 313

time problem in Section 8.2. In Section 8.3, we review maximum-likelihood
estimation and its interpretation as forward-only message passing in a
cycle-free factor graph. In Section 8.4, we obtain the soft LFSR as
forward-only message passing through another factor graph, and we
present some simulation results. A continuous-time analog of the (discrete-
time) LFSR is proposed in Section 8.5. The corresponding continuous-
time analog of the soft LFSR and its realization as an electronic circuit
are described in Section 8.6. Some measurements of this circuit are re-
ported in Section 8.7. In Section 8.8, we summarize the main results of
this chapter; in Section 8.9, we outline several topics for future research.
Some details of alternative versions of the soft LFSR (sum-product, max-
product, and Gershenfeld-Grinstein) are given in Appendix L.

8.2 Noisy LFSR Sequences

For fixed integers ℓ and m satisfying 1 ≤ ℓ < m, let

X
△

= X−m+1, . . . , X−1, X0, X1, X2, . . . (8.1)

be a binary sequence satisfying the recursion

Xk = Xk−ℓ ⊕Xk−m (8.2)

for k = 1, 2, 3, . . ., where “⊕” denotes addition modulo 2. Any such
sequence will be called a LFSR (linear-feedback shift register) sequence.

For k ≥ 0, the m-tuple [X]k
△

= (Xk−m+1, . . . , Xk−1, Xk) will be called
the state of X at time k. The sequence X1, X2, . . . is observed via a
memoryless channel with transition probabilities p(yk|xk). The situation
is illustrated in Fig. 8.1 for ℓ = 1 and m = 3; the boxes labeled “D” are
unit-delay cells.

Note that the restriction to two right-hand terms (“taps”) in (8.2) is
made only to keep the notation as simple as possible; all results of this
paper are easily generalized to more taps. We also remark that, in most
applications (and in our examples), LFSR sequences with the maximal
period of 2m − 1 are preferred, but this condition plays no essential role
in this paper.

From the received sequence Y1, Y2, . . . , Yn, we wish to estimate the state
[X]n of the transmitted sequence. The computation of the maximum-

314 Chapter 8. Analog Circuit for PN-Synchronization

Xk−m

D � D �
Xk−ℓ

q D �
Xk

q -

- ⊕
6

-
memoryless

channel

-
Yk

Figure 8.1: LFSR sequence observed via a noisy channel.

likelihood (ML) estimate is straightforward and well known [182]; how-
ever, the complexity of this computation is proportional to n2m, which
makes it impractical unless m is small.

In the examples, we will assume that the channel is defined by

Yk = X̃k + Zk (8.3)

with

X̃k
△

=

{
1, if Xk = 0

−1, if Xk = 1
(8.4)

(i.e., binary antipodal signaling) and where Z = Z1, Z2, . . . is white
Gaussian noise (i.e., independent zero-mean Gaussian random variables)
with variance σ2.

8.3 ML Estimation, Trellis, and Factor Graphs

Let us recall some basic facts. First, we note that the mapping x 7→ [x]k
(from sequences to states) is invertible for any k ≥ 0: from the forward
recursion (8.2) and the backward recursion Xk−m = Xk ⊕ Xk−ℓ, the
complete sequence x is determined by its state at any time k.

Second, we consider the maximum-likelihood (ML) estimate of [X]n.

Using the notation yn △

= (y1, . . . , yn) and xn △

= (x−m+1, . . . , xn), the
ML estimate of [X]n is the maximum (over all possible states [x]n) of

8.3. ML Estimation, Trellis, and Factor Graphs 315

S0

X1

y1

S1

X2

y2

S2

X3

y3

S3

. . .

Figure 8.2: Factor graph (Forney-style) corresponding to the trellis of
the system in Fig. 8.1.

S0

X1
6

y1

S1

-

X2
6

y2

S2

-

X3
6

y3

S3

-
. . .

Figure 8.3: Forward-only message passing through the factor graph of
Fig. 8.2.

the likelihood function

p(yn | [x]n) = p(yn|xn) (8.5)

=
n∏

k=1

p(yk|xk). (8.6)

For the channel (8.3), maximizing (8.6) amounts to maximizing the cor-
relation between x̃n and yn.

Third, we note that the computation of (8.6) may be viewed as the
forward recursion of the BCJR algorithm [15] through the trellis of the
system or—equivalently—as forward-only message passing through the
corresponding factor graph. Let us consider this more closely.

316 Chapter 8. Analog Circuit for PN-Synchronization

A factor graph of our system is shown in Fig. 8.2. The nodes in the
top row of Fig. 8.2 represent {0, 1}-valued functions J(sk−1, xk, sk) that
indicate the allowed combinations of old state sk−1 = [x]k−1, output
symbol xk, and new state sk = [x]k. The nodes in the bottom row of
Fig. 8.2 represent the channel transition probabilities p(yk|xk). As a
whole, the factor graph of Fig. 8.2 represents the function

p(yn|xn)J(xn, sn) =

n∏

k=1

J(sk−1, xk, sk) p(yk|xk) (8.7)

(defined for arbitrary binary sequences xn), where

J(xn, sn)
△

=

n∏

k=1

J(sk−1, xk, sk) (8.8)

is the indicator function of valid LFSR sequences, which may also be
viewed as a uniform prior over all valid xn.

It then follows from basic factor graph theory [103] [119] that the a
posteriori probability distribution over Sn = [X]n (and thus the MAP
/ ML estimate of Sn) is obtained from forward-only sum-product mes-
sage passing as illustrated in Fig. 8.3. Since the trellis has no merging
paths, the sum-product rule for the computation of messages reduces to
a product-only rule and coincides with the max-product rule. By taking
logarithms, the product-only rule becomes a sum-only rule; for the chan-
nel (8.3), this amounts to a recursive computation of the correlation
between x̃n and yn.

8.4 The Soft LFSR

Another factor graph for our system is shown (for ℓ = 1 and m = 3) in
Fig. 8.4. This factor graph represents the function

p(yn|xn)J(xn) =

n∏

k=1

δ[xk ⊕ xk−ℓ ⊕ xk−m] p(yk|xk), (8.9)

where δ[.] is the Kronecker delta and where J(xn) =
∏n

k=1 δ[xk ⊕xk−ℓ ⊕
xk−m] is the indicator function for valid LFSR sequences according to (8.2).

8.4. The Soft LFSR 317

. . . L
LL

=

Xk−3

yk−3

⊕
�

�
�

��

L
L
L
LL

����

=

Xk−2

yk−2

⊕
�

�
�

��

L
L
L
LL

��������

=

Xk−1

yk−1

�����������
⊕
�

�
�

��

L
L
L
LL

LLUµB,k

����������� =

Xk

���
µk

��*

6
µA,k

yk

������

⊕
�

�
�

��

L
L
L
LL

����������� =

Xk+1

yk+1

���� . . .

Figure 8.4: Factor graph corresponding directly to Fig. 8.1.

µk−m
D � D �

µk−ℓ

q D � µk
=

- ⊕
6

µB,k

?
�
µA,k � yk

Figure 8.5: Computation of messages in Fig. 8.4 by a “soft LFSR”.

As this factor graph has cycles, the standard sum-product and max-
product algorithms become iterative algorithms. Such algorithms were
investigated in [32] and [224]. Here, however, we stick to (non-iterative)
forward-only message passing. Since (full-state) forward-only message
passing is optimal in Fig. 8.3, there is hope that (scalar) forward-only
message passing in Fig. 8.4 might do well also. In any case, forward-only
message passing in Fig. 8.4 amounts to a simple recursion, which may be
interpreted as running the received sequence Y through the “soft LFSR”
circuit of Fig. 8.5. The quantities µA,k, µB,k, and µk in Fig. 8.5 are the
messages indicated in Fig. 8.4. Note that the same message µk is sent
along two edges out of the equality check node corresponding to Xk.

The computation of these messages (as indicated in Fig. 8.5) is a stan-
dard application of the sum-product or max-product rules. Each mes-
sage represents “pseudo-probabilities” p̃(0) and p̃(1), e.g., in the form

318 Chapter 8. Analog Circuit for PN-Synchronization

p̃(0)/p̃(1) or p̃(0)− p̃(1). For the latter representation, the explicit sum-
product update rules are as follows:

Initialization: µk = 0 for k = −m+ 1,−m+ 2, . . . , 0.

Recursion (for k = 1, 2, 3, . . .):

µA,k =
p(yk|xk = 0) − p(yk|xk = 1)

p(yk|xk = 0) + p(yk|xk = 1)
(8.10)

for AWGN
=

exp(2yk/σ
2) − 1

exp(2yk/σ2) + 1
(8.11)

µB,k = µk−ℓ · µk−m (8.12)

µk =
µA,k + µB,k

1 + µA,k · µB,k
(8.13)

Equation (8.10) holds for a general memoryless channel while (8.11) is
the specialization to the channel specified at the end of Section 8.1. At
any given time k, an estimate of Xk is obtained as

X̂k
△

=

{
0, if µk ≥ 0
1, if µk < 0

(8.14)

and [X̂]k = (X̂k−m+1, . . . , X̂k−1, X̂k) is an estimate of the state [X]k.

The sum-product update rules for the case where the messages represent
the ratio p̃(0)/p̃(1) are given in the appendix together with the max-
product rules and the analog LFSR of [74].

Simulation results for maximum-length LFSR sequences with memory
m = 15 and m = 31 are given in Figures 8.6–8.8. All these figures show
plots of the probability of synchronization

Psynch(k)
△

= P
(

[X̂]k = [X]k

)

(8.15)

either vs. the time index k or vs. the signal-to-noise ratio 1/σ2 where σ2

is the noise variance.

As is obvious from these plots (and from similar plots in [219] [220] [50])
the soft LFSR quickly achieves synchronization for sufficiently low noise
power (up to about 0 dB) but fails for high noise power. It is remarkable

8.4. The Soft LFSR 319

50 100 150 200 250 300 350 400
10

−4

10
−3

10
−2

10
−1

10
0

k

1−
P

sy
nc

h

ML
Max−Product
Sum−Product
Gershenfeld−Grinstein

Figure 8.6: 1 − Psync(k) for the LFSR with m = 15 (ℓ = 1) at
SNR = 0 dB. Algorithms (in the order of increasing perfor-
mance): G.-G. soft LFSR [74]; sum-product soft LFSR;
max-product soft LFSR; maximum likelihood (ML).

50 100 150 200 250 300 350 400
10

−4

10
−3

10
−2

10
−1

10
0

k

1−
P

sy
nc

h

Max−product
Sum−product

Figure 8.7: 1 − Psync(k) for the LFSR with m = 31 (ℓ = 3) for three
different signal-to-noise ratios: SNR = -2.92 dB (σ = 1.4),
SNR = 0 dB (σ = 0), and SNR = 4.44 dB (σ = 0.6).
Algorithms: max-product soft LFSR and sum-product soft
LFSR.

320 Chapter 8. Analog Circuit for PN-Synchronization

that the max-product algorithm gives better performance than the sum-
product algorithm, but the difference is small.

We also note that better performance can be achieved both with more
complex forward-only message passing [50] [51] and with iterative mes-
sage passing, cf. [32] [224].

8.5 A Continuous-Time Pseudo-Random Gen-
erator

We now proceed to an analog of Figures 8.1 and 8.5 in continuous time.
Our proposal for a continuous-time analog of Fig. 8.1 is shown in Fig. 8.9.
The signal X(t) in Fig. 8.9 takes values in the set {+1,−1}. The multi-
plier in Fig. 8.9 corresponds to the mod-2 addition in Fig. 8.1.

How should we translate the delay cells in Fig. 8.1 to continuous time?
An obvious approach would be to simply translate them into continuous-
time delay cells. However, ideal continuous-time delay cells cannot be
realized by real circuits (except perhaps in optics); even a delay line (e.g.,
a piece of wire) has a low-pass characteristic.

We therefore choose to replace the discrete-time delay cells of Fig. 8.1
by low-pass filters with transfer functions H1(s) and H2(s) as shown
in Fig. 8.9. Since the output signal of such filters is not restricted to
{+1,−1}, we introduce threshold elements between the filter outputs
and the multiplier, which reduce the filtered signals to their sign (+1 or
−1). These threshold elements have no counterpart in Fig. 8.1 (and will
create a small problem in the receiver).

The memoryless channel in Fig. 8.1 is translated into the additive white
Gaussian channel shown in Fig. 8.9.

The type of signal X(t) generated by the circuit of Fig. 8.9 is illustrated
in Fig. 8.10 (top). From our simulations, it appears that the signal X(t)
is generically periodic. The actual signal depends, of course, on the two
filters. In our examples, the first filter (with transfer function H1(s)) is
a 5-th order Butterworth filter with −3 dB frequency 1.6 kHz, and the
second filter (with transfer function H2(s)) is a cascade of 6 such filters.
With these filters, the circuit of Fig. 8.9 is a dynamical system with a

8.5. A Continuous-Time Pseudo-Random Generator 321

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

SNR

1−
P

sy
nc

h

ML
Max−Product
Sum−Product
Gershenfeld−Grinstein

Figure 8.8: 1 − Psync(k = 100) vs. SNR for the LFSR with m = 15
(ℓ = 1). Algorithms (in the order of increasing perfor-
mance): G.-G. soft LFSR [74]; sum-product soft LFSR;
max-product soft LFSR; maximum likelihood (ML).

H2(s) � q H1(s) � q -X(t)
6 6

- ×
6

-

h?

white
Gaussian

noise

-Y (t)

Figure 8.9: Continuous-time analog to Fig. 8.1 with low-pass filters in-
stead of delay cells.

322 Chapter 8. Analog Circuit for PN-Synchronization

4 4.001 4.002 4.003 4.004 4.005 4.006 4.007 4.008 4.009 4.01

−1

0

1

4 4.001 4.002 4.003 4.004 4.005 4.006 4.007 4.008 4.009 4.01

−2

0

2

4 4.001 4.002 4.003 4.004 4.005 4.006 4.007 4.008 4.009 4.01

−1

0

1

time [s]

Figure 8.10: Top: example of pseudo-random signal X(t) generated
by the circuit of Fig. 8.9. Middle: noisy signal Y (t) as in
Fig. 8.9 at SNR = 0 dB. Bottom: measured output signal
X̂(t) of the circuit of Fig. 8.11 fed with Y (t).

35-dimensional state space. The resulting signal X(t) is periodic with a
period of 34 ms, 10 ms of which are shown in Fig. 8.10 (top).

It should be emphasized that, at present, we do not have a theory of such
circuits and we cannot predict the period of the generated sequenceX(t).
However, our simulation experiments (e.g., in [99] [42] [43]) suggest that
a long period—“long” meaning many zero-crossings—requires a high-
dimensional state space.

8.6 A Circuit that Locks onto the Pseudo-
Random Signal

A continuous-time analog to the soft LFSR of Fig. 8.5 matched to the
pseudo-random generator of Fig. 8.9 is shown in Fig. 8.11. The linear

8.6. A Circuit that Locks onto the Pseudo-Random Signal 323

H2(s) � q H1(s) � =

④

�

⑤

� Y (t)
6

②

6

①

- ×
③

6

-- q

?

-X̂(t)

Figure 8.11: Continuous-time analog of Fig. 8.5.

filters H1(s) and H2(s) in Fig. 8.11 are identical to those in Fig. 8.9. All
signals in Fig. 8.11 should be viewed as approximations of expectations
of the corresponding signals in Fig. 8.9 (conditioned on the previous
observations). Note that, for {+1,−1} valued signals, the mean coincides
with the difference p̃(+1) − p̃(−1). It follows that the multiplier ③ in
Fig. 8.11 computes (the continuous-time analog of) the message µA,k(t)
according to (8.12); the box ④ in Fig. 8.11 computes (the continuous-time
analog of) the message µk according to (8.13); and the box ⑤ computes
(the continuous-time analog of) the message µA,k according to (8.11). All
these computations can be done by simple transistor circuits as described
in [121] [123] [116] (where the pseudo-probabilities p̃(+1) and p̃(−1) are
represented by a pair of currents).

Consider next the filtered signals. Let S1(t) denote the output signal of
the filter H1(s) in Fig. 8.9 and let h1(t) be the impulse response of that
filter (i.e., the inverse Laplace transform of H1(s)). We thus have

S1(t) =

∫ ∞

−∞

h1(τ)X(t− τ) dτ (8.16)

and

E [S1(t)] =

∫ ∞

−∞

h1(τ) E [X(t− τ)] dτ (8.17)

where the expectation is a (time dependent) ensemble average based on
the (time dependent) pseudo-probabilities p̃(+1) and p̃(−1). It follows
that the output of the filter H1(s) in Fig. 8.11—which is given by the
right-hand side of (8.17)—is the expected value of S1(t). In other words,
all signals in Fig. 8.11 may be viewed as (approximations of) expectations
of the corresponding signals in Fig. 8.9.

324 Chapter 8. Analog Circuit for PN-Synchronization

I+ I−

Vin

A

Figure 8.12: Differential transistor pair.

So far, all computations have been locally exact in the same sense as
in the discrete-time case (i.e., ignoring cycles in the factor graph). This
fails, however, for the threshold elements in Fig. 8.9: the (instantaneous)
expectation of the output signal of such a threshold element is not de-
termined by the (instantaneous) expectation of its input signal. At this
point, however, practical considerations strongly suggest to implement
the boxes ① and ② by the circuit of Fig. 8.12. This circuit accepts as
input a voltage and produces as output two currents I+ and I− propor-
tional to p̃(+1) and p̃(−1), respectively.

This same circuit is also used to implement the box ⑤ exactly (where
the amplification A depends on the SNR and on the temperature). As
an implementation of ① and ②, the circuit is an approximation; it would
be exact (for the correct choice of α) if the distribution of the filtered
signals —more precisely, the full sum-product message at the input of
the soft-threshold elements—would be the logistic distribution

f(x) =
1

β
(

e
x−µ
2β + e−

x−µ
2β

)2 (8.18)

with mean µ and variance πβ/
√

3 [134, Appendix E]. In our experiments,
the amplification α of these circuits was manually adjusted for the best
performance.

8.7 Some Measurements

Simulation results of analog circuits are often subject to doubt concerning
their robustness with respect to non-idealities. We therefore built the

8.7. Some Measurements 325

system of Fig. 8.11 as an actual (clockless) electronic circuit with discrete
components. The filters were realized as active RC filters with integrated
operational amplifiers.

For the measurements, the clean signal X(t) as well as the noisy signal
Y (t) were created by simulating the circuit of Fig. 8.9 on a (digital)
computer; the noisy signal Y (t) was then passed as input to the electronic
realization of Fig. 8.11. A typical measured output signal X̂(t) is shown
in Fig. 8.10 (bottom).

Some measurements of this system are given in Figures 8.13–8.15. For
the measurements of Figures 8.13 and 8.14, the signal Y (t) is replaced by
a constant signal with value −1 for t < 0. Both figures show the squared
error (SE) (X̂(t)−X(t))2 averaged, first, over a sliding window and then,
over a number of experiments. Fig. 8.13 shows the SE (averaged over
10ms and over 5 experiments) vs. the time t; Fig. 8.14 shows the SE
(averaged over 1s and over 5 experiments) vs. the SNR at time t = 4 s
(which is the steady state). Note that the receiver achieves good syn-
chronization for an SNR down to about 0 dB. Not surprisingly, a signal
with a longer period (top in Fig. 8.14) is more difficult to synchronize
than a signal with a shorter period (bottom in Fig. 8.14).

It is instructive to observe what happens when the input to the receiving
circuit is switched off for a while as illustrated in Fig. 8.15. Before the
interruption, the receiver is synchronized. The signal Y (t) is then masked
(i.e., overwritten by zero) for 20 ms. During the interruption, X(t) and
X̂(t) drift apart and the averaged SE increases. The figure shows the
signals X(t) and X̂(t) around the critical moment when Y (t) is switched
on again.

326 Chapter 8. Analog Circuit for PN-Synchronization

−0.05 0 0.05 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4
sliding mean of SE vs. time

sl
id

in
g

m
ea

n
of

 s
qu

ar
ed

 e
rr

or
 (

w
in

do
w

le
ng

th
: 1

0m
s)

time [s]

SNR = −4dB
SNR = 0dB
SNR = 4dB

Figure 8.13: Average squared error vs. time after switching the trans-
mission on.

6 4 2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

s
lid

in
g
 m

e
a
n
 o

f
s
q
u
a
re

d
 e

rr
o
r

(w
in

d
o
w

 l
e
n
g
th

:
1
0
m

s
)

SNR [dB]

4 Filters
6 Filters

Figure 8.14: Average squared error in steady state vs. SNR. Dashed
curve: pseudo-random signal with shorter period (7 ms
instead of 34 ms, achieved with H2(s) = H1(s)

4 instead
of H2(s) = H1(s)

6).

8.7. Some Measurements 327

3.96 3.98 4 4.02 4.04 4.06 4.08
−3

−2

−1

0

1

2

3

time [s]

3.96 3.98 4 4.02 4.04 4.06 4.08
0

0.5

1

1.5

2

time [s]

4.01 4.012 4.014 4.016 4.018 4.02 4.022 4.024 4.026 4.028
−1.5

−1

−0.5

0

0.5

1

1.5

time [s]

4.01 4.012 4.014 4.016 4.018 4.02 4.022 4.024 4.026 4.028
−1.5

−1

−0.5

0

0.5

1

1.5

time [s]

Figure 8.15: Resynchronization example with modified Y (t) (top),
sliding-window squared error (2nd from top), X(t) (2nd
from bottom), and X̂(t) (bottom) at SNR = 0 dB. The
plots of X(t) and X̂(t) are zoomed to the interval marked
by the dashed lines.

328 Chapter 8. Analog Circuit for PN-Synchronization

8.8 Summary

• Gershenfeld and Grinstein demonstrated the synchronization of
LFSR sequences (both in discrete time and in continuous time) by
an “analog LFSR”, which was obtained by embedding the discrete
state space of the LFSR into a larger continuous state space. In
this chapter, we derived such dynamical systems from message-
passing algorithms for statistical state estimation.

• First, we noted that the soft LFSR proposed by Yang and Hanzo
may be obtained by forward-only message passing through a
factor graph.

• Second, we proposed a new continuous-time analog of both the
LFSR and the soft LFSR that can be realized as a practical elec-
tronic circuit.

• We have thus established a connection between statistical state
estimation and the phenomenon of entrainment of dynamical
systems.

8.9 Outlook

• Dynamical systems (e.g., electronic circuits) with better entrain-
ment capabilities may be obtained from more powerful (more
complex) message-passing algorithms.

• So far, only message-passing algorithms for detection (i.e., infer-
ence of discrete variables) have been implemented in analog elec-
tronic circuits, i.e., analog decoding circuits (see [123] and references
therein) and the pseudo-noise synchronization circuit we presented
in this chapter. The extension to estimation seems to be largely
unexplored. Expectation-Maximization-based and gradient-
based estimation algorithms seem natural candidates for imple-
mentation in analog electronic circuits. EM often leads to simple
expressions, whereas gradient-based algorithms naturally lead to
feedback loops.

One immediate application of this idea in the area of communica-
tions is code-aided estimation of the channel state, which may

8.9. Outlook 329

lead to adaptive analog circuits that are able to track the channel
state. However, there are also potential applications beyond com-
munications. In the late 80’s, Mead [130] pioneered neuromor-
phic engineering, i.e., the development of artificial computing
systems that use the physical properties and information repre-
sentations found in biological nervous systems. Following that
principle, Mead [130] (and later also other researchers, e.g., [113])
developed low-power analog circuits for applications in low-level vi-
sion (“silicon retina”) and audio-signal processing (“silicon cochlea”).
In such applications (e.g., in hearing aids), the available power is
seriously limited, and digital solutions are often not suitable. It
seems promising to underpin and extend the neuromorphic engi-
neering paradigm with insights from statistical estimation (the
“message-passing paradigm”), following the line of thought in this
chapter.

• Quantum systems intrinsically compute probabilities. In fact,
they do that in a very efficient manner: they can update the proba-
bility mass function of n bits in a single computation; on a classical
computer, this requires in general in the order of 2n computations.
This fact may lead to efficient implementations of detection and es-
timation algorithms. Although we made some progress in this area,
we are still far from a first working (toy) system. A major bot-
tleneck is the fact that inference algorithms require non-unitary
operations and marginalization; it is not clear how such opera-
tions can be implemented efficiently in quantum-computing sys-
tems.

Chapter 9

Conclusions and Outlook

9.1 Summary

This thesis was, on the one hand, about a particular problem, i.e., carrier-
phase synchronization; on the other hand, it was about general methods,
i.e., message-passing algorithms operating on factor graphs. We will
summarize our results by following the latter thread.

We described how factor graphs can be used for statistical inference,
i.e., detection and estimation. Statistical inference is accomplished by
sending messages along the edges of the graph (“summary propagation”
or “message passing”). Different algorithms are obtained by different
message types or different message update schedules.

We described various standard estimation/detection algorithms in signal
processing and machine learning as message passing on factor graphs:

• particle methods, e.g., Gibbs sampling, particle filtering, impor-
tance sampling, simulated annealing, Markov-Chain Monte-Carlo
methods

• gradient-based methods, e.g., steepest ascent/descent, natural-gra-
dient algorithms

331

332 Chapter 9. Conclusions and Outlook

• expectation maximization (EM) and extensions, e.g., Monte-Carlo
EM, gradient EM, SAGE, etc.

• decision-based methods (e.g., iterative conditional modes)

• the back-propagation algorithm for training feed-forward neural
networks.

We determined the local message update rules for each of the above al-
gorithms. They may be used as building blocks for novel estimation and
detection algorithms. By listing the possible update rules at each node
in the factor graph, one can systematically derive novel algorithms. We
derived various phase-estimation algorithms in this fashion. We demon-
strated how message-passing algorithms for inference can be implemented
as dynamical systems, in particular, as analog electrical circuits. In parti-
cular, we have developed a clockless low-power analog circuit that syn-
chronizes to pseudo-noise sequences.

Factor graphs can also be used for other (related) tasks. In this disser-
tation, we have devised message-passing algorithms to compute infor-
mation matrices and Cramér-Rao-type bounds. The latter allow us to
assess practical estimation algorithms, e.g., our phase-estimation algo-
rithms. Our algorithms for computing information matrices may lead to
novel natural-gradient-based algorithms.

Information matrices are also the key to kernel methods, i.e., Fisher ker-
nels [89]. Our methods for computing information matrices may enable
us to derive Fisher kernels from sophisticated graphical models. We also
explained how probabilistic kernels and product kernels may be deri-
ved from graphical models. In combination with kernel methods, factor
graphs can be used for virtually any task in machine learning, as for
example clustering, classification, and novelty detection.

A different application of factor graphs is the computation of information
rates of (discrete) communications channels with memory. In [12], it has
been shown how information rates for such channels can be computed
by forward-only messaging on the graph of the state-space model that
represents the channel. We extended this result to continuous channels,
e.g., channels with phase noise. We also described how the capacity (or
lower bounds on the capacity) of continuous channels can be computed.

9.2. Outlook 333

9.2 Outlook

Phase Estimation

• Extension to other phase models. We derived phase estimation al-
gorithms for the constant-phase model and the random-walk phase
model. Those algorithms could be extended to more sophisticated
phase models, in particular, the models we described in this thesis.

• Other synchronization tasks. We merely focussed on phase estima-
tion. Following the line of though of this thesis, message-passing
algorithms for other synchronization tasks may be derived.

• Analysis of synchronization algorithms. We have proposed vari-
ous algorithms for phase estimation and performed simulations to
asses their performance. Our algorithms (and synchronization al-
gorithms in general) may also be analyzed by semi-analytical tools
as for example density evolution.

Computation of information rates and capacities

• Information rates. We proposed a method for computing the in-
formation rate of continuous channels with memory; as an illus-
tration, we applied the method to the random-walk phase model.
The techniques could also be applied to more sophisticated phase
model and other types of channel models, e.g., related to timing
synchronization.

• Capacities of continuous channels with memory. We outlined how
our method for computing capacities (or lower bounds on capa-
cities) for memoryless channels can be extended to channels with
memory. We have recently implemented such algorithms, but they
need to be further analyzed.

Novel applications

• Kernel methods. We outlined several general strategies to derive
kernels from factor graphs, i.e., Fisher kernels and probabilistic
kernels. In the machine learning literature, such kernels are usually

334 Chapter 9. Conclusions and Outlook

computed on cycle-free factor graphs. The extension to cyclic factor
graphs may lead to novel applications.

• Information geometry. Our methods to compute Fisher informa-
tion matrices can be used for several other applications, i.e., for
deriving Fisher kernels and natural-gradient-based algorithms for
sophisticated graphical models. Such algorithms need to be imple-
mented and tested.

• Reinforcement Learning. One of the learning methods which we
did not address in this thesis is reinforcement learning. It needs
to be investigated whether also this method could be integrated in
the factor-graph framework.

• Combining learning methods with model-based approaches. In some
applications, the probability function of only a part of the system
may be known, for the other part of the system, only a list of
i.i.d. samples may be given. Such systems may be represented by
factor graphs in which some nodes are known, others are unknown
and need to be learned from the available samples. The unknown
nodes could be represented by a neural network, kernel machine or
density tree. Such hybrid systems seem to be largely unexplored.

• Message passing and dynamical systems. We demonstrated how
message-passing algorithms can be implemented in analog elec-
tronic circuits. Other natural candidates for the implementation of
message-passing algorithms are opto-electronic systems and quan-
tum systems.

• Representation of signals. In this thesis, all signals were represen-
ted in time-domain. In some applications, (a part of) the system
is most naturally described in the Fourier domain. Alternatively,
signals may be represented by means of wavelets or filterbanks. Re-
lated topics are redundant representations of signals (and systems)
and (adaptive) quantization of continuous signals. Signal represen-
tation is a central theme in signal processing, which could be more
intensively explored in the context of message passing.

Appendix A

Estimation and Decision
Theory

In this Appendix, we review some basic notions from estimation, detec-
tion and learning theory. We will keep the exposition informal; we refer
to [176] for a more rigorous and more detailed treatment.

A.1 Estimation theory

The standard estimation problem is depicted in Fig. A.1. Based on the
measurement Y = y of a (discrete or continuous) random variable Y with
alphabet Y, we wish to estimate the value x of a variable X . We assume
that for each observation Y = y, a function fy(x) is at our disposal
that encodes all available information about X . The “cost” associated
with each estimate x̂ of the true value x is quantified by a real-valued

YX X̂
x̂(y)observationsource

Figure A.1: Estimation problem.

335

336 Appendix A. Estimation and Decision Theory

function κ(x, x̂). Note that the variablesX and Y can be scalars, vectors,
or matrices. In the following, we deal with the questions:

• What is a “good” estimator?

• Which estimators are used in practice?

– How do they generate an estimate x̂ from fy(x) and κ(x, x̂)?

– In what sense are they good?

Obviously, there are various ways to define “good” estimators; one may
be interested in the performance of the estimator

a) for all possible values x,

b) on the average,

c) in the worst case.

Minimax estimation tries to minimize the worst-case cost. We do not
treat this topic here since it is not directly relevant for this thesis; we
refer to [176, pp. 167–174] for more information.

In classical estimation theory, one focusses on the cost for all values
of x simultaneously. The variables X and Y are in this context real or

complex scalars or vectors and the cost function of interest is κ(x, x̂)
△

=
|x− x̂|2. The variable X is regarded as a “non-random” parameter: one
does not introduce a prior pX(x) for X . The function fy(x) is then a
probability function in y parameterized by the unknown parameter x; the

standard notation is fy(x)
△

= p(y;x), but we will write fy(x)
△

= pY |X(y|x)
instead. We now investigate the key concepts in classical estimation
theory: consistency, unbiasedness, and efficiency.

• (Consistency)

Let yn
1 be a sequence of n observations, i.e., yn

1
△

= (y1, y2, . . . , yn).
We say that an estimator x̂

(
yn
1

)
that estimates the value ofX based

on the sequence yn
1 is consistent if

lim
n→∞

x̂
(
Y n

1

)
= X w.p.1. (A.1)

A.1. Estimation theory 337

• (Unbiasedness)
An estimator x̂(y) is called unbiased if

E[x̂(Y)|X = x]
△

=

∫

y

x̂(y)pY |X(y|x)dy = x (A.2)

for all x.

• (Efficiency)
Assume X is real or complex. If an estimator minimizes the esti-

mation error MSE(x, x̂)
△

= E[|x̂(Y) − x|2|X = x], it is said to be
efficient. If it minimizes E[|x̂(Y)−x|2|X = x] for all x, it is called
uniformly efficient.

Remark A.1. (On consistency)
It seems reasonable to require that an estimator attains the true value in
the limit of an infinite amount of data. Most estimators used in practice
are consistent.

Remark A.2. (On unbiasedness)
For particular estimation problems, all estimators are necessarily biased.
For example, assume that X takes values in a finite interval [a, b] or an
half-infinite interval [a,∞). If

min
x̂(y)

E[|x̂(Y) − a|2|X = a] > 0, (A.3)

all estimators x̂(y) are biased.

Remark A.3. (On efficiency)

• At first sight, efficiency may seem a natural candidate for an op-
timality criterion. Unfortunately, this criterion can not directly
be adopted: minimizing the error function E[|x̂(Y) − x|2|X = x]
w.r.t. x̂(y) leads to the trivial solution: x̂(y) = x.1 Such an es-
timator is obviously not realizable, since x is the unknown value
we are trying to find out! This problem may in fact occur for any
criterion of the form E[κ(x, x̂(Y))|X = x].

• The classical approach to solve this problem, is to focus on unbiased
estimators with minimum MSE(x, x̂) (for all x). For some esti-
mation problems, such estimators exist and can be implemented.

1This can be proved by solving the corresponding Euler-Lagrange differential equa-
tion.

338 Appendix A. Estimation and Decision Theory

However, a biased estimator may have a smaller MSE(x, x̂) than
any unbiased estimator (see [186] for a convincing example). Even
worse, the set of unbiased estimators may be empty, as we stated
before.

In many practical situations, an unbiased estimator with minimal MSE(x, x̂)
for all x cannot be found or does not exist; a popular alternative is the
maximum likelihood estimator.

Maximum likelihood estimation:

x̂ML(y) = argmax
x∈X

pY |X(y|x).

The maximum likelihood estimate x̂ML is the argmax (a.k.a “mode”) of

the function fy(x)
△

= pY |X(y|x).

In Bayesian estimation, one tries to find an estimator that minimizes the
expected cost, which is the cost averaged over all values of x of X :

E[κ(X, x̂)]
△

= EY

[
EX|Y [κ

(
X, x̂

)
|Y = y]

]
, (A.4)

△

=

∫

x

∫

y

κ(x, x̂(y))pY |X(y|x)pX(x)dxdy. (A.5)

In other words, instead of trying to find an estimator that has the best
performance for all values x simultaneously—which is asking too much,
as we have seen—one hopes to find an estimator that has the best perfor-
mance on the average. Obviously, for a given value x, there may be an
estimator that yields a smaller cost than the Bayesian estimator.

In this context, the variable X is treated as a random variable with
prior pX(x). The function fy(x) is defined as

fy(x)
△

= pX|Y (x|y) (A.6)

=
pY |X(y|x)pX(x)

∫

x
pY |X(y|x)pX(x)dx

, (A.7)

where the equality (A.7) is known as Bayes’ rule—hence the name “Bayesian
estimation”.

A.1. Estimation theory 339

How does a Bayesian estimator generate an estimate x̂ from fy(x)
△

=
pX|Y (x|y)? If one minimizes the conditional cost for any observation Y =
y, i.e.,

E[κ(X, x̂)|Y = y]
△

=

∫

x

κ(x, x̂(y))pX|Y (x|y)dx, (A.8)

then one obtains the Bayesian estimation rule:2

Bayesian estimation:

x̂BAYES(y) = argmin
x̂∈X

E[κ(X, x̂)|Y = y].

The Bayesian estimator also minimizes the average cost (A.4). When X
and X̂ are real or complex valued and κ(x, x̂) = |x̂ − x|2, then the
Bayesian estimator reduces to the minimum mean squared error esti-
mator (MMSE).

Minimum mean squared error estimation:

x̂MMSE(y)
△

= E[X |Y = y].

The MMSE estimator is thus given by the expectation of the conditional

probability function fy(x)
△

= pX|Y (x|y) and yields the estimation error

E[|X − x̂MMSE(y)|2|Y = y] = Var[X |Y = y]. (A.9)

The conditional expectation is in fact the optimal estimate for a large
class of cost functions, as the following theorem indicates [199, pp. 60–62].

Theorem A.1. If the cost function κ(x, x̂)

• only depends on the error x̃
△

= x− x̂, i.e., κ(x, x̂)
△

= κ(x̃),

• is symmetric, i.e., κ(x̃) = κ(−x̃) for all x̃,

• is convex, i.e., κ(ax1 + (1 − a)x2) ≥ aκ(x1) + (1 − a)κ(x2) for
any a ∈ (0, 1) and for all x1, x2,

2Strictly speaking, argmin returns a set. If the set contains several elements, then
we randomly pick one of these; otherwise, we return the single element.

340 Appendix A. Estimation and Decision Theory

and the posterior density pX|Y (x|y) is symmetric about its mean mX
△

=
E[X |Y = y], i.e., pX|Y (mX − x|y) = pX|Y (mX + x|y) for all x, then

the estimate x̂ that minimizes any average cost E[κ(X̃)] in this class is
identical to

x̂MMSE △

= mX
△

= E[X |Y = y]. (A.10)

This invariance to the choice of a cost function is a useful feature, since
it is often not a priori clear which κ(x̃) should be chosen. In many
estimation problems, however, the density pX|Y (x|y) is not symmetric
about its mean and, as a consequence, Theorem A.1 does not hold.

Besides Bayesian estimators, also widely used in practice is the maximum
a-posteriori estimator (MAP).

Maximum a-posteriori estimation:

x̂MAP(y) = argmax
x∈X

pX|Y (x|y).

Summarizing:

Practical estimators differ in the way the function fy(x) is deter-
mined, and how the estimate x̂ is extracted from fy(x):

• in Bayesian and MAP estimation, the function fy(x) is given
by the posterior probability function pX|Y (x|y); in ML estima-

tion, fy(x)
△

= pY |X(y|x).

• in ML and MAP estimation, the estimate x̂ is the argmax
(a.k.a. “mode”) of fy(x); in the MMSE estimator, it is the
mean.

Remark A.4. (Likelihood)
The function pY |X(y|x), viewed as a function of x (with fixed value of y),
is often called the “likelihood function”, hence the name maximum like-
lihood estimation.

Remark A.5. (Blockwise vs. symbolwise estimation)
Assume X and Y are random vectors. The blockwise maximum a-
posteriori estimator is given by

x̂
MAP(y) = argmax

x

pX|Y(x|y), (A.11)

A.1. Estimation theory 341

whereas the symbolwise MAP-estimator equals

x̂MAP

i (y) = argmax
xi

pXi|Y(xi|y). (A.12)

Note that the vector of symbolwise MAP-estimates (x̂MAP
1 , x̂MAP

2 , . . . , x̂MAP
n)

is in general not equal to the blockwise MAP-estimate x̂
MAP. Similarly,

the blockwise and symbolwise maximum likelihood estimators are defined
as

x̂
ML(y) = argmax

x

pY|X(y|x), (A.13)

and
x̂ML

i (y) = argmax
xi

pYi|Xi
(y|xi). (A.14)

respectively, where generally (x̂ML
1 , x̂ML

2 , . . . , x̂ML
n) 6= x̂

ML. Along the same
lines, one can define the blockwise and symbolwise MMSE estimator.
If x̂MMSE

i is the symbolwise MMSE estimate of xi, then
(x̂MMSE

1 , x̂MMSE
2 , . . . , x̂MMSE

n) = x̂
MMSE, where x̂

MMSE is the blockwise esti-
mate.

Remark A.6. (Classical learning)
In the estimation problem, a function fy(x) is given that encodes all
available information about the true value x. If we instead only have
a finite number of i.i.d. samples D = {(x1, y1), . . . , (xN , yN)} from the
probability function pXY (x, y) at our disposal, then the problem is not
called estimation but “learning”. Many learning algorithms are based
(explicitly or implicitly) on a proposal function p̂XY |Θ(x, y|θ) (parame-
terized by θ) that “models” the true (unknown) function pXY (x, y). In
the classical learning paradigm, the parameters θ are estimated from the
available data D, for example by the ML rule

θ̂ML = argmax
θ

p(D|θ), (A.15)

= argmax
θ

N∏

i=1

pXY |Θ(xi, yi|θ), (A.16)

or approximations thereof. The model p̂XY (x, y) is given by

p̂XY (x, y)
△

= p̂XY |Θ(x, y|θ̂). (A.17)

An estimate x̂ of the true value x may for example be obtained by the
MAP rule based on p̂XY |Θ.

342 Appendix A. Estimation and Decision Theory

In this setting, learning boils down to estimation. The boundary between
learning and estimation is generally rather fuzzy, and the estimation
techniques we propose in this thesis can often be applied to problems in
machine learning.

Remark A.7. (Bayesian learning)
In the Bayesian learning paradigm, the learning parameters θ are in-
terpreted as random variables with prior pΘ(θ). One usually chooses a
prior pΘ(θ) that assigns most probability to “simple” models. The pa-
rameters θ are not estimated explicitly; instead, the model p̂XY (x, y) is
obtained by marginalizing over θ

p̂XY (x, y)
△

=

∫

θ

pXY |Θ(x, y|θ)pΘ(θ)dθ. (A.18)

One advantage of this approach is that the uncertainty concerning θ is
explicitly taken into account. In contrast, the model (A.17) does not

incorporate this information, it merely uses the estimate θ̂. In addition,
the Bayesian paradigm automatically amounts to simple models that
sufficiently explain the data without unnecessary complexity. We refer
the reader to the excellent tutorial [193] for additional information on
Bayesian methods in machine learning.

A.2 Decision theory

We still consider the setup depicted in Fig. A.1, where we wish to infer
the value of X based on an observation Y = y. In contrast to the
previous section, we assume here that X is a discrete random variable,
i.e., a stochastic variable that takes value in a finite or countable infinite
set X . The problem is then not called estimation, but detection instead.

The Bayesian detection rule is given as follows.

Bayesian detection:

x̂BAYES(y) = argmin
x̂∈X

E[κ(X, x̂)|Y = y]

= argmin
x̂∈X

∑

x∈X

κ(x, x̂)pX(x)pY |X(y|x).

A.2. Decision theory 343

Of special interest is the error function

κ(x, x̂) =

{
0, x̂ = x
1, x̂ 6= x.

(A.19)

The conditional expected cost is then equal to the probability of error
given the observation Y = y

E[κ(X, x̂)|Y = y] =
∑

x∈X :x̂6=x

P (X = x|Y = y) (A.20)

= P (x̂ 6= x|Y = y). (A.21)

The Bayesian detection rule that minimizes this error probability is called
the maximum a-posteriori detector.

Maximum a-posteriori detection:

x̂MAP(y) = argmin
x∈X

P (x̂ 6= x|Y = y)

= argmax
x∈X

PX|Y (x|y).

The maximum likelihood rule remains unchanged.

Maximum likelihood detection:

x̂ML(y) = argmax
x∈X

PY |X(y|x).

We now discuss the maximum a-posteriori decision rule for several sce-
narios important in (channel) decoding.

Example A.1. (Block-wise decoding)
We set

X = U (vector to be estimated)

Y = Y (measurement)

X̂ = Ûblock (estimate).

Minimization of Perror = Pblock = P [Û 6= U] leads to the decision rule

344 Appendix A. Estimation and Decision Theory

ûblock(y) = argmax
u∈Uk

PUY(u,y) = argmax
u∈Uk

max
x∈Xn

PUXY(u,x,y).

The introduction of the codeword vector X does not change the problem
as X is assumed to be a deterministic function of U (see Section 2.1).
The decision taken for component i (1 ≤ i ≤ k) of ûblock(y) can also be
written as

ûblock
i (y) = argmax

ui∈U
max
u∈Uk

ui fixed

PUY(u,y) = argmax
ui∈U

max
u∈Uk,x∈Xn

ui fixed

PUXY(u,x,y).

Note: The well-known Viterbi-Algorithm efficiently performs the task
of finding the block-wise estimate in the case of convolutional or trellis
codes. �

Example A.2. (Symbol-wise decoding)
For each i = 1, . . . , k we set

X = Ui (variable to be estimated)

Y = Y (measurement)

X̂ = Û symbol
i (estimate).

Minimization of Perror = P
(i)
symbol = P [Ûi 6= Ui] leads to the decision rule

ûsymbol
i (y) = argmax

ui∈U
PUiY(ui,y)

= argmax
ui∈U

∑

u∈Uk, x∈Xn

ui fixed

PUXY(u,x,y) (i = 1, . . . , k).

�

Remark A.8. (Marginalization and maximization)
The joint probability function PUXY(u,x,y) appears in the expressions

A.2. Decision theory 345

for block-wise- and symbol-wise-decoding. However, one needs to per-
form different operations to get the block-wise/symbol-wise estimates;
marginalization leads to the symbol-wise estimates, whereas the block-
wise estimates are obtained by maximization. Both operations are at
the heart of many detection and estimation algorithms; in Chapter 3,
we show that those operations can be carried out as message passing on
cycle-free factor graphs. In the case of cyclic factor graphs, one can still
apply the same message-passing algorithm, but the results might not be
the same as with “correct” block- or symbol-wise decoding as defined in
Examples A.1 and A.2.

Appendix B

Notions from
Information Theory

Let us consider Fig. 2.1, which depicts a basic block diagram of a digital
communications systems. In Section 2.1, we shortly describe each indi-
vidual block; here, we address a question that concerns the system as a
whole:

What is the highest rate R at which information can be trans-
mitted over a given physical channel?

Shannon [178] has proved that it is possible to transmit data with as few
errors as desired if one is willing to use (very long) channel codes of rates
smaller than channel capacity; we refer to this operation mode as reliable
communications. In other words, the number of “non-confusable” wave-
forms for n uses of a communications channel grows exponentially with n,
and the exponent is the channel capacity. Shannon established that the
capacity of a wide variety of channels can be expressed as the maximum
mutual information between the channel input and output [178]; in other
words, Shannon’s channel capacity theorem not only promises that re-
liable communication is possible at a non-zero rate, it also provides an
explicit expression for the maximum rate. This expression is, however,
often intractable. Moreover, Shannon’s channel capacity theorem gives

347

348 Appendix B. Notions from Information Theory

us almost no practical guidelines on how optimal transmission can be
achieved.

In the following, we will review the channel capacity theorem for memory-
less channels and for stationary ergodic channels with memory. But first,
we need to introduce some important concepts; in this section, we closely
follow the book of Cover and Thomas [37].

B.1 Definitions and theorems

We introduce the concept of entropy, which is a measure for the uncer-
tainty of a random variable.

Definition B.1. (Entropy of a discrete random variable)
The entropy of a discrete random variable X with probability mass func-
tion (pmf) pX(x) is defined as

H(X)
△

= −
∑

x

pX(x) logb pX(x). (B.1)

�

The entropy H(X) is a functional of the distribution pX(x), it does not
depend on the actual values taken by the random variable X . Moreover,
the entropy H(X) is concave1 in pX(x). The choice of the base b deter-
mines the unit. When b = 2, the unit is called bit. When b = e, the
other base commonly used in information theory, the unit is called nat .
In the sequel, we will use the logarithm to the base b = 2 and the unit is
thus bit. We will use the convention that 0 log2 0 = 0.

We extend the previous definition to pairs of random variables.

Definition B.2. (Joint entropy)
The joint entropy H(X,Y) of a pair of discrete random variables (X,Y)
with joint distribution p(x, y) is given by

H(X,Y)
△

= −
∑

x,y

pXY (x, y) log2 pXY (x, y). (B.2)

1A function f is called concave, if −f is convex; a function f is said to be convex

if for all x1, x2 and 0 ≤ λ ≤ 1, f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2). Convex
and concave functionals are defined likewise.

B.1. Definitions and theorems 349

�

We define the conditional entropy of a random variable given another.

Definition B.3. (Conditional entropy)
The entropy of a discrete random variable X conditioned on a discrete
variable Y is given by

H(X |Y)
△

= −
∑

x,y

pXY (x, y) log2 pX|Y (x|y). (B.3)

�

Differential entropies, joint and conditional differential entropies of conti-
nuous random variables are defined by replacing the summation by in-
tegration.2 They are denoted by the lower-case letter h, i.e., h(X),
h
(
X |Y

)
, and h

(
X,Y

)
respectively. In the rest of this section, we make

the following conventions: (1) if x is discrete,
∑

x g(x) stands for the
summation of g(x) over its support, otherwise, it stands for integration;
(2) the expression H(·) stands for entropy if the argument of H(·) is
discrete, it stands for differential entropy otherwise.

The notions of conditional entropy and joint entropy are connected by a
chain rule.

Theorem B.1. (Chain rule)

H(X,Y) = H(X) +H(Y |X). (B.4)

The divergence is a measure of the “distance” between two probability
distributions p and q.

Definition B.4. (Divergence)
The divergence between two probability distributions p(·) and q(·) is
defined as

D
(
p‖q
)

△

=
∑

x

p(x) log2

p(x)

q(x)
. (B.5)

�

2As in every definition involving an integral or a density, we should include the
statement if it exists.

350 Appendix B. Notions from Information Theory

In the above definition, we use the convention that 0 log 0
q = 0 and p log p

0 =
∞. The divergence is always positive with equality if and only if p = q.
It is not a true distance, as it is not symmetric, i.e., in general D

(
p‖q
)
6=

D
(
q‖p
)
. The divergence is also called “relative entropy” or “Kullback-

Leibler distance”.

Theorem B.2. (Convexity of divergence)
The divergenceD

(
p‖q
)

is convex in the pair (p, q), i.e., if (p1, q1) and (p2, q2)
are two pairs of probability mass functions, then

D
(
λp1+(1−λ)p2‖λq1+(1−λ)q2

)
≤ λD

(
p1‖q1

)
+(1−λ)D(p2‖q2) (B.6)

for all 0 ≤ λ ≤ 1.

We now introduce mutual information, which is a measure of the amount
of information that one random variable contains about another random
variable; alternatively, it may be interpreted as the reduction in uncer-
tainty of one random variable due to the knowledge of the other.

Definition B.5. (Mutual information)
Consider two random variables X and Y with joint probability mass
function p(x, y). The mutual information I(X ;Y) is the relative entropy
between the joint probability mass function pXY (x, y) and the product
pX(x)pY (y) distribution, i.e.,

I(X ;Y)
△

=
∑

x,y

pXY (x, y) log2

pXY (x, y)

pX(x)pY (y)
(B.7)

=
∑

x,y

pX(x)pY |X(y|x) log2

pY |X(y|x)
pY (y)

, (B.8)

where pY (y) is the output distribution defined as

pY (y)
△

=
∑

x

pX(x)pY |X(y|x). (B.9)

�

Remark B.1. (Mutual information and entropies)
In terms of entropies, we can write the mutual information as

I(X ;Y) = H(X) −H(X |Y) (B.10)

= H(Y) −H(Y |X). (B.11)

B.1. Definitions and theorems 351

Remark B.2. (Mutual information as divergence)
The mutual information between the input X and the output Y of a
discrete memoryless channel can be rewritten as a divergence in the fol-
lowing way

I(X ;Y) =
∑

x

pX(x)
∑

y

pY |X(y|x) log2

pY |X(y|x)
pY (y)

(B.12)

=
∑

x

pX(x)D
(
pY |X(·|x)‖pY (·)

)
. (B.13)

Theorem B.3. (Convexity of mutual information)
The mutual information I(X ;Y) is a concave function of pX(x) for
fixed pY |X(y|x) and a convex function of pY |X(y|x) for fixed pX(x).

We now consider stochastic processes. The entropy rate of a stochastic
process is the rate at which the entropy grows with n.

Definition B.6. (Entropy rate)
The entropy rate of a stochastic process X is defined as

H(X)
△

= lim
n→∞

1

n
H(X1, X2, . . . , Xn), (B.14)

when the limit exists. The RHS expression is the per-symbol entropy
rate. One can also define a related quantity for entropy rate:

H ′(X)
△

= lim
n→∞

1

n
H(Xn|Xn−1, . . . , X1), (B.15)

where the RHS expression is the conditional entropy rate of the last
random variable given the past. For stationary stochastic processes, both
quantities H(X) and H ′(X) are equal. �

Let us now consider two important examples.

Example B.1. (i.i.d. Process)
Let X1, X2, . . . , Xn be a sequence of independent and identically distri-
buted (i.i.d.) random variables. Applying the chain rule yields

H(X) = lim
n→∞

1

n
H(X1, X2, . . . , Xn) = H(Xk). (B.16)

�

352 Appendix B. Notions from Information Theory

Example B.2. (Markov chain)
As a consequence of the Markov property, the entropy rate of a Markov
Chain is

H(X) = lim
n→∞

1

n
H(Xn|Xn−1, . . . , X1) = H(Xn|Xn−1). (B.17)

�

Definition B.7. (Information rate)
The information rate between two stationary and ergodic processes X
and Y is defined as

I(X ;Y)
△

= lim
n→∞

1

n
I(X1, X2, . . . , Xn;Y1, Y2, . . . , Yn) (B.18)

= lim
n→∞

1

n

[

H(X1, X2, . . . , Xn)

−H(X1, X2, . . . , Xn|Y1, Y2, . . . , Yn)
]

(B.19)

= H(X) −H(X |Y) (B.20)

= H(Y) −H(Y |X) (B.21)

when the limit in (B.18) exists. �

If X is the input and Y is the output process of a communications chan-
nel, the limit in (B.18) exists if the channel law preserves the property of
stationarity and ergodicity of the input process. We call such channels
ergodic channels.

Of crucial importance in information theory is the Asymptotic Equipar-
tition Property (AEP), which is related to the notion of typicality;
AEP is the key to data compression and is one of the main ingredients
in Shannon’s proof of the channel-capacity theorem. It also opens the
door to numerical algorithms for computing information rates and chan-
nel capacities, one of the topics of this thesis. AEP and typicality are a
direct consequence of the weak law of large numbers.

Theorem B.4. (Weak law of large numbers)
LetX1, X2, . . . , Xn be i.i.d. random variables. Define the random variable
X̄n as

X̄n
△

=
1

n

n∑

k=1

Xk. (B.22)

B.1. Definitions and theorems 353

Then
lim

n→∞
Pr[|X̄n − E[X]| ≥ ε] = 0, ∀ε > 0. (B.23)

Theorem B.5. (AEP for i.i.d. processes)
Let X1, X2, . . . , Xn be i.i.d. random variables and distributed according
to probability function pX(x). Then

lim
n→∞

Pr
[∣
∣
∣− 1

n
log pX(X1, X2, . . . , Xn) −H(X)

∣
∣
∣ ≥ ε

]

= 0, ∀ε > 0.

(B.24)

AEP allows us to divide the set of all sequences into two sets, the set
of typical sequences, where the sample entropy is “close” to the ensem-
ble entropy, and the set of non-typical sequences containing all other
sequences. The following definition formalizes this idea.

Definition B.8. (Typical sequences)
Let X1, X2, . . . , Xn be i.i.d. random variables and distributed according
to probability function pX(x). A typical set Xn

ε with respect to the
probability measure pX(x) is the set of sequences (x1, x2, . . . , xn) ∈ Xn

having the following property:

2−n(H(X)+ε) ≤ pX(x1, x2, . . . , xn) ≤ 2−n(H(X)−ε). (B.25)

�

As a consequence of the asymptotic equipartition property (AEP), the
typical set has probability nearly 1 and all elements of the typical set are
nearly equiprobable. The elements of the set are called typical sequences
and their number is nearly 2nH(X). All other sequences have proba-
bility nearly zero. In summary: “almost all events are almost equally
surprising”.

The Shannon-McMillan-Breiman theorem states that AEP also holds for
stationary ergodic processes with finite alphabet. Barron extended the
Shannon-McMillan-Breiman theorem to processes with infinite alpha-
bets [17].

Theorem B.6. (AEP: Shannon-McMillan-Breiman theorem)
If H(X) is the entropy rate of a finite-valued stationary ergodic process
X = X1, X2, . . . , Xn, then

− 1

n
log pX(X1, X2, . . . , Xn) → H(X), w.p.1. (B.26)

354 Appendix B. Notions from Information Theory

Theorem B.7. (Generalized Shannon-McMillan-Breiman theo-
rem [17])
If h(X) is the differential entropy rate of a continuous-valued stationary
ergodic process X = X1, X2, . . . , Xn with density pX(X1, X2, . . . , Xn),
then

− 1

n
log pX(X1, X2, . . . , Xn) → h(X), w.p.1. (B.27)

The Shannon-McMillan-Breiman theorem suggests a simple numerical
method to compute the entropy rate H(X):

a) Sample a “very long” sequence x
△

= (x1, x2, . . . , xn) from pX(x).

b) The sample sequence entropy rate is an estimate for the entropy
rate of X :

Ĥ
△

= − 1

n
log pX(X1, X2, . . . , Xn) ≈ H(X). (B.28)

In Chapter 6, we provide more details on this numerical method.

B.2 Channel capacity

B.2.1 Memoryless channels

Shannon has proved [178] that the capacity of a memoryless channel
with finite discrete input alphabet X , finite discrete output alphabet Y
is given by the following expression.

Capacity of (unconstrained) discrete memoryless channel:

C
△

= max
pX

I(X ;Y),

where the maximum is taken over all input probability mass functions pX

on X . Any input distribution pX that maximizes the mutual information
between X and Y is called a capacity-achieving input distribution. Such
a distribution is not necessarily unique; in contrast, the corresponding
output distribution is unique.

B.2. Channel capacity 355

Remark B.3. (Properties of capacity)

a) C ≥ 0 since I(X ;Y) ≥ 0.

b) C ≤ log |X | since C = max I(X ;Y) ≤ maxH(X) = log |X |.

c) C ≤ log |Y| for the same reason.

Since I(X ;Y) is a concave function over a close convex set, a local max-
imum is a global maximum. From properties (2) and (3), it follows that
the maximum is finite, hence we are justified to write maximum instead
of supremum in the definition of capacity. The maximum can in prin-
ciple be found by standard non-linear optimization techniques such as
gradient descent. Since the objective function I(X ;Y) is concave in pX ,
gradient-based algorithms are guaranteed to converge to the global max-
imum. An efficient alternative to compute the capacity C for discrete
memoryless channels is the Blahut-Arimoto algorithm (see Section 7.2).

The input of the channel often needs to fulfill certain conditions. The
capacity of a discrete memoryless channel with the requirement that the
average cost be less than or equal to some specified number E is given
by [178]

Capacity of constrained discrete memoryless channel:

C
△

= max
pX∈PE

I(X ;Y).

By PE , we denote the set of probability mass functions over X satisfying
the constraint

∑

x pX(x)e(x) ≤ E.

For only a small number of memoryless channels, a closed-form expres-
sion for the capacity is available. Shannon [178] has computed the capac-
ity for the AWGN channel with an average-energy constraint. Assuming
that the input power equals P and that the power of the Gaussian noise
is σ2, the capacity is given by

C =
1

2
log2

(
1 +

P

σ2

)
. (B.29)

356 Appendix B. Notions from Information Theory

The capacity-achieving input distribution is a zero-mean Gaussian pdf
with variance equal to P . If logarithms to the base two are used (as we
will generally do), the unit of capacity is bits/symbol. Note that if the
input is unconstrained, the capacity of the AWGN channel is infinite.

In Chapter 7, we present a numerical algorithm to compute the capacity
(or tight lower bounds on the capacity) of peak-power and/or average-
power constrained continuous memoryless channels.

B.2.2 Channels with memory

Dobrušin [60] generalized Shannon’s result for memoryless channels with
finite alphabets to the continuous-alphabet case with memory.3

Capacity of constrained continuous channel with memory:

C
△

= lim
n→∞

1

n
sup

pX∈PC

I(X ;Y),

where X
△

= (X1, X2, . . . , Xn), Y
△

= (Y1, Y2, . . . , Yn) and PC is the set of
all probability densities pX over Xn satisfying the constraints

1

n

n∑

k=1

EpX
[e(Xk)] ≤ E, (B.30)

and
|Xk| > A w.p.1 for k = 1, 2, . . . , n. (B.31)

3It is assumed that the channel is information stable. This roughly means that
the input that maximizes mutual information and its corresponding output behave
ergodically. We also assume that there is no feedback.

Appendix C

Coding Theory

Most of the following definitions can be found in any elementary text
about coding theory, e.g. [112]. We will follow the exposition in [203].

As is standard, we will only use row vectors. Every code will be a block
code, i.e., a code of finite length.1

Definition C.1. (Codes)

• (Block code)
An (n,M) block code C of length n and size M over some alpha-
bet A is a subset C of size M of An, the set of all n-tuples over A.
The parameter n is called the length of the block code. An element
x of C is called a codeword.

• (Membership indicator function)
The membership indicator function IC of a code C is defined as

IC : An → {0, 1} : x → [x ∈ C]. (C.1)

• (Linear code)
A block code is linear if A = F is a field and the set of all codewords
forms a k–dimensional subspace (code space) of F

n. Usually the

1Most of the time, we will use the shorter “code” instead of “block code”. Note
that in this thesis, when we talk about a code we always mean a channel code, in
contrast to a source code or a line code. See also Sec. 2.1.

357

358 Appendix C. Coding Theory

field F is a finite field Fq, i.e., the set {0, 1, . . . , q−1} with modulo-q
arithmetic. An [n, k] linear code is a linear code of length n and
dimension k.

• (Binary code)
A binary code is a linear code with F = F2.

�

Definition C.2. (Linear Codes)
Let C be an [n, k] linear code over Fq.

• (Generator matrix)
The code C can be defined by a generator matrix G whose rows
form a basis of the code space; therefore G must have size k × n.
Each codeword x ∈ F

n
q can be written as x = u ·G with a suitable

u ∈ Fk
q . u consists of the information symbols whereas x consists

of the channel symbols. If all information symbols appear one-
to-one somewhere in the channel symbols, the encoding is called
systematic.

• (Parity-check matrix)
Equivalently, C can be defined by a parity-check matrix H whose
rows span the space orthogonal to the code space. Such a matrix
must fulfill G ·HT = 0, where G is a any generator matrix of the
code. For every codeword x ∈ C it follows that x · HT = 0. Note
that the rows of H need not be a basis of the space orthogonal to the
code space, they can also form an over-complete basis. Therefore,
H has n columns and at least n− k rows.

• (Rate)
The rate of the code is defined to be R , R(C) , k/n. If G is
a generator matrix, R , #rows(G)/#col(G) is the ratio of the
number of rows of G over the number of columns of G. If H is a
parity-check matrix, R = 1−rank(H)/n ≥ 1−#rows(H)/#col(H).

�

Example C.1. (Binary linear block code)
Fig. C.1 shows a small example of linear a code of length n = 3, dimension
k = 2, redundancy n − k = 1, rate R = k/n = 2/3, and alphabets
U = X = F2 with generator and parity-check matrices

G =

(
1 1 0
0 1 1

)

, H =
(
1 1 1

)
,

359

u 7→ x = x(u)
(0, 0) 7→ (0, 0, 0)
(1, 0) 7→ (1, 1, 0)
(0, 1) 7→ (0, 1, 1)
(1, 1) 7→ (1, 0, 1)

x1

1

0 1

0

u1

u2

x2

x3

Figure C.1: Example of a simple linear code with U = X = {0, 1},
k = 2, n = 3. Left: Mapping of u to x for a binary
linear [3, 2, 2] code. Right: graphical visualization of that
mapping.

where the mapping u 7→ x(u) = u ·G is given in the table in Fig. C.1.
�

Definition C.3. (LDPC codes)
Let C be an [n, k] linear code over Fq.

• (LDPC code)
The code C is called a low-density parity-check (LDPC) code if it
has a parity-check matrix which has very few ones per row and per
column. 2 More precisely, when considering LDPC code families for
n → ∞, one usually requires that the number of ones per column
and the number of ones per row grow slower than the block length
or that these numbers are even bounded.

• (Regular LDPC code)
The code C (defined by a low-density parity-check matrix H) is
called a (wcol, wrow)–regular LDPC code if the Hamming weight of
each column of H equals wcol and if the Hamming weight of each
row of H equals wrow. The equality nwcol = mwrow relates wcol

and wrow, where m is the number of rows of H.

• (Irregular LDPC code)
The code C (defined by a low-density parity-check matrix H) is
called an irregular LDPC code when the Hamming weights of the
columns vary and/or the Hamming weights of the rows vary. For
more information on (irregular) LDPC codes, see [124].

�

2Detailed information about LDPC codes can be found in [1] and [2].

Appendix D

Kernel Methods

In this appendix, we review the most important concepts behind kernel
methods; we will closely follow [120]. We refer to [177] [180] for further
information.

We also elaborate on how kernels can be computed from graphical models
(Section D.5).

D.1 Introduction

Since the mid-1990’s, so called “kernel methods” have been drawing much
attention. Such methods combine and extend most advantages both of
neural networks and of classical linear techniques.

Kernel methods can be used for regression, classification, clustering, and
more. A kernel based regression function Rn → R : y = (y1, . . . , yn) 7→ x̂
looks as follows:

x̂ =

m∑

j=1

wjκ(y, y
(j)) + w0. (D.1)

The vectors y(1), . . . , y(m) ∈ Rn are (the y-component of) the training
samples and w0, . . . , wm are real coefficients (weights). The function

361

362 Appendix D. Kernel Methods

κ : Rn ×Rn → R, which must satisfy certain conditions (to be discussed
later), is referred to as the kernel.

An example of a kernel function is

κ(y, y′) = exp

(

−‖y − y′‖
2σ2

)

. (D.2)

Note that:

• The kernel function has no parameters that need to be adjusted.

• The sum in (D.1) runs over all training samples.

The weights wj can be determined by minimizing the average squared
error

ASE =
1

m

m∑

ℓ=1

x(ℓ) −
m∑

j=1

wjκ(y
(ℓ), y(j)) − w0

2

(D.3)

on the training data (x(1), y(1)), . . . , (x(m), y(m)), which amounts to a
least squares problem. Other cost functions than the ASE are often used
in order to force most weights wj to zero. Since such cost functions are
chosen to be convex (in the weights), the optimal weights can be found
by efficient algorithms. In consequence (and in sharp contrast to neural
networks), kernel methods do not normally need heuristic optimization
methods.

The choice of a suitable kernel function—which depends on the application—
is the most important step in kernel methods. The domain of the kernel
function need not be Rn; in fact, it can be almost any set, including
non-numerical data such as strings and images.

The subsequent processing (regression, clustering, classification, . . .) is
done by optimal (linear or convex) methods and is essentially indepen-
dent of the application.

D.2. Feature Space Interpretation 363

D.2 Feature Space Interpretation

A first step of many data analysis methods is to transform the data by
some (fixed) mapping

φ : data space → feature space (D.4)

before applying some adaptive algorithm (e.g., a neural network). In
this chapter, we will always assume that the feature space is a Hilbert
space. A Mercer kernel (hereafter simply kernel) is defined to be the
inner product in some feature space:

κ(z, y) = 〈φ(z), φ(y)〉 . (D.5)

A main insight behind kernel methods is as follows:

a) With suitable choices of the feature space and of the mapping φ,
the task (regression, classification, . . .) may be solvable by linear
methods or by convex optimization. . .

b) . . . with algorithms that require only the computation of inner pro-
ducts in the feature space.

c) Moreover, the inner product in high-dimensional (even infinite-
dimensional) feature spaces can often be expressed by quite simple
kernel functions.

d) It follows that we do not need to actually evaluate the mapping φ;
it suffices to evaluate the kernel function κ.

We will work out points 2 and 4 for regression. However, it should be
remembered that both the feature space and the mapping φ are usually
not made explicit; the actual computations in kernel methods involve
only the kernel function.

D.2.1 Regression

We consider nonlinear regression by means of linear regression in feature
space. Let S be the original data space and let the feature space be Rn.
We wish to find a mapping

S → R : y 7→ φ(y)Th (D.6)

364 Appendix D. Kernel Methods

with h = (h1, . . . , hn)T ∈ Rn such that the average squared error (ASE)

ASE =
1

m

m∑

ℓ=1

∣
∣
∣
∣
x(ℓ) − φ

(

y(ℓ)
)T

h

∣
∣
∣
∣

2

(D.7)

on the training data (x(ℓ), y(ℓ)), ℓ = 1, . . . ,m, is as small as possible.

It turns out that this problem is essentially the same as the linear regres-

sion problem. If we define the column vector x
△

= (x(1), . . . , x(m))T and
the matrix

Aφ
△

=

(

φ(y(1)), . . . , φ(y(m))
)T

(D.8)

=

φ(y(1))1 φ(y(1))2 . . . φ(y(1))n

φ(y(2))1 φ(y(2))2 . . . φ(y(2))n

.

φ(y(m))1 φ(y(m))2 . . . φ(y(m))n

, (D.9)

the average squared error may be written as

m · ASE = ‖x−Aφh‖2
= (x−Aφh)

T (x−Aφh). (D.10)

It then follows that h may be obtained from

AT
φAφh = AT

φx. (D.11)

However, the point of kernel methods is to avoid solving (D.11)—in fact,
to avoid φ at all. Instead, we wish to express the regression function
(D.6) in terms of the kernel κ(y, z) = φ(y)Tφ(z).

Theorem D.1. Let g be any function g : S → R : y 7→ g(y)
△

= φ(y)Th
with φ : S → Rn and h ∈ Rn. Then there exists a function g′ : S → R :

y 7→ g′(y)
△

= φ(y)Th′ with the following properties:

a) g′ and g give the same values on the training set: g′(y) = g(y) for
y ∈

{
y(1), . . . , y(m)

}
.

b) g′ can be written as

g′(y) =

m∑

j=1

wjκ(y, y
(j)) (D.12)

with real coefficients w1, . . . , wm that depend on the training set.

D.3. Support Vector Machines 365

It follows that the coefficient vector h that minimizes the ASE (D.7) can
be replaced by an equivalent vector h′ which allows to write the function
(D.6) in the form (D.12).

Proof of Theorem D.1: Let V be the subspace of Rn spanned by
φ(y(1)), . . . , φ(y(m)) and let V ⊥ be the orthogonal complement of V in
R

n. Let h = hV + hV ⊥ be the decomposition of h into hV ∈ V and
hV ⊥ ∈ V ⊥. Since φ(y(ℓ))ThV ⊥ = 0 for ℓ = 1, . . . ,m, we have

φ(y(ℓ))Th = φ(y(ℓ))ThV for ℓ = 1, . . . ,m. (D.13)

Choosing h′
△

= hV thus guarantees Property 1 of Theorem D.1. Moreover,
by the definition of V , we can write hV as

hV =
m∑

j=1

wjφ(y(j)) (D.14)

with wj ∈ R. Thus

g′(y) = φ(y)ThV (D.15)

= φ(y)T
m∑

j=1

wjφ(y(j)) (D.16)

=
m∑

j=1

wjφ(y)Tφ(y(j)) (D.17)

=
m∑

j=1

wjκ(y, y
(j)). (D.18)

�

D.3 Support Vector Machines

If the regression function (D.1) is trained to minimize the ASE on the
training data, then virtually all weights wj will probably be nonzero.
Replacing the ASE by other cost functions opens the possibility to force
a large fraction of the weights to zero. Those training samples y(j) for
which wj is nonzero are called support vectors. This approach can also
be carried out for classification.

366 Appendix D. Kernel Methods

Such support vector machines are attractive because the regression (or
classification) function can be evaluated more efficiently. The determina-
tion of the optimal weights takes a little more effort, but is still a convex
problem for which efficient algorithms are available.

D.4 On Kernels

Kernels can be characterized as follows. Recall that a symmetric real
n× n matrix A is positive semi-definite if xTAx ≥ 0 for every x ∈ Rn.

Theorem D.2 (Characterization of Kernels). A function

κ : S × S → R (D.19)

(which is either continuous or has a finite domain S) is a kernel if and
only if the following two conditions hold:

a) k is symmetric (i.e., κ(z, y) = κ(y, z))

b) for every finite subset {y1, . . . , yn} of S, the matrix

κ(y1, y1) κ(y1, y2) . . . κ(y1, yn)
κ(y2, y1) κ(y2, y2) . . . κ(y2, yn)
.

κ(yn, y1) . . . κ(yn, yn)

(D.20)

is positive semi-definite.

(The proof is not hard, but we omit it.)

So far, we have encountered only one explicit kernel function: the Gaussian
kernel (D.2). Another kernel is the function

R
n × R

n → R : (y, z) 7→ yTAz (D.21)

where A is a symmetric positive semi-definite n×n matrix over R. (The
proof requires some standard linear algebra.)

More kernels can be constructed from the following theorem.

Theorem D.3. Let κ1 and κ2 be kernels over S × S. The following
functions are also kernels over S × S:

D.5. Kernels from Graphical Models 367

a) κ(y, z) = κ1(y, z) + κ2(y, z)

b) κ(y, z) = ακ1(y, z) for any positive α ∈ R

c) κ(y, z) = κ1(y, z)κ2(y, z)

d) κ(y, z) = f(y)f(z) for any function f : S → R

e) κ(y, z) = κ3(g(y), g(z)) for any kernel κ3 over Rn × Rn and any
function g : S → R

n.

f) κ(y, z) = p(κ1(y, z)) for every polynomial p(x) with positive co-
efficients.

The proof is left as an exercise.

D.5 Kernels from Graphical Models

In this section, we investigate how kernels can be computed from a
graphical model.1

Suppose that we wish to process—i.e., cluster, compress, classify, etc.—a
data set D = {ŷ1, . . . , ŷN} by means of some kernel method.

Assume that we have determined a graphical model p(y, x|θ) that to some
extend is able to “explain” the data D; by θ we denote the parameter
vector of the model, x is the vector of hidden variables, and y are the
observed variables. For example, the data D may be a set of EEG signals,
which we model by a multi-channel ARMA model p(y, x|θ).

We wish to incorporate the available model p(y, x|θ) in our kernel method.
As is clear from the exposition in the previous sections, the model p(y, x|θ)
should then somehow be encoded in the kernel , since the kernel is the
sole element in a kernel method that depends on the application at hand.
Once the kernel is specified, the subsequent processing (clustering, com-
pression, classification, etc.) is accomplished by standard optimization
tools (independently of the application) [180] [177].

In the following, we will explore several ways to derive kernels from
graphical models. We will outline how the message-passing techniques
of Chapter 4 may be used in this context.

1The extension to a family of graphical models is straightforward.

368 Appendix D. Kernel Methods

D.5.1 Probabilistic Kernel

A first option is the so-called probabilistic kernel [180]:

κ(ŷi, ŷj)
△

=
∑

x

p(ŷi, x|θ̂)p(ŷj , x|θ̂), (D.22)

where the parameters θ̂ are obtained from the whole data set D, e.g., by
ML-estimation:

θ̂ML,tot △

= argmax
θ

N∏

i=1

p(ŷi|θ) (D.23)

= argmax
θ

N∏

i=1

∑

x

p(ŷi, x|θ). (D.24)

It is easy to verify that (D.22) is indeed a kernel (cf. Theorem D.3).

D.5.2 Product Kernel

An alternative is the so-called product-kernel [91]. Each data point ŷi is
mapped unto a probabilistic model p(y|ŷi) defined as:

p(y|ŷi)
△

=
∑

x

p(y|x, θ̂)p(x|θ̂, ŷi), (D.25)

where the parameters θ̂ is estimated by means of the sample ŷi, e.g., by
ML estimation:

θ̂ML △

= argmax
θ

p(ŷi|θ) (D.26)

= argmax
θ

∑

x

p(ŷi, x|θ). (D.27)

The product-kernel is computed as follows:

κ(ŷi, ŷj)
△

=
∑

y

p(y|ŷi)p(y|ŷj). (D.28)

D.5. Kernels from Graphical Models 369

D.5.3 Fisher Kernel

A third approach is the so-called Fisher kernel , defined as [89]:

κ(ŷi, ŷj)
△

= ∇T
θ log p(ŷi|θ̂)F−1(θ̂)∇θ log p(ŷj |θ̂), (D.29)

where p(y|θ) is defined as:

p(y|θ) △

=
∑

x

p(y, x|θ), (D.30)

and the estimate θ̂ is obtained from the whole data set D, e.g., by ML-
estimation (D.24). The matrix F(θ) is the Fisher information matrix
of p(y|θ) (cf. Section 5.2.1).

D.5.4 Discussion

Some remarks:2

• The three types of kernels we listed in the above involve sums
and/or integrals and maximizations. In particular:

a) The expressions (D.22), (D.25), and (D.30) involve summa-
tion/integration over x.

b) The expression (D.28) involves summation/integration over y.

c) The expressions (D.24) and (D.27) involve maximization over θ.

In principle, the summations/integrations and the maximizations
may be carried out (exactly) by applying the sum-product algo-
rithm and max-product algorithm respectively on a suitable (cycle-
free) factor graph.

For example, if the system at hand is a linear system perturbed by
Gaussian noise sources, the sum-product algorithm boils down to
Kalman recursions (cf. Appendix H).

If the variables X are discrete, the sum-product algorithm may
reduce to applying the BCJR-algorithm [15] on a trellis of the sys-
tem.

2Some of our observations may be novel.

370 Appendix D. Kernel Methods

• The sum/max-product algorithm may, however, lead to intractable
expressions, more precisely:

a) sums with an unwieldy number of terms,

b) intractable integrals,

c) intractable maximizations.

Intractable sums (Problem 1) may be computed approximately by
applying the (iterative) sum-product algorithm on a cyclic graph.

Intractable integrals (Problem 2) may be approximated by applying
the (iterative) sum-product algorithm on a cyclic graph in combina-
tion with numerical integration or Monte-Carlo methods (cf. Chap-
ter 4).

Intractable maximizations (Problem 3) may be performed approx-
imately, e.g., by ICM, EM, or gradient methods (cf. Chapter 4).

Note, however, that such approximations may not always lead to
a kernel! Therefore, certain approximations are not allowed (if we
wish to derive kernels). We investigate each of the three kernels in
more detail:

– Probabilistic kernel:
If one computes the sum/integral in (D.22) approximately by
the iterative sum-product algorithm, one does not obtain a
kernel in general. However, the sum/integral may be evalu-
ated by means of Monte-Carlo integration.

The maximization (D.24) may be carried out by any estima-
tion method as for example EM, ICM, and gradient methods
(cf. Chapter 4).

– Product kernel:
In order to obtain a kernel, p(y|ŷi) (cf. (D.28)) may be any
function, i.e., it does not need to be defined as in (D.25).
Therefore, the sum/integral in (D.27) may be evaluated by

any approximative method; moreover, the parameter θ̂ may
be determined by any method.

If the sum/integral in (D.28) is computed by iterative sum-
product message-passing, one does not obtain a kernel; how-
ever, (D.28) may be evaluated by numerical or Monte-Carlo
integration.

D.5. Kernels from Graphical Models 371

– Fisher kernel:
In order to obtain a kernel, p(y|θ) may be any function and

F−1(θ̂) may be any positive definite matrix. Therefore, one
has the freedom to use approximative methods to carry out the
sum/integral in (D.30), resulting in an approximation q(y|θ)
of p(y|θ) (D.30). One may then obtain an approximation of

F(θ̂) as

F̃p(θ̂)
△

= Ep(y|θ)

[
∇θq(y|θ)∇T

θ q(y|θ)
]

(D.31)

or as

F̃q(θ̂)
△

= Eq(y|θ)

[
∇θq(y|θ)∇T

θ q(y|θ)
]
. (D.32)

The matrices F̃p and F̃q are guaranteed to be positive semi-
definite—also in the case where the expectations in (D.31) and
(D.32) are computed by numerical integration or Monte-Carlo
methods. If those two matrices are moreover positive definite,
they can be used to construct kernels:

κp(ŷi, ŷj)
△

= ∇T
θ log q(ŷi|θ̂)F̃−1

p (θ̂)∇θ log q(ŷj |θ̂), (D.33)

and

κq(ŷi, ŷj)
△

= ∇T
θ log q(ŷi|θ̂)F̃−1

q (θ̂)∇θ log q(ŷj |θ̂). (D.34)

It is noteworthy that the matrices F̃p and F̃q are not guaran-
teed to be positive semi-definite if the expectation in (D.31)
and (D.32) is carried out by the iterative sum-product algo-
rithm.

Note also that in order to obtain a kernel, one can use any
method to estimate θ̂.

• It is straightforward to combine the three different approaches. In
addition, it is not very difficult to come up with variations on the
same theme.

We have outlined three different strategies to generate kernels from graphi-
cal models. We pointed out how message-passing techniques can be
used in this context. However, several important question remains un-
answered: which of the three classes of kernels should we use after all?
Is any of the above kernels optimal in some sense? A definite answer to
such questions seems not to have been formulated yet in the literature,
and goes beyond the scope of this exposition.

Appendix E

Neural Networks

This section reviews the main ideas behind feed-forward neural networks;
we will closely follow [120].

We will also explain how the back-propagation algorithm, which is widely
used to train feed-forward neural networks, can be regarded as message
passing on factor graphs.

E.1 Multi-Layer Perceptron

A perceptron is a mapping

R
n → R : (y1, . . . , yn) 7→ gs

(

w0 +

n∑

k=1

wkyk

)

(E.1)

with real parameters w0, . . . , w1 and where gs is the step function

gs(x) =

{
0 if x < 0
1 if x ≥ 0.

(E.2)

Such perceptrons are classifiers with two decision regions that are sepa-
rated by a plane.

373

374 Appendix E. Neural Networks

r

y0 = 1

r

y16
. . .

r

yn6

r

6
z1

�
�

�
�

PPPPPPPPPPPPP

. . .
r

6
zM

�����������������

�������������

r

z0 = 1

6ξ1

�
�

�
�

PPPPPPPPPPPPP
. . .

6ξm

�������������

��������

@
@

@
@

Figure E.1: Two-layer perceptron

We will proceed directly to multi-layer perceptrons. A two-layer percep-
tron is a mapping

R
n → R

m : (y1, . . . , yn) 7→ (ξ1, . . . , ξm) (E.3)

with

ξk = gout

w
(2)
k0 +

M∑

j=1

w
(2)
kj g

(

w
(1)
j0 +

n∑

i=1

w
(1)
ji yi

)

 (E.4)

with real parameters w
(1)
ji and w

(2)
kj and with functions g and gout as

discussed below. With y0
△

= 1 and with

zj
△

= g

(
n∑

i=0

w
(1)
ji yi

)

(E.5)

for j = 1, . . . ,M and with z0
△

= 1, the mapping (E.4) becomes

ξk = gout

M∑

j=0

w
(2)
kj zj

 . (E.6)

The structure of such a two-layer perceptron is illustrated in Fig. E.1.

E.1. Multi-Layer Perceptron 375

−5 0 5

0

0.2

0.4

0.6

0.8

1

x

g
(x

)

−5 0 5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

g
(x

)

Figure E.2: Sigmoid (left) and tanh (right).

The function g in (E.4) and (E.5) is usually either the logistic sigmoid
function

g(x) =
1

1 + e−x
(E.7)

(which may be viewed as a “soft” version of the step function (E.2)) or
the hyperbolic tangent function

g(x) = tanh(x) =
ex − e−x

ex + e−x
, (E.8)

see Fig. E.2. The function gout in (E.4) is usually one of the following
functions: the sigmoid (E.7) or the hyperbolic tangent (E.8) or simply

g(x) = x. (E.9)

Note that gout and g need not be the same function. In contrast to the
step function (E.2), the functions (E.7)–(E.9) are everywhere differen-
tiable.

The variables z1, . . . , zM are called hidden variables (or hidden nodes).
In (E.4) and in Fig. E.1, we have two layers of weights and one layer
of hidden nodes. The generalization to networks with more layers is
straightforward.

Multi-layer perceptrons (with at least two layers of weights) can represent
essentially any continuous mapping to arbitrary accuracy. The training of
such networks (i.e., the determination of the weights from input/output
samples) is a nonlinear optimization problem that can be solved with
a variety of methods, but none of these methods is guaranteed to find
optimal values for the weights.

376 Appendix E. Neural Networks

For many applications, two layers of weights suffice. Additional layers
are sometimes used to build special properties (e.g., symmetries) into the
network.

Two-layer perceptrons can be used both for regression and for classifica-
tion. In the former case (regression), the network is (e.g.) supposed to
represent the function

R
n → R

m : (y1, . . . , yn) 7→ E[X1, . . . , Xm | Y1 = y1, . . . , Yn = yn]
(E.10)

for some real random variables X1, . . . , Xm. In this case, the output
function gout is usually chosen to be the linear function (E.9). With
this choice of gout, it is obvious from (E.6) that the determination of the

second-layer weights w
(2)
kj (for fixed first-layer weights w

(1)
ji) is a least-

squares problem; in this case, only the first-layer weights w
(1)
ji need to be

determined by nonlinear optimization methods.

For classification applications, the network is (e.g.) supposed to represent
the function

R
n → R

m : (y1, . . . , yn) 7→
(

P (X̃ ∈ C1 |Y1 = y1, . . . , Yn = yn), . . . , P (X̃ ∈ Cm |Y1 = y1, . . . , Yn = yn)
)

(E.11)

where X̃ is some random variable and where C1, . . . , Cm are the diffe-
rent classes. In this case, a natural choice for gout is the sigmoid func-
tion (E.7).

Training means the determination of the weights from training data

(x
(1)
1 , . . . , x

(1)
m), (y

(1)
1 , . . . , y

(1)
n)

. . .

(x
(N)
1 , . . . , x

(N)
m), (y

(N)
1 , . . . , y

(N)
n)

(E.12)

where N is the number of samples. For regression as in (E.10), the
natural error function (to be minimized on the training data) is the
average squared error

ASE =
1

N

N∑

ℓ=1

m∑

k=1

∣
∣
∣x

(ℓ)
k − ξk(y(ℓ))

∣
∣
∣

2

. (E.13)

E.2. Back-Propagation of Derivatives 377

For classification (conditional probability estimation) as in (E.11), we
define the random variables Xk, k = 1, . . . ,m, as the indicator variables
for the classes Ck:

Xk =

{

1 if X̃ ∈ Ck

0 else.
(E.14)

Note that, in this case, the training data (E.12) is assumed to contain
samples of Xk, k = 1, . . . ,m (not X̃). The error function (E.13) can
still be used: it is an easy exercise to prove that, in the limit of infinitely
many training data, the functions ξk(y1, . . . , yn) that minimize (E.13) will
(almost surely) converge to the desired function (E.11). (Nevertheless,
other error functions may work better in this case.)

E.2 Back-Propagation of Derivatives

Let E denote some error function (such as, e.g., (E.13)), which (for fixed
training data) is a nonlinear function of the weights. A key feature
of multi-layer perceptrons is that the derivative ∂E

∂w can be efficiently
computed for all weights w in the network. With these derivatives, we
can optimize the weights by a steepest-descent method; moreover, some
more advanced optimization methods (such as the conjugate gradient
algorithm) need these derivatives as well.

We describe the computation of these derivatives for the two-layer net-
work of Fig. E.1; the extension to networks with more layers is obvious.
We begin with the top layer. Let

αk
△

=

M∑

j=0

w
(2)
kj zj (E.15)

so that (E.6) becomes
ξk = gout(αk). (E.16)

We then have

∂E

∂w
(2)
kj

=
∂E

∂αk

∂αk

∂w
(2)
kj

(E.17)

=
∂E

∂αk
zj (E.18)

378 Appendix E. Neural Networks

with

∂E

∂αk
= g′out(αk)

∂E

∂ξk
. (E.19)

Now to the bottom layer. Let

βj
△

=

n∑

i=0

w
(1)
ji yi (E.20)

so that (E.5) becomes

zj = g(βj). (E.21)

We then have

∂E

∂w
(1)
ji

=
∂E

∂βj

∂βj

∂w
(1)
ji

(E.22)

=
∂E

∂βj
yi, (E.23)

and the key to all is

∂E

∂βj

=
m∑

k=1

∂E

∂αk

∂αk

∂βj
(E.24)

=
∂zj

∂βj

m∑

k=1

∂E

∂αk

∂αk

∂zj
(E.25)

= g′(βj)

m∑

k=1

w
(2)
kj

∂E

∂αk
(E.26)

All these quantities can now be computed as follows. For fixed inputs
and fixed weights, we first compute all βj and zj and then all αk and
ξk by a forward (bottom-to-top) pass through the network. We then
compute, first, all derivatives ∂E

∂αk
by (E.19), and second, all derivatives

∂E
∂βj

by (E.26) by a backward (top-to-bottom) pass through the network.

The desired derivatives ∂E

∂w
(2)
kj

and ∂E

∂w
(1)
ji

can then be obtained from (E.18)

and (E.23), respectively.

E.3. Back-Propagation of Derivatives as Message Passing 379

E.3 Back-Propagation of Derivatives

as Message Passing

In Section 4.8.1, we claim that, if one applies the generic rules for compu-
ting derivatives of sum-product messages on a factor graph that repre-
sents a feed-forward neural network, one obtains the back-propagation
algorithm of Section E.2. Here, we work out the details.

Fig. E.3 depicts a factor graph that represents the feed-forward neural
network of Fig. E.1; more precisely, the graph represents the function:

f(ξ, y, w)
△

= δ(ξ − ξ(y, w)). (E.27)

The graph does not incorporate the error function E(x, ξ) (e.g., the

ASE (E.13)) and the training data
{
(x(ℓ), y(ℓ))

}N

ℓ=1
.

We handle the error function E(x, ξ) and the training data as follows.
We interpret the training of the weights as an estimation problem. In
this setting, the random variables ξ are observed through the (artificial)
noisy channel :

p̃(x|ξ) △∝ e−E(x,ξ). (E.28)

We write p̃(·|·) instead of p(·|·) since the observation model is artificial.
Since the error function E(x, ξ) most often has the form

E(x, ξ) =

m∑

k=1

Ek(xk, ξk), (E.29)

we can rewrite (E.28) as:

p̃(x|ξ) △∝ e−E(x,ξ) (E.30)

=
m∏

k=1

e−Ek(xk,ξk) (E.31)

△∝
m∏

k=1

p̃(xk|ξk). (E.32)

The random variables Y are directly observed.

380 Appendix E. Neural Networks

The corresponding factor graph is shown in Fig. E.4. The graph repre-
sents the function:

p(x, ξ|y, w)
△

=

N∏

ℓ=1

f(ξ(ℓ), y(ℓ), w)

m∏

k=1

p̃(x
(ℓ)
k |ξ(ℓ)k) (E.33)

=

N∏

ℓ=1

δ(ξ(ℓ) − ξ(y(ℓ), w))

m∏

k=1

p̃(x
(ℓ)
k |ξ(ℓ)k). (E.34)

The boxes denoted by “FF NN” are detailed in Fig. E.3; they stand for
the function f(ξ, y, w). From the observations of ξ and Y (i.e., the train-

ing data
{
(x(ℓ), y(ℓ))

}N

ℓ=1
), we wish to estimate the random variables W

(i.e., the weights in the feed-forward neural network) as:

ŵ
△

= argmin
w

E(x, ξ(y, w)) (E.35)

= argmax
w

∫

ξ

log p̃(x|ξ)f(ξ, y, w)dξ (E.36)

△

= argmax
w

Ef(ξ,y,w) [log p̃(x|ξ)] , (E.37)

where x and y in (E.37) are given by the training data. The expectation
in (E.37) can be carried out by means of the sum-product algorithm,
which in this case is a trivial computation. The maximization in (E.37)
can in principle be accomplished by applying the max-product algorithm
on the graph Fig. E.4, where the boxes “FF NN” are considered as com-
pound nodes, i.e., they are not replaced by the graph of Fig. E.3. From
this perspective, the graph of Fig. E.4 is cycle-free, and applying the
max-product algorithm on Fig. E.4 leads to the mode (E.37).

What we have done so far is to rewrite the error function E as an ex-
pectation and to show that the training of a feed-forward neural network
can formally be carried out by sum/max-product message-passing on a
suitable factor graph. So far, the message-passing view does probably
not buy us much. The key point is, however, that the computation (E.37)
is usually intractable. Therefore, we need to resort to approximate tech-
niques. And at this point, the message-passing view is arguably useful:
on the graph of Fig. E.4 (or any transformed factor graph), one may apply
the message-passing methods of Chapter 4 such as particle methods
(e.g., MCMC), EM, ICM, gradient methods (e.g., steepest descent or
natural-gradient descent), or combinations of those methods.

E.3. Back-Propagation of Derivatives as Message Passing 381

The factor graph of Fig. E.4 is also interesting for a different reason. The
graphs suggest us to draw additional nodes (as illustrated in Fig. E.5),
in particular:

• a node that represents a prior pW (w) for the weights w.

• nodes that represent a noisy channel p(y|z) for the observation
of Y . (In Fig. E.5, we have depicted a memoryless channel; of
course, more sophisticated observation models could be handled.)

• nodes that represent a prior pZ(z) for the random variables Z.

• nodes that represent a noisy channel p(χ|ξ) for the observation
of ξ.

The graph of Fig. E.5 represents the function

p(x, ξ, z, y, w)
△

= pZ(z)pW (w)

N∏

i=1

[

δ(ξ(i) − ξ(z(i), w))

·
(m∏

j=1

p̃(x
(i)
j |χ(i)

j)p(χ
(i)
j |ξ(i)j)

)(n∏

j=1

p(y
(i)
j |z(i)

j)
)
]

.

(E.38)

The training data is most often noisy, which can be modeled explicitly by
including the observation model p(y|z) and p(χ|ξ) in the factor graph, as
in Fig. E.5. In the neural-networks literature, the training data is most
often pre-processed in an ad-hoc manner. If we model the observation
process explicitly, the pre-processing follows directly by message passing
on the graph of Fig. E.5, as shown in Fig. E.6. Also here, one may use
the catalogue of message-passing tools presented in Chapter 4, as one
wishes.

The computation (E.37) now takes the form:

ŵ
△

= argmin
w

∫

z,χ

[E(χ, ξ(z, w))p(x|χ)p(y|z)pW (w)pZ (z)dzdχ] (E.39)

= argmax
w

[
∫

ξ,z,χ

log p̃(χ|ξ)f(ξ, z, w)p(x|χ)

382 Appendix E. Neural Networks

·p(y|z)pW (w)pZ(z)dzdχdξ

]

(E.40)

△

= argmax
w

Eg(x,ξ,χ,y,z,w) [log p̃(χ|ξ)] , (E.41)

where

g(x, ξ, χ, y, z, w)
△

= f(ξ, z, w)p(x|χ)p(y|z)pW (w)pZ(z). (E.42)

In the following, we will not explore the graphs of Fig. E.5 and Fig. E.6
any further. Instead, we will focus our attention on the back-propagation
algorithm outlined in E.2: we will show that, if one applies the generic
rules for computing gradients of sum-product messages (on the factor
graphs of Fig. E.3 and Fig. E.4), one obtains the back-propagation algo-
rithm of Section E.2.

If we wish to determine the weights W (cf. (E.35)–(E.37)) by a gradient
method, the derivatives of the sum-product messages along the W -edges
are required. In Section 4.8.1, we explain how derivatives of generic
sum-product messages can be computed. We will use the update rules
of Section 4.8.1 in the following.

As an illustration, suppose we wish to compute the derivative of the

sum-product message along the edge W
(2)
11 coming from the incident

multiply node (cf. Fig. E.3). We will derive the required computations
from Fig. E.7, which shows the subgraph of Fig. E.3 that is relevant for
the computations at hand.

The edge w is incident to a multiply node. A multiply node is a deter-
ministic node, hence, we apply rule (4.115), resulting in:

∇w1µ×→w1(w1) = ∇w1h(ẑ1, w1) ∇γ1 µγ1→× (γ1)|γ1=h(ẑ1,w1)
, (E.43)

= ẑ1 ∇γ1 µγ1→× (γ1)|γ1=ẑ1·w1
, (E.44)

where we used the short-hand notation W1 for W
(2)
11 , h(z1, w1)

△

= z1 ·w1,
and the incoming message µz1→× (z1) is represented by the estimate ẑ1.
Note that the derivative ∇γ1 µγ1→× (γ1) is required. This derivative is
computed similarly. We apply the rule (4.115) to the incident addition
node, resulting in:

∇γ1 µγ1→× (γ1) = ∇α1 µα1→ + (α1)|α1=h(γ̂0+γ1+γ̂2+···+γ̂M) . (E.45)

E.3. Back-Propagation of Derivatives as Message Passing 383

The derivative ∇α1 µα1→ + (α1) is computed by applying the rule (4.115)
to the node gout, resulting in:

∇α1 µα1→ + (α1) = ∇α1 gout(α1)|α1
∇ξ1 µξ1→g(ξ1)|ξ1=gout(α1) . (E.46)

The message ∇ξ1µξ1→g(ξ1) is given by:

∇ξ1µξ1→g(ξ1)
△

= ∇ξ1 log p̃(x1|ξ1) (E.47)

= −∇ξ1Ek(x1, ξ1), (E.48)

i.e., the derivative of the logarithm of p̃(x1|ξ1) (cf. (E.37)), which is also
equal to minus the derivative of the error function Ek(x1, ξ1). By com-
bining the expressions (E.44)–(E.48), one obtains (E.18)–(E.19). Along
similar lines, one can derive (E.23)–(E.26).

In conclusion, we have shown how the back-propagation rules (E.18)–
(E.26) follow by mechanically applying the generic rules of Section 4.8.1.

As we pointed out, the required derivatives can be computed in two
steps. The first step is a bottom-top sweep, in which, for fixed inputs
and fixed weights, all βj and zj and then all αk and ξk are updated. This
(bottom-top) sweep is depicted in Fig. E.8, where the message-passing
procedure inside the boxes “FF NN” is detailed in Fig. E.10.

In a second step, all derivatives ∂E
∂αk

are computed by (E.19), and all

derivatives ∂E
∂βj

are computed by (E.26) by a backward (top-to-bottom)

pass through the network. The desired derivatives ∂E

∂w
(2)
kj

and ∂E

∂w
(1)
ji

can

then be obtained from (E.18) and (E.23), respectively. The message-
passing procedure of the second step is depicted in Fig. E.9, where the
message passing inside the boxes “FF NN” is detailed in Fig. E.11.

Remark E.1. (Scheduling)
The update of the weights can be scheduled in several ways. One may
for example apply stochastic approximation (see Section 4.8.3).

384 Appendix E. Neural Networks

goutgout

== =

= = =

. . .

. . .

.

.

+ +

++

× ×× × ××

××××××

β1 βM

α1 αm

z1z0 zM

ξ1 ξm

g g

y0 = 1 y1 yn

W
(1)
10 W

(1)
11 W

(1)
1n W

(1)
M0 W

(1)
M1 W

(1)
Mn

W
(2)
10 W

(2)
11 W

(2)
1n W

(2)
M0 W

(2)
M1 W

(2)
Mn

Figure E.3: Factor graph representing a feed-forward neural network.

E.3. Back-Propagation of Derivatives as Message Passing 385

FF NNFF NNFF NN

p̃(x
(1)
1 |ξ(1)1)

W== =

. . .

. . .

. . .

. . .

. . .

. . .

. . .ξ
(1)
1 ξ

(1)
m ξ

(2)
1 ξ

(2)
m ξ

(N)
1 ξ

(N)
m

x
(1)
1 x

(1)
m x

(2)
1 x

(2)
m x

(N)
1 x

(N)
m

y
(1)
1 y

(1)
n y

(2)
1 y

(2)
n y

(N)
1 y

(N)
n

(1)

Figure E.4: Training of a feed-forward neural network viewed as an
estimation problem.

pZ

(
z
(1)
1

)

FF NNFF NN

pW (w)

p̃
(
χ

(1)
1 |ξ(1)1

)

p
(
x

(1)
1 |χ(1)

1

)

p
(
y
(1)
1 |z(1)

1

)

W
=

===

=

=

.

. . .

. . .

.

ξ
(1)
1 ξ

(1)
m ξ

(N)
1 ξ

(N)
m

χ
(1)
1

χ
(1)
m χ

(N)
1

χ
(N)
m

x
(1)
1 x

(1)
m

(2)

x
(N)
1 x

(N)
m

y
(1)
1 y

(1)
n y

(N)
1 y

(N)
n

z
(1)
1 z

(1)
n z

(N)
1 z

(N)
n

Figure E.5: Additional nodes.

386 Appendix E. Neural Networks

pZ

(
z
(1)
1

)

FF NNFF NN

pW (w)

p̃
(
χ

(1)
1 |ξ(1)1

)

p
(
x

(1)
1 |χ(1)

1

)

p
(
y
(1)
1 |z(1)

1

)

W
=

===

=

=

.

. . .

. . .

.

ξ
(1)
1 ξ

(1)
m ξ

(N)
1 ξ

(N)
m

χ
(1)
1

χ
(1)
m χ

(N)
1

χ
(N)
m

x
(1)
1 x

(1)
m x

(N)
1 x

(N)
m

y
(1)
1 y

(1)
n y

(N)
1 y

(N)
n

z
(1)
1 z

(1)
n z

(N)
1 z

(N)
n

Figure E.6: Pre-processing by message passing.

gout

p̃(x
(1)
1 |ξ(1)1)

γ1

γ0 γM.+

×

α1

z1

ξ1

W
(2)
11

Figure E.7: Computing the derivative of the weight W
(2)
ij .

E.3. Back-Propagation of Derivatives as Message Passing 387

FF NNFF NNFF NN

p̃(x
(1)
1 |ξ(1)1)

W
== =

. . .

. . .

. . .

. . .

. . .

. . .

. . .ξ
(1)
1 ξ

(1)
m ξ

(2)
1 ξ

(2)
m ξ

(N)
1 ξ

(N)
m

x
(1)
1 x

(1)
m x

(2)
1 x

(2)
m x

(N)
1 x

(N)
m

y
(1)
1 y

(1)
n y

(2)
1 y

(2)
n y

(N)
1 y

(N)
n

(1)

Figure E.8: Backpropagation as message passing: bottom-top sweep.

FF NNFF NNFF NN

p̃(x
(1)
1 |ξ(1)1)

W
== =

. . .

. . .

. . .

. . .

. . .

. . .

. . .ξ
(1)
1 ξ

(1)
m ξ

(2)
1 ξ

(2)
m ξ

(N)
1 ξ

(N)
m

x
(1)
1 x

(1)
m x

(2)
1 x

(2)
m x

(N)
1 x

(N)
m

y
(1)
1 y

(1)
n y

(2)
1 y

(2)
n y

(N)
1 y

(N)
n

Figure E.9: Backpropagation as message passing: top-bottom sweep.

388 Appendix E. Neural Networks

goutgout

== =

= = =

. . .

.

.

. . .

+ +

++

× ×× × ××

××××××

β1 βM

α1 αm

z1z0 zM

ξ1 ξm

g g

y0 = 1 y1 yn

W
(1)
10 W

(1)
11 W

(1)
1n W

(1)
M0 W

(1)
M1 W

(1)
Mn

W
(2)
10 W

(2)
11 W

(2)
1n W

(2)
M0 W

(2)
M1 W

(2)
Mn

Figure E.10: Backpropagation as message passing: bottom-top sweep
inside the feed-forward neural-network.

E.3. Back-Propagation of Derivatives as Message Passing 389

goutgout

== =

= = =

. . .

. . .

.

.

+ +

++

× ×× × ××

××××××

β1 βM

α1 αm

z1z0 zM

ξ1 ξm

g g

y0 = 1 y1 yn

W
(1)
10 W

(1)
11 W

(1)
1n W

(1)
M0 W

(1)
M1 W

(1)
Mn

W
(2)
10 W

(2)
11 W

(2)
1n W

(2)
M0 W

(2)
M1 W

(2)
Mn

Figure E.11: Backpropagation as message passing: top-bottom sweep
inside the feed-forward neural-network.

Appendix F

Some Distributions

F.1 The Gauss distribution

The Gaussian distribution N (x | m, v) (or “normal distribution”) with
mean (and mode) m and variance v is defined as:

N (x | m, v) △

=
1√
2πv

exp

(

− (x−m)2

2v

)

, x ∈ R. (F.1)

Alternatively, N (x | m, v) is denoted by N−1(x | m,w), where w = v−1

is called the precision.

In the vector case, the normal distribution is defined as:

N−1(x | m,W) =

√

|W|
(2π)n

exp

(

−1

2
(x−m)HW(x−m)

)

, x ∈ R
n,

(F.2)
and if V = W−1 exists as:

N (x | m,V) =
1

√

(2π)n|V|
exp

(

−1

2
(x−m)HV−1(x−m)

)

, x ∈ R
n.

(F.3)

391

392 Appendix F. Some Distributions

F.2 The inverted gamma distribution

The inverted-gamma distribution Ig (x | α, β) with parameters α and β
(α, β ∈ R) is defined as:

Ig (x | α, β) =
βα

Γ(α)
x−(α+1)e−

β
x , x > 0. (F.4)

The mean E[X], variance Var[X] and mode M[X] of the distribution are:

E[X] =
β

α− 1
α > 1 (F.5)

Var[X] =
β2

(α− 1)2(α− 2)
α > 2 (F.6)

M[X] =
β

α+ 1
. (F.7)

Appendix G

Gaussian Densities and
Quadratic Forms

We closely follow [120] in this appendix. Multi-variable Gaussian densi-
ties are closely related to quadratic forms. A quadratic form is a function
q : Rn → R or Cn → R of the form

q(x) = (x−m)HW (x−m) + c (G.1)

= xHWx− 2Re
(
xHWm

)
+mHWm+ c, (G.2)

where W is a positive semi-definite n × n matrix. The case where all
quantities in (G.1) are real-valued and q is a function Rn → R will be
referred to as “the real case”; the case where q is a function Cn → R will
be referred to as “the complex case”.

A n-dimensional Gaussian distribution is a function Rn → R or Cn → R

of the form

f(x) = γe−q(x), (G.3)

where q(x) is a quadratic form as in (G.1) with positive definite W and
with a scale factor γ such that

∫∞

−∞ f(x) dx = 1.

We note without proof that, in the real case, the corresponding covariance
matrix is 1

2W
−1 and in the complex case, the covariance matrix is W−1.

393

394 Appendix G. Gaussian Densities and Quadratic Forms

In the following theorem, the vector x is split into two components:
x = (y, z). Then (G.1) can be written as

q(y, z) =
(

(y −mY)H, (z −mZ)H
)(W1,1 W1,2

W2,1 W2,2

)(
y −mY

z −mZ

)

.

(G.4)

Theorem G.1. (Gaussian Max/Int Theorem)
Let q(y, z) be a quadratic form as in (G.4) with W1,1 positive definite.
Then

∫ ∞

−∞

e−q(y,z) dy ∝ max
y

e−q(y,z) (G.5)

= e−miny q(y,z). (G.6)

where “∝” denotes equality up to a scale factor.

Proof: Let us first consider the integral over (G.1):
∫ ∞

−∞

e−q(x) dx = e−c

∫ ∞

−∞

e−(q(x)−c) dx (G.7)

= e−c

∫ ∞

−∞

e−(x−m)HW (x−m) dx (G.8)

= e−c

∫ ∞

−∞

e−xHWx dx (G.9)

= e−minx q(x)

∫ ∞

−∞

e−xHWx dx. (G.10)

Now consider (G.4) as a function of y with parameter z. Clearly, this
function is of the form (G.2) with W1,1 taking the role of W . It thus
follows from (G.10) that

∫ ∞

−∞

e−q(y,z) dy = e−miny q(y,z)

∫ ∞

−∞

e−yHW1,1y dy. (G.11)

But the integral on the right-hand side does not depend on z, which
proves (G.6). �

Theorem G.2. (Sum of Quadratic Forms)
Let both A and B be nonnegative definite matrices (which implies that
they are Hermitian). Then

(x−a)HA(x−a)+(x−b)HB(x−b) = xHWx−2Re(xHWm)+mHWm+c
(G.12)

395

with

W = A+B (G.13)

m = (A+B)#(Aa+Bb) (G.14)

and with the scalar

c = (a− b)HA(A +B)#B(a− b). (G.15)

We also note
Wm = Aa+Bb. (G.16)

We omit the proof here.

Appendix H

Kalman Filtering and
Related Topics

In this section we review several topics related to Kalman filtering and
smoothing; we will closely follow [120].

H.1 Introduction to Kalman Filtering

Many problems in signal processing and control theory can be put into
the following form (or some variation of it). Let X = (X0, X1, X2, . . .)
and Y = (Y1, Y2, . . .) be discrete-time stochastic processes that can be
described by the linear state-space model

Xk = AXk−1 +BUk (H.1)

Yk = CXk +Wk. (H.2)

The input signal U = (U1, U2, . . .) is a white Gaussian process (i.e.,
Uk is zero-mean Gaussian, independent of U1, U2, . . . , Uk−1, and has the
same distribution as U1). The signal W = (W1,W2, . . .) is also a white
Gaussian process and independent of U . All involved signals (X , Y , U ,
W) are real or complex vectors (e.g., Xk takes values in RN or CN), and
A, B, C are matrices of appropriate dimensions.

397

398 Appendix H. Kalman Filtering and Related Topics

①

?
U1

①

?
U2

. . .

B

?

B

?

③

-X0
A - + -X1 = - A - + -X2 = - . . .

?
C

?
C

②
-W1 +

?

?Y1

②
-W2 +

?

?Y2

. . .

Figure H.1: Linear state-space model driven by white Gaussian noise
and observed through AWGN channel.

This type of model can be described by the factor graph of Fig. H.1. The
nodes labeled ① and ② represent Gaussian distributions. For example,
if Uk is real-valued and scalar, then the nodes labeled ① represent the
function

f①(uk) =
1√
2πσ

exp

(−u2
k

2σ2
U

)

. (H.3)

Complex and vector-valued Gaussian variables will be discussed later.

The single node ③ stands for the distribution of the initial state X0.
We will assume that this is also a Gaussian distribution or else it is
the constant 1 (in which case this node may be omitted from the factor
graph).

The other nodes in Fig. H.1 represent deterministic relations, which give
rise to factors involving Dirac deltas. For example, a matrix multiplica-
tion Zk = CXk gives rise to the factor δ(zk − Cxk).

H.1. Introduction to Kalman Filtering 399

The global function that is represented by Fig. H.1 is the joint probability
density of all involved variables. More precisely, for any positive integer
n, the first n sections of the factor graph represent the density

f(x0, . . . , xn, u1, . . . , un, w1, . . . , wn, y1, . . . , yn)

= f(x0)
n∏

k=1

f(uk) f(xk|xk−1, uk) f(wk) f(yk|xk, wk) (H.4)

= f(x0)

n∏

k=1

f(uk) δ(xk −Axk−1 −Buk) f(wk) δ(yk − Cxk − wk).

(H.5)

Suppose we have observed (Y1, . . . , Yn) = (y1, . . . , yn) and we wish to
estimate Xm. This leads to the following classical problems:

m = n (filtering): estimating the current state;

m < n (smoothing): estimating some past state;

m > n (prediction): estimating some future state.

All these estimates can be efficiently computed (with complexity linear
in n) by the Kalman filtering (or Kalman smoothing) algorithm. We
will derive these algorithms as message passing in the factor graph of
Fig. H.1. All messages will be Gaussian distributions—represented, e.g.,
by a mean vector and a covariance matrix. Since the factor graph has
no cycles (and since all message computations will be exact), the sum-
product algorithm will yield the correct a posteriori distributions. For
both the filtering and the prediction problem, a single left-to-right sweep
of message computations (referred to as the forward recursion) will do; for
the smoothing problem, an additional right-to-left sweep (the backward
recursion) is also required.

The derivation of Kalman filtering and smoothing as summary propaga-
tion in the factor graph makes it easy to generalize both the problem and
the estimation algorithms in many ways and to adapt it to many applica-
tions. Such applications include, e.g., various parameter estimation tasks
in a communications receiver; the factor graph approach makes it easy to
integrate such estimation algorithms together with the error correcting
decoder into a coherent iterative message passing receiver architecture.

400 Appendix H. Kalman Filtering and Related Topics

If all variables in Fig. H.1 are real scalars (which implies that all matrices
in Fig. H.1 are scalars as well), all messages will be one-dimensional
Gaussian distributions. In other words, all messages are functions of the
form

µ(ξ) =
1√
2πσ

exp

(−(ξ −m)2

2σ2

)

(H.6)

and are fully described by their mean m and their variance σ2. The
rules for the computation of the messages are tabulated in Table H.1. As
only one of the two messages along any edge (say X) is considered, the
corresponding means and variances are simply denoted mX , σX , etc.

The proofs of the message computation rules of Table H.1 are not dif-
ficult. Rule 3 amounts to the well-known fact that the mean of aX is
amX and the variance of aX is a2 times the variance of X . Rule 4 is (in
the scalar case) equivalent to Rule 3. Rule 2 amounts to the well-known
fact that the mean of X + Y is mX + mY and (assuming that X and
Y are independent) the variance of X + Y is the sum of the variances.
Note that these three rules hold for the mean and the variance of ar-
bitrary distributions; the Gaussian assumption is not needed for these
rules. However, Gaussian input messages clearly lead to Gaussian output
messages.

Rule 1 of Table H.1 requires more work. Applying the sum-product rule
with integration instead of summation (and with a scale factor γ yields

µZ(z) = γ

∫ ∞

−∞

∫ ∞

−∞

δ(z − x) δ(z − y)µX(x)µY (y) dx dy (H.7)

= γ µX(z)µY (z) (H.8)

= γ
1√

2πσX

exp

(−(z −mX)2

2σ2
X

)
1√

2πσY

exp

(−(z −mY)2

2σ2
Y

)

.

(H.9)

After some computations, this leads to

µZ(z) =
1√

2πσZ

exp

(−(z −mZ)2

2σ2
Z

)

(H.10)

with mZ and σ2
Z as in Table H.1 and where γ was chosen such that

∫∞

−∞ µZ(z) = 1. (The details are left as an exercise.)

A remarkable property of Table H.1 is that all variances are computed
only from other variances; the means are not used. In the standard setup

H.1. Introduction to Kalman Filtering 401

1

δ(x− y)δ(x − z)

=
X
-

Z
-

Y 6

mZ =
mX/σ

2
X +mY /σ

2
Y

1/σ2
X + 1/σ2

Y

1/σ2
Z = 1/σ2

X + 1/σ2
Y

2

δ(x+ y + z)

+-X- �Z
-

6Y 6
mZ = −mX −mY

σ2
Z = σ2

X + σ2
Y

3

δ(y − ax)

a-X- -Y- mY = amX

σ2
Y = a2σ2

X

4

δ(x− ay)

a�X- �Y
- mY = mX/a

σ2
Y = σ2

X/a
2

Table H.1: Computation of scalar Gaussian messages consisting of
mean m and variance σ2.

402 Appendix H. Kalman Filtering and Related Topics

f(x)

-X
�
µb(x)

f(y|x)

-Y

Figure H.2: Backward message in chain rule model.

of Fig. H.1, this means that the variances can be computed off-line, prior
to any observation.

It is also worth pointing out that, in any chain rule model as in Fig. H.2,
the backward message µb(x) is neutral as long as the variable Y is not
observed:

µb(x) =

∫ ∞

−∞

f(y|x) dy (H.11)

= 1. (H.12)

This applies, in particular, to the backwards (right-to-left) messages from
the “unobserved” future in Fig. H.1. (Such neutral messages may be
considered as limits of Gaussian distributions with variance σ2 → ∞.)

Unfortunately, the scalar Kalman filter is of little practical use. While
both the input Uk and the output Yk are sometimes (i.e., in some appli-
cations) scalars, the state Xk is almost always a vector. The resulting
complications will be considered in the following section.

H.2 Kalman Filtering: Vector Case

At this point, the reader should familiarize himself with the material in
Appendix G.

In particular, we point out that Theorem G.1 has a number of remarkable
consequences:

• For Gaussian distributions, eliminating variables by marginaliza-
tion coincides with eliminating them by maximization. This im-
plies, in particular, that the sum-product (integral-product) mes-
sage computation rule coincides with the max-product rule.

H.2. Kalman Filtering: Vector Case 403

• Minimizing a quadratic cost function (say q(y, z)) over some of the
variables (say y) is equivalent to marginalizing the corresponding
Gaussian distribution.

• Successive elimination of variables by sum-product message passing
in a Gaussian factor graph is equivalent to solving a quadratic
minimization problem by a series of successive minimizations. In
particular, Kalman filtering may be viewed as a general recursive
least-squares algorithm.

The vector form of the message computation rules of Table H.1 are given
in Table H.2. (The proofs are given in [117].) All messages are assumed
to be of the form (G.3); they are represented by the mean vector m and
either the “cost” matrix W (or “potential” matrix) or the covariance ma-
trix V = W−1. Note that the rules in Table H.1 can often be simplified
if the involved matrices are invertible.

In general, the matrices W and V are only required to be positive semi-
definite, which allows to express certainty in V and complete ignorance
in W. However, whenever such a matrix needs to be inverted, it had
better be positive definite.

The direct application of the update rules in Table H.2 may lead to
frequent matrix inversions. A key observation in Kalman filtering is that
the inversion of large matrices can often be avoided. In the factor graph,
such simplifications may be achieved by using the update rules for the
composite blocks given in Table H.3. In particular, the vectors Uk and
Wk in Fig. H.1 have usually much smaller dimensions than the state
vector Xk; in fact, they are often scalars. By working with composite
blocks as in Fig. H.3, the forward recursion (left in Fig. H.3) using the
covariance matrix V = W−1 then requires no inversion of a large matrix
and the backward recursion (right in Fig. H.3) using the cost matrix W
requires only one such inversion for each discrete time index.

Strictly speaking, the term “Kalman filtering” refers only to the forward
(left-to-right) recursion through Fig. H.1 as in Fig. H.3 (left). In this
context, the quantity

GKalman
△

= VXAHG (H.13)

= VXAH(VY + AVXAH)−1 (H.14)

which appears in Rule 5 of Table H.3 is traditionally called Kalman gain.

404 Appendix H. Kalman Filtering and Related Topics

1

δ(x− y)δ(x− z)

=
X
-

Z
-

Y 6

mZ = (WX + WY)#(WXmX + WYmY)

VZ = VX(VX + VY)#VY

WZ = WX + WY

2

δ(x+ y + z)

+-X
- � Z

-

6Y 6

mZ = −mX −mY

VZ = VX + VY

WZ = WX

(
WX + WY

)#
WY

3

δ(y − Ax)

A-X
- -Y-

mY = AmX

VY = AVXAH

WY
1
= A−HWXA−1

4

δ(x− Ay)

A�X- � Y
-

mY =
(
AHWXA

)#
AHWXmX

VY
1
= A−1VXA−H

WY = AHWXA

1
if A is invertible

Table H.2: Computation of multi-dimensional Gaussian messages con-
sisting of mean vector m and covariance matrix V or
W = V−1. Notation: (.)H denotes Hermitian transposi-
tion and (.)# denotes the Moore-Penrose pseudo-inverse.

H.2. Kalman Filtering: Vector Case 405

5

=
X
-

Z
-

?6

A

?Y 6

mZ = mX + VXAHG (mY − AmX)

VZ = VX − VXAHGAVX

WZ = WX + AHWY A

with G
△

=
(
VY + AVXAH

)−1

6

+-X
- � Z

-

66

A

6
Y 6

mZ = −mX − AmY

VX
1
= A−1VY A−H

WZ = WX − WXAHAHWX

with H
△

=
(
WY + AHWXA

)−1

1
if A is invertible

Table H.3: Update rules for composite blocks.

--
A --

??

B

??
+ --

=

?
C

?6

-- -�
A -�

?
?

B

?
+ -�

=

?6
C

?6

-�

Figure H.3: Use of the composite-block rules of Table H.3.

Appendix I

Differentiation under the
Integral Sign

Theorem I.1. Suppose f(x, y) and ∂f(x,y)
∂x are defined and continuous

for all x ∈ [a, b] and y ∈ [c, d]. Let

g(x) =

∫ d

c

f(x, y)dy. (I.1)

Then g is differentiable and

dg(x)

dx
=

∫ d

c

∂f(x, y)

∂x
dy. (I.2)

Proof: We refer to [106, p. 276]. �

Theorem I.2. Suppose f(x, y) and ∂f(x,y)
∂x are defined and continuous

for all x ∈ [a, b] and y ∈ [c, d]. Let the functions u0(x) and u1(x) and
their first derivatives be continuous for x ∈ [a, b] with the range of u0

and u1 in (c, d). Let

g(x) =

∫ u1(x)

u0(x)

f(x, y)dy. (I.3)

407

408 Appendix I. Differentiation under the Integral Sign

Then g is differentiable and

dg(x)

dx
= f(x, u1(x))

du1(x)

dx
− f(x, u0(x))

du0(x)

dx
+

∫ u1(x)

u0(x)

∂f(x, y)

∂x
dy.

(I.4)

Proof: We refer to [166, p. 426]. �

Theorem I.3. Suppose f(x, y) and ∂f(x,y)
∂x are defined and continuous

for all x ∈ [a, b] and y ≥ c. Assume that there are functions φ(x)
and ψ(x) which are ≥ 0 for all x ∈ [a, b], such that |f(x, y)| ≤ φ(y)

and |∂f(x,y)
∂x | ≤ ψ(y) for all x and y, and such that the integrals

∫ ∞

c

φ(y)dy and

∫ ∞

c

ψ(y)dy (I.5)

converge.

Let

g(x) =

∫ ∞

c

f(x, y)dy. (I.6)

Then g is differentiable and

dg(x)

dx
=

∫ ∞

c

∂f(x, y)

∂x
dy. (I.7)

Proof: We refer to [106, pp. 337–339]. �

Theorem I.4. Suppose f(x, y) and ∂f(x,y)
∂x are defined and continuous

for all x ∈ [a, b] and y ≥ c. Assume that
∫ ∞

c

∂f(x, y)

∂x
dy (I.8)

converges uniformly for all x ∈ [a, b], and that

g(x) =

∫ ∞

c

f(x, y)dy (I.9)

converges for all x ∈ [a, b].

Then g is differentiable and

dg(x)

dx
=

∫ ∞

c

∂f(x, y)

∂x
dy. (I.10)

Proof: We refer to [106, p. 340]. �

Appendix J

Derivation of the EM
Update Rules

J.1 Mean Estimation

J.1.1 The Scalar Case

N

XµX→f (x)

h(m) m̂

Figure J.1: Factor graph node for a Gaussian distribution with un-
known mean.

We consider the situation depicted in Fig. J.1. The node in Fig. J.1
represents the function:

f(x,m) =
1√
2πs

exp

(

− (x−m)2

2s

)

, (J.1)

where m ∈ R is the unknown mean and s ∈ R+ the known variance of

409

410 Appendix J. Derivation of the EM Update Rules

the Gaussian distribution. The h-message is computed as follows:

h(m) =

∫

x

p(x|m̂(k)) log f(x,m)dx (J.2)

=

∫

x

p(x|m̂(k))

(

−1

2
log(2πs) − (x−m)2

2s

)

dx (J.3)

= C − 1

2s

(

m2 − 2mE[X |m̂(k)]
)

, (J.4)

where C is a proper scaling constant. As a consequence,

eh(m) ∝ N
(

m
∣
∣
∣ E[X |m̂(k)], s

)

(J.5)

J.1.2 The Vector Case

In the vector case, the node function equals:

f(x,m) =
1

√

(2π)n|V|
exp

(

−1

2
(x − m)HV−1(x − m)

)

. (J.6)

The h-message is given by:

h(m) =

∫

x

p(x|m̂(k)) log f(x,m)dx (J.7)

= C − 1

2

(

mHV−1m − 2mHV−1E[X|m̂(k)]
)

. (J.8)

As a consequence,

eh(m) ∝ N
(

m
∣
∣
∣ E[X|m̂(k)],V

)

(J.9)

J.2 Variance Estimation

J.2.1 The Scalar Case

We consider the situation depicted in Fig. J.2. The node in Fig. J.2
represents the function

f(x, s) =
1√
2πs

exp

(

− (x−m)2

2s

)

, (J.10)

J.2. Variance Estimation 411

N

XµX→f (x)

h(s) ŝ

Figure J.2: Factor graph node for a Gaussian distribution with un-
known variance.

where s ∈ R+ is the unknown variance and m ∈ R the known mean of
the Gaussian distribution. The h-message is computed as follows:

h(s) =

∫

x

p(x|ŝ(k)) log f(x, s)dx (J.11)

=

∫

x

p(x|ŝ(k))

(

−1

2
log(2πs) − (x−m)2

2s

)

dx (J.12)

= C − 1

2
log s− E

[
(X−m)2 | ŝ(k)

]

2s
. (J.13)

Therefore,

eh(s) ∝ Ig

(

s
∣
∣
∣ −1

2
,
1

2
E
[
(X−m)2 | ŝ(k)

]
)

(J.14)

where Ig denotes an inverted gamma distribution.

J.2.2 The Vector Case

In the vector case, the node function equals:

f(x,V) =
1

√

(2π)n|V|
exp

(

−1

2
(x − m)HV−1(x − m)

)

. (J.15)

The h-message is therefore:

h(V) =

∫

x

p(x|V̂(k)) log f(x,V)dx (J.16)

= C − 1

2
log |V| − 1

2
E
[

(X − m)HV−1(X − m)
∣
∣
∣ V̂(k)

]

. (J.17)

412 Appendix J. Derivation of the EM Update Rules

J.2.3 Special Forms of V

V = Is, s ∈ R
+:

h(s) = C − n

2
log s− 1

2s
E
[
(X − m)H(X − m)

]
(J.18)

eh(s) = Ig

(

s
∣
∣
∣
n− 2

2
,
1

2
E
[
(X − m)H(X − m)

]
)

. (J.19)

V = diag (s) , s ∈ R+n:

h(s) = C − 1

2

n∑

ℓ=1

log sℓ −
n∑

ℓ=1

1

2sℓ
E[(Xℓ −mℓ)

2] (J.20)

∝
n∏

ℓ=1

Ig

(

sℓ

∣
∣
∣ −1

2
,
1

2
E[(Xℓ −mℓ)

2]

)

. (J.21)

J.3 Coefficient Estimation

J.3.1 The Scalar Case

Here, the problem of estimating the coefficients of an autoregressive (AR)
system is considered. The function f(x1, x2, a) is defined as:

f(x1, x2, a) = δ(x2 − ax1), (J.22)

where a ∈ R is the scalar AR coefficient. Computing the message h(a) for
this node leads to a singularity problem because of the Dirac delta (J.22).
We can avoid this problem by combining the Dirac delta with a conti-
nuous neighboring node. In the AR model, there is also a driving input
(or control input) as depicted in Fig. J.3. The dotted box in the graph
to the left is represented by the node to the right.

The function represented by the graph in Fig. J.3 is

f(x1, x2, a) =
1√
2πs

exp

(

− (x2 − ax1)
2

2s

)

. (J.23)

J.3. Coefficient Estimation 413

N

X1X1 X2X2

a
a

eh(a)

eh(a)

â

â

aa

Figure J.3: Factor graph of the state transition node for a linear state-
space model.

The message h(a) becomes:

h(a) =

∫

x1,x2

p(x1, x2|a(k)) log f(x1, x2, a)dx1dx2 (J.24)

=

∫

x1,x2

p(x1, x2|a(k))

(

−1

2
log(2πs) − (x2−ax1)

2

2s

)

dx1dx2 (J.25)

= C − 1

2s

(

a2E[X2
1 |â(k)] − a2E[X1X2|â(k)] + E[X2

2 |â(k)]
)

, (J.26)

with

C = −1

2
log(2πs). (J.27)

Because (J.26) is a quadratic form, it is convenient to send the message
eh(a) instead of h(a):

eh(a) ∝ N−1

(

a
∣
∣
∣

E[X1X2|â(k)]

E[X2
1 |â(k)]

,E[X2
1 |â(k)]s−1

)

(J.28)

J.3.2 The Vector Case

The function f(x1,x2,A) is defined as:

f(x1,x2,A) =
1

√

(2π)n|V|
exp

(

−1

2
(x2 − Ax1)

HV−1(x2 − Ax1)

)

,

(J.29)
with A ∈ Rn×n. The message h(A) becomes:

414 Appendix J. Derivation of the EM Update Rules

X1 X2

h(A) Â

A

Figure J.4: Factor graph of the state transition node for the vector
case.

h(A) =

∫

x1,x2

p(x1,x2|Â(k)) log f(x1,x2,A)dx1dx2 (J.30)

= C − 1

2

∫

x1,x2

p(x1,x2|Â(k))

(x2−Ax1)
HV−1(x2−Ax1)dx1dx2 (J.31)

= C − 1

2

(

E[XH
2 V−1X2|Â(k)] − 2E[XH

2 V−1AX1|Â(k)]

+E[XH
1 AHV−1AX1|Â(k)]

)

(J.32)

= C − 1

2
E
[

‖X2 − AX1‖2
V−1

∣
∣
∣Â(k)

]

, (J.33)

with

C = −n
2

log(2π) − 1

2
log |V|. (J.34)

Unfortunately, (J.33) does not have a nice form in A. Unless a special
structure is imposed onto A, it is impossible to parameterise (J.33).

J.3.3 The AR Case

Here, a special case of Section J.3.2 is treated. The function f(x1,x2,a)
is defined as

f(x1,x2,a) =
1

√

(2π)n|V|
exp

(

−1

2
(x2 − Ax1)

HV−1(x2 − Ax1)

)

,

(J.35)
with

A ,

[
aH

I 0

]

. (J.36)

J.3. Coefficient Estimation 415

The message h(a) becomes

h(a) =

∫

x1,x2

p(x1,x2|a(k)) log f(x1,x2,a)dx1dx2 (J.37)

= C − 1

2

∫

x1,x2

p(x1,x2|a(k))

(x2 − Sx1 − cxH
1 a)HV−1(x2 − Sx1 − cxH

1 a)dx1dx2, (J.38)

with

C = −n
2

log(2π) − 1

2
log |V|, (J.39)

and where

S ,

[
0H

I 0

]

c , (1, 0, . . . , 0)H . (J.40)

The product Ax1 is separated in the shifting operation Sx1, which shifts
every element in the vector x1 one position down, and the inner vector
product cxH

1 a.

We write the RHS of (J.38) as a quadratic form in a:

h(a) = C − 1

2

∫

x1,x2

p(x1,x2|a(k))

(x2 − Sx1 − cxH
1 a)HV−1(x2 − Sx1 − cxH

1 a)dx1dx2, (J.41)

△

= C − 1

2
E
[
(x2 − Sx1 − cxH

1 a)HV−1(x2 − Sx1 − cxH
1 a)
]

(J.42)

= C′ − 1

2
E
[
−mH

a Wa a − aHWa ma + aHWa a
]
, (J.43)

where C′ is an irrelevant constant and

Wa = E
[
X1c

HV−1cXH
1

]
(J.44)

ma = W−1
a E

[
X1c

HV−1(X2 − SX1)
]
. (J.45)

Note that cHV−1c is nothing but the element
[
V−1

]

11
, i.e., the element

(1,1) of the matrix V−1. Therefore, we can rewrite (J.44) as

Wa =
[
V−1

]

11
E
[
X1X

H
1

]
. (J.46)

Note also that cHV−1 is the first row of W
△

= V−1, i.e.,

cHV−1 = (w11, w12, . . . , w1n), (J.47)

416 Appendix J. Derivation of the EM Update Rules

where wij is the element (i, j) of W (i, j = 1, . . . , n). On the other hand,
it is easy to verify that

cHV−1S = (w12, . . . , w1n, 0). (J.48)

By substituting (J.47) and (J.48) in (J.45), we obtain:

ma = W−1
a E

[
X1c

HV−1(X2 − SX1)
]

(J.49)

= W−1
a

(
E
[
X1c

HV−1X2

]
− E

[
X1c

HV−1SX1

])
(J.50)

= W−1
a

(
n∑

k=1

w1,kE [X1 [X2]k] −
n−1∑

k=1

w1,k+1E [X1 [X1]k]

)

, (J.51)

where [Xi]j is the j-th component of the (random) vector Xi (i = 1, 2; j =
1, . . . , n).

In this case, the message eh(a) has the parametrization:

eh(a) ∝ N−1
(

a
∣
∣
∣ma,Wa

)

, (J.52)

where ma and Wa is given by (J.51) and (J.46) respectively.

Special cases

V = diag (s) , s
△

= (s1, . . . , sn) ∈ R+n:

Wa =
1

s1
E
[
X1X

H
1

]
(J.53)

ma = W−1
a

1

s1
E [X1 [X2]1] (J.54)

= E
[
X1X

H
1

]−1
E [X1 [X2]1] . (J.55)

V = Is, s ∈ R+:

Wa =
1

s
E
[
X1X

H
1

]
(J.56)

ma = E
[
X1X

H
1

]−1
E [X1 [X2]1] . (J.57)

J.4. Joint Coefficient and Variance Estimation 417

J.4 Joint Coefficient and Variance Estima-

tion

J.4.1 The Scalar Case

Here, the problem of jointly estimating the coefficients and the variance
of the driving noise of an autoregressive (AR) system is considered. The

s

X1 X2

eh(a)
â

a

f(x1, x2, a, s)

ŝ

eh(s)

Figure J.5: Factor graph of the state transition node for joint coeffi-
cient/variance estimation.

node function f(x1, x2, a, s) is defined as

f(x1, x2, a, s) =
1√
2πs

exp

(

− (x2 − ax1)
2

2s

)

, (J.58)

with a ∈ R the scalar AR coefficient.

The message h(a, s) becomes

h(a, s) =

∫

x1,x2

p(x1, x2|â(k), ŝ(k)) log f(x1, x2, a, s)dx1dx2 (J.59)

=

∫

x1,x2

p(x1, x2|â(k), ŝ(k))(

−1

2
log(2πs) − (x2 − ax1)

2

2s

)

dx1dx2 (J.60)

= C − 1

2
log s− 1

2s

(

a2E
[

X2
1 |â(k), ŝ(k)

]

−a2E
[

X1X2|â(k), ŝ(k)
]

+ E
[

X2
2 |â(k), ŝ(k)

])

, (J.61)

with

C = −1

2
log(2π). (J.62)

418 Appendix J. Derivation of the EM Update Rules

The message (J.61) is both a function of a and s. To find the maximum,
all partial derivations of h(a, s) are set to zero. From

∂h(a, s)

∂a
=

∫

x1,x2

p(x1, x2|â(k), ŝ(k))

(
x1(x2 − ax1)

s

)

dx1dx2 (J.63)

!
= 0 (J.64)

∂h(a, s)

∂s
=

∫

x1,x2

p(x1, x2|â(k), ŝ(k))

(

− 1

2s
+

(x2 − ax1)
2

2s2

)

dx1dx2 (J.65)

!
= 0, (J.66)

it follows that

â(k+1) =
E
[
X1X2|â(k), ŝ(k)

]

E
[
X2

1 |â(k), ŝ(k)
] (J.67)

ŝ(k+1) = E
[

(X2 − â(k+1)X1)
2|â(k), ŝ(k)

]

. (J.68)

As can be seen from (J.67) and (J.68), in certain situations, the esti-
mation of a and s is decoupled. We therefore may send the following
messages separately:

eh(a) ∝ N−1

(

a
∣
∣
∣

E
[
X1X2|â(k), ŝ(k)

]

E
[
X2

1 |â(k), ŝ(k)
] ,

E
[
X2

1 |â(k), ŝ(k)
]

ŝ(k)

)

eh(s) ∝ Ig

(

s
∣
∣
∣ −1

2
,
E
[
(X2 − â(k+1)X1)

2|â(k), ŝ(k)
]

2

)

In certain situations, the estimation of a and s is coupled, but one may
still send the messages eh(a) and eh(s) of (J.4.1). This corresponds to
approximating the M-step by ICM (cf. Section 4.9.5).

If one wishes to perform the exact M-step, one needs to send the (exact)
message eh(a,s) defined as:

eh(a,s) ∝ N−1

(

a
∣
∣
∣

E
[
X1X2|â(k), ŝ(k)

]

E
[
X2

1 |â(k), ŝ(k)
] ,

E
[
X2

1 |â(k), ŝ(k)
]

s

)

J.4. Joint Coefficient and Variance Estimation 419

J.4.2 The AR Case

The node function f(x1,x2,a, s) is defined as

f(x1,x2,a, s) =
1

√

(2π)2s
exp

(

− (x2 − Ax1)
H(x2 − Ax1)

2s

)

,

(J.69)
with

A ,

[
aH

I 0

]

(J.70)

and x1,x2 ∈ R
n, a ∈ R

n, V = Is.

The message h(a, s) becomes:

h(a, s) =

∫

x1,x2

p(x1,x2|â(k)ŝ(k)) log f(x1,x2,a, s)dx1dx2 (J.71)

= C − 1

2s

∫

x1,x2

p(x1,x2|â(k)ŝ(k))

(x2 − Sx1 − cxH
1 a)H(x2 − Sx1 − cxH

1 a)dx1dx2, (J.72)

with

C = −n
2

log(2π) − 1

2
log |V|, (J.73)

and where

S ,

[
0H

I 0

]

c , (1, 0, . . . , 0)H (J.74)

Again, the estimation of a and s is decoupled in certain situations. We
may then send h(a) and h(s) separately:

eh(a) ∝ N−1
(

a
∣
∣
∣ma,Wa

)

,

eh(s) ∝ Ig

(

s
∣
∣
∣ −1

2
,
E[(X2−Â(k+1)X1)

H(X2−Â(k+1)X1)]

2

)

,

where

Wa =
1

ŝ(k)
E
[
X1X

H
1

]
(J.75)

ma =
1

ŝ(k)
W−1

a E [X1 [X2]1] , (J.76)

420 Appendix J. Derivation of the EM Update Rules

with [Xi]j is the j-th component of the (random) vector Xi.

If the estimation of a and s is coupled, one may still send the messages
separately. This corresponds again to approximating the M-step by ICM
(cf. Section 4.9.5). If one wishes to perform the exact M-step, one needs
to send the (exact) message eh(a,s) defined as:

eh(a,s) ∝ N−1
(

a
∣
∣
∣ma(s),Wa(s)

)

,

where

Wa(s) =
1

s
E
[
X1X

H
1

]
(J.77)

ma(s) =
1

s
W−1

a E [X1 [X2]1] , (J.78)

with [Xi]j is the j-th component of the (random) vector Xi.

J.5 Finite State Machine

This node is not used in this thesis. Nonetheless, its derivation is shown
here, because it appears in one of the prime applications of the EM
algorithm. The function of a node implementing the state transition of

X1 X2

A

h(A) Â

A

Figure J.6: Factor graph node of the state transition node for the finite
state machine.

a finite state machine is (cf. Fig. J.6)

f(x1, x2, A) = ax1x2 =
∑

i,j

aijδ[x1 − i]δ[x2 − j], (J.79)

J.6. Computing the expectations of Table 4.2 421

where δ[.] denotes the Kronecker delta. The h-message is

h(A) =
∑

x1,x2

p(x1, x2 | Â(k)) log f(x1, x2,A) (J.80)

=
∑

x1,x2

p(x1, x2 | Â(k)) log ax1,x2 . (J.81)

This message can be represented as matrix with individual elements
p(x1, x2 | Â(k)) log ax1,x2 .

To find the estimate Â, one has to compute the derivations

∂h(A)

∂aij
+ λ

∂g(A)

∂aij
=
p(i, j | Â(k))

aij
− λ

!
= 0, (J.82)

with the constraint
g(A) = 1 −

∑

ℓ

aiℓ = 0. (J.83)

Therefore

âij =
p(i, j | Â(k))

λ
. (J.84)

To find the value of the Lagrange multiplier λ plug (J.84) into the con-
straint (J.83)

∑

ℓ

âij =
1

λ

∑

ℓ

p(i, ℓ | Â(k)) = 1 (J.85)

λ =
∑

ℓ

p(i, ℓ | Â(k)). (J.86)

The new estimates of the transition probabilities aij thus becomes

âij =
p(i, j | Â(k))
∑

ℓ p(i, ℓ | Â(k))
(J.87)

J.6 Computing the expectations

of Table 4.2

In this section it is explained how the expectations in the message pass-
ing EM update rules of Table 4.2 are computed from the sum-product
messages when the incoming messages are Gaussian.

422 Appendix J. Derivation of the EM Update Rules

J.6.1 Scalar case

The expectation E[X1X2|â(k)] is derived from the density p(x1, x2|â(k))
which is given by

p(x1, x2|â(k)) ∝ µX1→f (x1)f(x1, x2, â
(k))µX2→f (x2) (J.88)

∝ N (x | m1,2,W1,2) (J.89)

where x , (x2, x1)
H , the node function is

f(x1, x2, â
(k)) =

1√
2πs

exp

(

− (x2 − â(k)x1)
2

2s

)

(J.90)

and the incoming message µX1→f (x1) is Gaussian with mean m1 and
weight w1 and similarly m2 and w2 for µX2→f (x2). (J.88) can be inter-
preted as propagating three augmented messages through an equality-
node. We, therefore, can apply the update rule of Table H.1 extended to
three incoming messages. The mean vectors and weight matrices of the
augmented messages are

m̃1 = (0,m1)
H W̃1 =

[
0 0
0 w1

]

(J.91)

m̃2 = (m2, 0)H W̃2 =

[
w2 0
0 0

]

(J.92)

m̃f = 0 W̃f =
1

s

[
1 −a
−a a2

]

(J.93)

The vector and the matrix (J.93) are found by comparing the coefficients
of

(x2 − ax1)
2

s
= (x − m̃f)HW̃f (x − m̃f) (J.94)

The joint density (J.88) is a Gaussian with mean vector and weight
matrix

m1,2 = (W1 + Wf + W2)
−1(W1m1 + Wfmf + W2m2) (J.95)

= W−1
1,2

(
w2m2

w1m1

)

(J.96)

W1,2 = W1 + Wf + W2. (J.97)

The correlation matrix finally is
[

E[X2
2] E[X1X2]

E[X2X1] E[X2
1]

]

= W−1
1,2 + m1,2m

H
1,2. (J.98)

J.6. Computing the expectations of Table 4.2 423

J.6.2 Vector case

Here the joint density of X1 and X2 given â(k) is

p(x1,x2|â(k)) ∝ µX1→f (x1)f(x1,x2, â
(k))µX2→f (x2) (J.99)

∝ N (x | m1,2,W1,2) (J.100)

where x1, x2 and x are the following vectors:

x1 = (xn−1, xn−2, . . . , xn−M)H (J.101)

x2 = (xn, xn−1, . . . , xn−M+1)
H (J.102)

x = (xn, xn−1, . . . , xn−M+1, xn−M)H (J.103)

The augmented mean vectors and weight matrices are

m̃1 = (0,m1)
H W̃1 =

[
0 0H

0 W1

]

(J.104)

m̃2 = (m2, 0)H W̃2 =

[
W2 0H

0 0

]

(J.105)

m̃f = 0 (J.106)

W̃f =
1

s

1 −a1 · · · −an

−a1 a2
1 a1a2 · · ·

... a1a2
. . .

...
... a2

n−1 anan−1

−an · · · anan−1 a2
n

(J.107)

=
1

s

1 −aH

−a aaH

(J.108)

The vector (J.106) and the matrix (J.108) are found by comparing
the coefficients of

(xn −∑n
k=1 akxn−k)2

s
= (x̃ − m̃f)HW̃f(x̃ − m̃f) (J.109)

The joint density (J.99) is Gaussian with mean vector and weight matrix

m1,2 = (W̃1 + W̃f + W̃2)
−1(W̃1m̃1 + W̃fm̃f + W̃2m̃2) (J.110)

= W−1
1,2

[(
0

W1m1

)

+

(
W2m2

0

)]

(J.111)

W1,2 = W̃1 + W̃f + W̃2. (J.112)

424 Appendix J. Derivation of the EM Update Rules

The correlation matrix finally is

[
E[X2

2] E[XH
1 X2]

E[X2X1] E[X1X
H
1]

]

= W−1
1,2 + m1,2m

H
1,2. (J.113)

Appendix K

Mathematical
Background of Chapter 5

Lemma K.1. Let A =

[
A11 A12

A21 A22

]

� 0, where A11, A12, A21, and

A22 are n× n, n×m, m× n, and m×m submatrices respectively. Let
A22 be nonsingular.
Then (A11 − A12A

−1
22 A21) � 0. �

Proof: A � 0, which by definition means that vT Av ≥ 0, ∀v ∈ Rn+m.
Let v = [v1v2]

T , where v1 ∈ Rn and v2 ∈ Rm.
Then vTAv = vT

1 A11v1 + vT
1 A12v2 + vT

2 A21v1 + vT
2 A22v2 ≥ 0.

Define now vT
2

△

= −vT
1 A12A

−1
22 , then

vT Av = vT
1 A11v1 + vT

1 A12v2 + vT
2 A21v1 + vT

2 A22v2 (K.1)

= vT
1 A11v1 + vT

1 A12A
−1
22 A22v2 + vT

2 A21v1 + vT
2 A22v2 (K.2)

= vT
1 A11v1 − vT

2 A22v2 + vT
2 A21v1 + vT

2 A22v2 (K.3)

= vT
1 (A11 − A12A

−1
22 A21)v1 ≥ 0, ∀v1 ∈ Rn. (K.4)

In (K.2), we have used the fact that A22 is nonsingular.
The equalities (K.3) and (K.4) follow from the definition of v2.
As a consequence of (K.4), (A11 − A12A

−1
22 A21) � 0. �

425

426 Appendix K. Mathematical Background of Chapter 5

Lemma K.2. (Matrix inversion Lemma)

Let A =

[
A11 A12

A21 A22

]

, where A11 and A22 are nonsingular n × n

and m×m submatrices respectively, such that (A11 −A12A
−1
22 A21) and

(A11 − A22A
−1
11 A12) are also nonsingular.

Then A is also nonsingular with
[
A−1

]

11
= A−1

11 + A−1
11 A12(A22 − A21A

−1
11 A12)

−1A21A
−1
11 (K.5)

= (A11 − A12A
−1
22 A21)

−1 (K.6)

[
A−1

]

12
= −A−1

11 A12(A22 − A21A
−1
11 A12)

−1 (K.7)

= −(A11 − A12A
−1
22 A21)

−1A12A
−1
22 (K.8)

[
A−1

]

21
= −(A22 − A21A

−1
11 A12)

−1A21A
−1
11 (K.9)

= −A−1
22 A21(A11 − A12A

−1
22 A21)

−1 (K.10)

[
A−1

]

22
= A−1

22 + A−1
22 A21(A11 − A12A

−1
22 A21)

−1A12A
−1
22 (K.11)

= (A22 − A21A
−1
11 A12)

−1. (K.12)

�

Proof: We refer to [33, pp. 8–9]. �

Lemma K.3. Let A,B ∈ Rn×n.

A ≻ 0 ⇔ BTAB ≻ 0. (K.13)

�

Proof:

⇒
A ≻ 0 means by definition that vT Av > 0, for all v ∈ Rn.

In particular, define v
△

= Bu with u ∈ Rn. As a consequence,
uTBTABu > 0, for all u ∈ Rn. Hence, BTAB ≻ 0.

⇐
BTAB ≻ 0 means by definition that vTBTABv > 0, for all v ∈ Rn.

Defining u
△

= Bu, we have uTAu > 0, for all u ∈ Rn. Hence, A ≻ 0.

427

�

Lemma K.4. Let A,B ∈ Rn×n, and suppose that A ≻ 0, B ≻ 0,
A � B and BT = B. Then:

B−1 � A−1. (K.14)

�

Proof: A � B means that D
△

= A − B � 0. We show now that F
△

=
B−1 − A−1 △

= B−1 − (B + D)−1 is positive semi-definite. First, note
that F is well-defined, since positive definite matrices are non-singular.
Note also that:

(B + D)(B−1 − A−1)(B + D)T

= (B + D)
(
B−1 − (B + D)−1

)
(B + D)T (K.15)

= (B + D)B−1(B + D)T − (B + D)T (K.16)

= (B + D)T + DB−1(B + D)T − (B + D)T (K.17)

= DB−1(B + D)T (K.18)

= DB−1BT + DB−1DT (K.19)

= D + DB−1DT . (K.20)

In (K.20), we have used the fact that BT = B. Since the RHS of (K.20)
is positive semi-definite (cf. Lemma K.3), the same holds for the LHS
of (K.15). From Lemma K.3, we conclude that F is positive semi-definite,
hence, B−1 � A−1. �

Lemma K.5. Let A be a nonsingular n× n matrix. Then
(
[f ijAf ij]−1

)

kk
=
[
A−1

]

kk
, (k 6= i, k 6= j) (K.21)

and
(
[f ijAf ij]−1

)

ii
=
[
A−1

]

jj
, (K.22)

where f ij is the permutation matrix obtained by permuting the ith and
jth row in the n× n unity matrix. �

Proof: Note that the matrix f ijAf ij is obtained from A by permuting
the ith and jth row and column. It is well-known that

A−1 =
adjointA

detA
, (K.23)

428 Appendix K. Mathematical Background of Chapter 5

where
(adjointA)ij = (−1)i+jdetA(ji), (K.24)

and A(ji) is obtained from A by erasing the ith row and jth column.
It holds that

det(f ijAf ij) = det2(f ij)det(A) = (1)2det(A) = det(A), (K.25)

[adjoint(f ijAf ij)]kk = (−1)2kdet[(f ijAf ij)(kk)] (K.26)

= det
[
((f ij)(kk)A(kk)(f ij)(kk))

]
(K.27)

= det
[
A(kk)

]
(K.28)

= [adjointA]kk, (k 6= i, k 6= j) (K.29)

and

[adjoint(f ijAf ij)]ii = (−1)2jdet[(f ijAf ij)(ii)] (K.30)

= det
[
A(jj)

]
(K.31)

= [adjointA]jj . (K.32)

As a consequence

(
[f ijAf ij]−1

)

kk
=

adjoint(f ijAf ij)kk

det(f ijAf ij)
(K.33)

=
(adjointA)kk

detA
(K.34)

= [A−1]kk. (k 6= i, k 6= j) (K.35)

and similarly

(
[f ijAf ij]−1

)

ii
= [A−1]jj . (K.36)

�

Lemma K.6. If

a) ∇θj
p(y|θ) and ∇θi

∇T
θj
p(y|θ) exist ∀θ and y,

b) EY |Θ

[

−∇θi
∇T

θj
log p(Y |θ)

]

and EY |Θ

[

∇θi
log p(Y |θ)∇T

θj
log p(Y |θ)

]

exist,

429

then EY |Θ

[

−∇θi
∇T

θj
log p(Y |θ)

]

= EY |Θ

[

∇θi
log p(Y |θ)∇T

θj
log p(Y |θ)

]

.

�

Proof: Differentiate both sides of the equation
∫

y p(y|θ)dy = 1
w.r.t. θj . From Assumption 1, it follows

∫

y

∇T
θj
p(y|θ)dy =

∫

y

p(y|θ)∇T
θj

log p(y|θ)dy = 0.

and
∫

y

p(y|θ)∇θi
∇T

θj
log p(y|θ)dy +

∫

y

∇θi
p(y|θ)∇T

θj
log p(y|θ)dy = 0.

Therefore,

EY |Θ[∇θi
∇T

θj
log p(Y |θ)] = −EY |Θ[∇θi

log p(Y |θ)∇T
θj

log p(Y |θ)],

where the expectations in both sides are well-defined (Assumption 2). �

Lemma K.7. If

a) ∇xj
p(x, y) and ∇xi

∇T
xj
p(x, y) exist ∀x and y,

b) EXY

[

∇xi
log p(X,Y)∇T

xj
log p(X,Y)

]

and EXY

[

−∇xi
∇T

xj
log p(X,Y)

]

exist,

c)
∫

x,y ∇xi
∇T

xj
p(x, y)dxdy = 0,

then EXY

[

−∇xi
∇T

xj
log p(X,Y)

]

= EXY

[

∇xi
log p(X,Y)∇T

xj
log p(X,Y)

]

.

�

Proof: From Assumption 1, it follows

∇T
xj
p(x, y) = p(x, y)∇T

xj
log p(x, y), (K.37)

and

∇xi
∇T

xj
p(x, y) = ∇xi

(
p(x, y)∇T

xj
log p(x, y)

)
(K.38)

= p(x, y)∇xi
log p(x, y)∇T

xj
log p(x, y)

+p(x, y)∇xi
∇T

xj
log p(x, y). (K.39)

430 Appendix K. Mathematical Background of Chapter 5

Integrating both sides over X and Y , one obtains
∫

x

∫

y

p(x, y)∇xi
log p(x, y)∇T

xj
log p(x, y)dxdy (K.40)

+

∫

x

∫

y

p(x, y)∇xi
∇T

xj
log p(x, y)dxdy (K.41)

= 0, (K.42)

where (K.42) follows from Assumption 3.

As a consequence

EXY [∇xi
∇T

xj
log p(X,Y)]

= −EXY [∇xi
log p(X,Y)∇T

xj
log p(X,Y)], (K.43)

where the expectations in both sides are well-defined (Assumption 2). �

Lemma K.8. If

a) ∇xj
p(y|x) and ∇xi

∇T
xj
p(y|x) exist ∀x and y,

b) EXY

[

∇xi
log p(Y |X)∇T

xj
log p(Y |X)

]

and EXY

[

−∇xi
∇T

xj
log p(Y |X)

]

exist,

then EXY

[

−∇xi
∇T

xj
log p(Y |X)

]

= EXY

[

∇xi
log p(y|x)∇T

xj
log p(Y |X)

]

.

�

Proof: Differentiate both sides of the equation
∫

y p(y|x)dy = 1
w.r.t. xj . From Assumption 1, it follows

∫

y

∇T
xj
p(y|x)dy =

∫

y

p(y|x)∇T
xj

log p(y|x)dy = 0.

and
∫

y

p(y|x)∇xi
∇T

xj
log p(y|x)dy +

∫

y

∇xi
p(y|x)∇T

xj
log p(y|x)dy = 0.

Multiplying both sides with p(x) and integrating over x, we obtain:

EXY [∇xi
∇T

xj
log p(Y |X)] = −EXY [∇xi

log p(Y |X)∇T
xj

log p(Y |X)],

where the expectations in both sides are well-defined (Assumption 2). �

431

Lemma K.9. If

a) ∇xj
p(x) and ∇xi

∇T
xj
p(x) exist ∀x,

b) EX

[

−∇xi
∇T

xj
log p(X)

]

and EX

[

∇xi
log p(X)∇T

xj
log p(X)

]

exist,

c)
∫

x ∇xi
∇T

xj
p(x)dx = 0,

then EX

[

−∇xi
∇T

xj
log p(X)

]

= EX

[

∇xi
log p(X)∇T

xj
log p(X)

]

. �

Proof: As a consequence of Assumption 1, ∇T
xj
p(x) = p(x)∇T

xj
log p(x)

and

∇xi
∇T

xj
p(x) = ∇xi

(
p(x)∇T

xj
log p(x)

)

= p(x)∇xi
log p(x)∇T

xj
log p(x) + p(x)∇xi

∇T
xj

log p(x).

If one integrates both sides over x, as a consequence of Assumption 3,
one obtains:

∫

x

p(x)∇xi
log p(x)∇T

xj
log p(x)dx +

∫

x

∫

y

p(x)∇xi
∇T

xj
log p(x)dx = 0.

Therefore,

EX [∇xi
∇T

xj
log p(X)] = −EX [∇xi

log p(X)∇T
xj

log p(X)],

where the expectations in both sides are well-defined (Assumption 2). �

Lemma K.10. Let A be a random square matrix, almost surely positive
definite. Then,

(E[A])
−1 � E

[
A−1

]
. (K.44)

�

For a proof, we refer to [24].

432 Appendix K. Mathematical Background of Chapter 5

Proof of Theorem 5.1

The estimator θ̂(y) is supposed to be unbiased (Assumption f), i.e.,

B(θ)
△

=

∫

y

[θ̂(y) − θ]p(y|θ)dy = 0. (K.45)

Differentiating both sides with respect to Θ, we have

∇θi

∫

y

[θ̂j(y) − θj]p(y|θ)dy =

∫

y

∇θi

(
[θ̂j(y) − θj]p(y|θ)

)
dy (K.46)

= −δij
∫

y

p(y|θ)dy

+

∫

y

[θ̂j(y) − θj]∇θi
p(y|θ)dy (K.47)

= −δij +

∫

y

[θ̂j(y) − θj]∇θi
p(y|θ)dy (K.48)

= 0. (K.49)

The equality (K.46) follows from Assumption c and e. Note that if

the integration limits in B(θ)
△

=
∫

y[θ̂(y) − θ]p(y|θ)dy depended on θ

(cf. Assumption c), additional terms would appear in the RHS of (K.46)
(cf. Theorem I.2). The equality (K.48) follows from the fact that p(y|θ)
is a probability function in Y .

As a consequence of Assumption d:

∇θp(y|θ) = ∇θ log p(y|θ)/p(y|θ). (K.50)

Substituting (K.51) in (K.48), one obtains:

δij =

∫

y

[θ̂j(y) − θj]p(y|θ)∇θi
log p(y|θ)dy. (K.51)

Now, we define the vector v as

v
△

= [θ̂1(y)− θ1, . . . , θ̂n(y)− θn,∇θ1 log p(y|θ), . . . ,∇θn
log p(y|θ)]T ,

(K.52)
and the matrix Cv as

Cv
△

= EY |Θ[vvT] =

[
E(θ) I

I F(θ)

]

, (K.53)

433

where I is a unity matrix. The RHS of (K.53) follows from (5.1), (5.2),
and (K.51). The matrix Cv is well-defined as a consequence of As-
sumption 1 and 2. Note that Cv � 0, since uTCvu = uT Ev[vvT]u =
Ev[uT vvTu] = Ev[|vTu|2] ≥ 0, ∀u. Since Cv � 0 and F(θ) is non-singular
(cf. Assumption 2), we can apply Lemma K.1; hence, E(θ) � F−1(θ). �

Proof of Theorem 5.3

First, note that:

∇xj
[p(x)Bi(x)] = ∇xj

[

p(x)

∫

y

[x̂i(y) − xi]p(y|x)dy
]

(K.54)

= ∇xj

[∫

y

[x̂i(y) − xi]p(x, y)dy

]

(K.55)

= −δij
∫

y

p(x, y)dy

+

∫

y

[x̂i(y) − xi]∇xj
p(x, y)dy. (K.56)

In the equality (K.54), we used the definition ofB(x). The equality (K.56)
follows from Assumption c and e. Note that if the integration limits in

B(x)
△

=
∫

y
[x̂(y) − x]p(y|x)dy depended on x (cf. Assumption c), addi-

tional terms would appear in the RHS of (K.56) (cf. Theorem I.2).
Now we integrate both sides of (K.56) with respect to x

∫

x

∇xj
[Bi(x)p(x)]dx (K.57)

= −δij
∫

x,y

p(x, y)dxdy +

∫

x,y

[x̂i(y) − xi]∇xj
p(x, y)dxdy

(K.58)

= −δij +

∫

x,y

[x̂i(y) − xi]∇xj
p(x, y)dxdy (K.59)

= −δij +

∫

x,y

[x̂i(y) − xi]p(x, y)∇xj
log p(x, y)dxdy

(K.60)

= 0. (K.61)

434 Appendix K. Mathematical Background of Chapter 5

The equality (K.59) follows from the fact that p(x, y) is a probability
function; the equality (K.61) follows from Assumption d.
We define the vector v as

v
△

= [x̂1(y)−x1, . . . , x̂n(y)−xn,∇x1 log p(x, y), . . . ,∇xn
log p(x, y)]T ,

(K.62)
and the matrix Cv as

Cv
△

= EXY [vvT] =

[
E I
I J

]

, (K.63)

where I is a unity matrix; the matrix Cv is well-defined as a consequence
of Assumption 1 and 2. Since Cv � 0 and J is non-singular (cf. Assump-
tion 2), we can apply Lemma K.1; hence, E � J−1. �

Proof of Theorem 5.4

First, note that:

∇xj
[(x̂i(y) − xi)p(x|y)] = −δijp(x|y) + [x̂i(y) − xi]∇xj

p(x|y). (K.64)

As a consequence of Assumption c, the derivatives in (K.64) are well-
defined. We now integrate both sides of (K.64) with respect to x

∫

x

∇xj
[(x̂i(y) − xi)p(x|y)] dx (K.65)

= −δij
∫

x

p(x|y)dx+

∫

x

[x̂i(y) − xi]∇xj
p(x|y)dx (K.66)

= −δij +

∫

x

[x̂i(y) − xi]∇xj
p(x|y)dx (K.67)

= −δij +

∫

x

[x̂i(y) − xi]p(x|y)∇xj
log p(x|y)dx (K.68)

= 0. (K.69)

The equality (K.67) follows from the fact that p(x|y) is a probability
function; the equality (K.69) follows from Assumption d.
We define the vector v as

v
△

= [x̂1(y)−x1, . . . , x̂n(y)−xn,∇x1 log p(x|y), . . . ,∇xn
log p(x|y)]T ,

(K.70)

435

and the matrix Cv as

Cv
△

= EX|Y [vvT] =

[
E(y) I

I J(y)

]

, (K.71)

where I is a unity matrix; the matrix Cv is well-defined as a consequence
of Assumption 1 and 2. Since Cv � 0 and J(y) is non-singular (cf. As-
sumption 2), we can apply Lemma K.1; hence, E(y) � J−1(y). �

Proof of Lemma 5.1

Note that

J = EY [J(Y)]. (K.72)

The inequality (5.33) follows from (K.72) and Lemma K.10. �

Proof of Theorem 5.5

Note that the inequality (5.5) (with Θ replaced by X) holds for all x.
One obtains the inequality (5.34) by first multiplying both sides of (5.5)
with p(x), and by then integrating both sides over x. �

Proof of Lemma 5.2

Note that

J = EX [F(X)] + EX

[
∇x log p(X)∇T

x log p(X)
]
, (K.73)

and EX

[
∇x log p(X)∇T

x log p(X)
]
� 0. Therefore,

J � EX [F(X)], (K.74)

and, as a consequence of Lemma K.4,

J−1 � (EX [F(X)])
−1
. (K.75)

From Lemma K.10, we have:

(EX[F(X)])−1 � EX

[
F−1(X)

]
. (K.76)

The inequality (5.35) follows from (K.75) and (K.76). �

436 Appendix K. Mathematical Background of Chapter 5

Proof of Theorem 5.6

The following proof is similar to a proof by Reuven et al. [170] for a
related bound, i.e., the hybrid Barankin bound; the hybrid CRB is a
particular instance of the hybrid Barankin bound, as shown in [170].

First, note that:

∇xj

[
p(x)B

(X)
i (x)

]
= ∇xj

[

p(x)

∫

y

[x̂i(y) − xi]p(y|x, θ)dy
]

(K.77)

= ∇xj

[∫

y

[x̂i(y) − xi]p(x, y|θ)dy
]

(K.78)

= −δij
∫

y

p(x, y|θ)dy

+

∫

y

[x̂i(y) − xi]∇xj
p(x, y|θ)dy. (K.79)

In the equality (K.77), we used the definition of B(X)(x). The equa-
lity (K.79) follows from Assumption d and e. Note that if the integration

limits in B(X)(x)
△

=
∫

y
[x̂(y) − x]p(y|x)dy depended on x (cf. Assump-

tion c), additional terms would appear in the RHS of (K.79) (cf. Theo-
rem I.2).
Now we integrate both sides of (K.79) with respect to x

∫

x

∇xj
[B

(X)
i (x)p(x)]dx (K.80)

= −δij
∫

x,y

p(x, y|θ)dxdy +

∫

x,y

[x̂i(y) − xi]∇xj
p(x, y|θ)dxdy

(K.81)

= −δij +

∫

x,y

[x̂i(y) − xi]∇xj
p(x, y|θ)dxdy (K.82)

= −δij +

∫

x,y

[x̂i(y) − xi]p(x, y|θ)∇xj
log p(x, y|θ)dxdy

(K.83)

= 0. (K.84)

The equality (K.82) follows from the fact that p(x, y) is a probability
function; the equality (K.84) follows from Assumption f. As a conse-

437

quence,
∫

x,y

[x̂i(y) − xi]p(x, y|θ)∇xj
log p(x, y|θ)dxdy = δij . (K.85)

The estimator θ̂(y) is supposed to be unbiased (Assumption g), i.e.,

B(Θ)(θ)
△

=

∫

y

[θ̂(y)−θ]p(y|θ)dy =

∫

x,y

[θ̂(y)−θ]p(x, y|θ)dxdy = 0. (K.86)

Differentiating both sides with respect to Θ, we have

∇θi

∫

x,y

[θ̂j(y) − θj]p(x, y|θ)dxdy

=

∫

x,y

∇θi

(
[θ̂j(y) − θj]p(x, y|θ)

)
dxdy (K.87)

= −δij +

∫

x,y

[θ̂j(y) − θj]∇θi
p(x, y|θ)dxdy (K.88)

= 0. (K.89)

The equality (K.87) follows from Assumption c and h. Note that if the

integration limits in B(Θ)(θ)
△

=
∫

y
[θ̂(y) − θ]p(x, y|θ)dxdy depended on θ

(cf. Assumption c), additional terms would appear in the RHS of (K.87)
(cf. Theorem I.2).

As a consequence,
∫

x,y

[θ̂j(y) − θj]∇θi
p(x, y|θ)dxdy = δij . (K.90)

Note that
∫

x,y

[θ̂j(y) − θj]p(x, y|θ)∇xi
log p(x, y|θ)dxdy (K.91)

=

∫

x,y

[θ̂j(y) − θj]∇xi
p(x, y|θ)dxdy (K.92)

=

∫

y

[θ̂j(y) − θj]dy

∫

x

∇xi
p(x, y|θ)dx (K.93)

= 0. (K.94)

438 Appendix K. Mathematical Background of Chapter 5

The equality (K.94) follows from Assumption f.

From Assumption i, it follows:

∇θj

[∫

x,y

[x̂i(y) − xi]p(x, y|θ)dxdy
]

(K.95)

=

∫

x,y

[x̂i(y) − xi]∇θj
p(x, y|θ)dxdy (K.96)

=

∫

x,y

[x̂i(y) − xi]p(x, y|θ)∇θj
log p(x, y|θ)dxdy (K.97)

= 0. (K.98)

We define the vector v as

v
△

= [x̂1(y) − x1, . . . , x̂n(y) − xn, θ̂1(y) − θ1, . . . , θ̂m(y) − θm,

∇x1 log p(x, y|θ), . . . ,∇xn
log p(x, y|θ),

∇θ1 log p(x, y), . . . ,∇θm
log p(x, y|θ)]T , (K.99)

and the matrix Cv as

Cv
△

= EXY |Θ[vvT] =

[
E(XΘ)(θ) I

I H(x)

]

, (K.100)

where I is a unity matrix, and the RHS follows from (5.68), (5.69), (K.85),
(K.90), (K.94), and (K.98); the matrix Cv is well-defined as a conse-
quence of Assumption 1 and 2. We apply Lemma K.1, and obtain (5.77).
�

The matrices G(1) and G(2) (cf. Example 5.9)

We compute the the matrices G(1) and G(2) (cf. (5.357) and (5.359)):

G
(1)
11

△

= EXY |a,σ2
W ,σ2

U

[
∂2 log f1,k

∂2xk

]

(K.101)

= − 1

σ2
U

(K.102)

G
(1)
i+1 j+1 = EXY |a,σ2

W ,σ2
U

[
∂2 log f1,k

∂xk−i∂xk−j

]

(K.103)

439

= −aiaj

σ2
U

(i, j = 1, . . . ,M) (K.104)

G
(1)
i+1 1 = EXY |a,σ2

W ,σ2
U

[
∂2 log f1,k

∂xk−i∂xk

]

(K.105)

=
ai

σ2
U

(i = 1, . . . ,M) (K.106)

G
(1)
M+i M+j

△

= EXY |a,σ2
W

,σ2
U

[
∂2 log f1,k

∂ai∂aj

]

(K.107)

=− 1

σ2
U

EXY |a,σ2
W ,σ2

U
[xk−ixk−j] (i, j = 1, . . . ,M) (K.108)

G
(1)
2M+1 2M+1

△

= EXY |a,σ2
W

,σ2
U

[
∂2 log f1,k

∂2σ2
U

]

(K.109)

=
1

2σ4
U

− 1

σ6
U

EXY |a,σ2
W ,σ2

U

(

xk −
M∑

ℓ=1

aℓxk−ℓ

)2

(K.110)

= − 1

2σ4
U

(K.111)

G
(1)
M+i 1+j = EXY |a,σ2

W ,σ2
U

[
∂2 log f1,k

∂ai∂xk−j

]

(K.112)

= − aj

σ4
U

EXY |a,σ2
W

,σ2
U
[xk−j] (K.113)

= 0 (i, j = 1, . . . ,M) (K.114)

G
(1)
M+i 1 = EXY |a,σ2

W
,σ2

U

[
∂2 log f1,k

∂ai∂xk

]

(K.115)

=
1

σ4
U

EXY |a,σ2
W ,σ2

U
[xk−i] (K.116)

= 0 (i = 1, . . . ,M) (K.117)

G
(1)
M+i 2M+1 = EXY |a,σ2

W
,σ2

U

[
∂2 log f1,k

∂ai∂σ2
U

]

(K.118)

= − 1

σ4
U

EXY |a,σ2
W ,σ2

U

[

xk−i

(

xk −
M∑

ℓ=1

aℓxk−ℓ

)]

(K.119)

= 0 (i = 1, . . . ,M) (K.120)

G
(1)
i+1 2M+1 = EXY |a,σ2

W
,σ2

U

[
∂2 log f1,k

∂xk−i∂σ2
U

]

(K.121)

440 Appendix K. Mathematical Background of Chapter 5

= − ai

σ4
U

EXY |a,σ2
W

,σ2
U

[

xk −
M∑

ℓ=1

aℓxk−ℓ

]

(K.122)

= 0 (i = 1, . . . ,M) (K.123)

G
(1)
1 2M+1 = EXY |a,σ2

W ,σ2
U

[
∂2 log f1,k

∂xk∂σ2
U

]

(K.124)

=
1

σ4
U

EXY |a,σ2
W

,σ2
U

[

xk −
M∑

ℓ=1

aℓxk−ℓ

]

(K.125)

= 0 (K.126)

G
(2)
11

△

= EXY |a,σ2
W

,σ2
U

[
∂2 log f2,k

∂2xk

]

(K.127)

= − 1

σ2
W

(K.128)

G
(2)
2M+2,2M+2 = EXY |a,σ2

W
,σ2

U

[
∂2 log f2,k

∂2σ2
W

]

(K.129)

=
1

2σ4
W

− 1

σ6
W

EXY |a,σ2
W ,σ2

U

[
(yk − xk)2

]
(K.130)

= − 1

2σ4
W

(K.131)

G
(2)
1,2M+2 = EXY |a,σ2

W
,σ2

U

[
∂2 log f2,k

∂xk∂σ2
W

]

(K.132)

= − 1

σ4
W

EXY |a,σ2
W

,σ2
U
[yk − xk] = 0. (K.133)

The other elements of G(1) and G(2) are zero.

Proof of Lemma 5.3

Note that

p(y|θ) △

=

∫

x

p(x, y|θ)dx, (K.134)

and therefore,

∇θp(y|θ) = ∇θ

∫

x

p(x, y|θ)dx (K.135)

441

=

∫

x

∇θp(x, y|θ)dx (K.136)

=

∫

x

p(x, y|θ)∇θ log p(x, y|θ)dx (K.137)

= p(y|θ)
∫

x

p(x|θ, y)∇θ log p(x, y|θ)dx. (K.138)

In (K.136), we made use of the assumption of differentiability under the
integral sign.

As a consequence,

∇θ log p(y|θ) = ∇θp(y|θ)/p(y|θ) (K.139)

=

∫

x

p(x|θ, y)∇θ log p(x, y|θ)dx (K.140)

= EX|ΘY [∇θ log p(X, y|θ)] . (K.141)

Therefore,

EY |Θ

[
∇θ log p(Y |θ)∇T

θ log p(Y |θ)
]

= EY |Θ

[

EX|ΘY [∇θ log p(X,Y |θ)] EX|ΘY [∇θ log p(X,Y |θ)]T
]

.

(K.142)

�

Proof of Lemma 5.4

Note that

p(x, y)
△

=

∫

z

p(x, z, y)dz, (K.143)

and therefore,

∇xp(x, y) = ∇x

∫

z

p(x, z, y)dz (K.144)

=

∫

z

∇xp(x, z, y)dz (K.145)

=

∫

z

p(x, z, y)∇x log p(x, z, y)dz (K.146)

= p(x, y)

∫

z

p(z|x, y)∇x log p(x, z, y)dz. (K.147)

442 Appendix K. Mathematical Background of Chapter 5

In (K.145), we made use of the assumption of differentiability under the
integral sign.

As a consequence,

∇x log p(x, y) = ∇xp(x, y)/p(x, y) (K.148)

=

∫

z

p(z|x, y)∇x log p(x, z, y)dz (K.149)

= EZ|XY [∇x log p(x, Z, y)] . (K.150)

Therefore,

EXY

[
∇x log p(X,Y)∇T

x log p(X,Y)
]

= EXY

[

EZ|XY [∇x log p(X,Y, Z)] EZ|XY [∇x log p(X,Y, Z)]
T
]

.

(K.151)

�

CRB for estimation in AR model: CRB for Θ (cf. Example 5.10)

The components of (the vectors) EX|ΘY [∇θlog f1,k] and EX|ΘY [∇θlog f2,k]

(with Θ
△

= (a1, . . . , aM , σ2
U , σ

2
W), cf. (5.419)) can be written as :

EX|aσ2
W

σ2
U

Y

[
∇ai

log f1(Xk, . . . , Xk−M ,a, σ2
U)
]

=
1

σ2
U

EX|a σ2
W

σ2
U

Y

[

Xk−i

(
Xk −

M∑

ℓ=1

aℓXk−ℓ

)]

(K.152)

=
1

σ2
U

(
EX|a σ2

W
σ2

U
Y

[
Xk−iXk

]
−

M∑

ℓ=1

aℓEX|a σ2
W

σ2
U

Y

[
Xk−iXk−ℓ

])

(K.153)

EX|aσ2
W

σ2
U

Y

[

∇σ2
U
log f1(Xk, . . . , Xk−M ,a, σ2

U)
]

= − 1

2σ2
U

+
1

2σ4
U

EX|a σ2
W

σ2
U

Y

[(
Xk −

M∑

ℓ=1

aℓXk−ℓ

)2
]

(K.154)

= − 1

2σ2
U

+
1

2σ4
U

(

EX|a σ2
W

σ2
U

Y

[
X2

k

]
− 2

M∑

ℓ=1

aℓEX|a σ2
W

σ2
U

Y

[
XkXk−ℓ

]

443

+

M∑

ℓ=1

M∑

m=1

aℓamEX|a σ2
W

σ2
U

Y

[

Xk−ℓXk−m

])

(K.155)

EX|aσ2
W

σ2
U

Y

[

∇σ2
W

log f2(Xk, σ
2
W , yk)

]

= − 1

2σ2
W

+
1

2σ4
W

EX|a σ2
W

σ2
U

Y

[
(yk −Xk)2

]
(K.156)

= − 1

2σ2
W

+
1

2σ4
W

(

y2
k − 2ykEX|a σ2

W
σ2

U
Y [Xk] + EX|a σ2

W
σ2

U
Y

[
X2

k

])

.

(K.157)

The other components are zero, e.g.,

EX|a σ2
W

σ2
U

Y

[

∇σ2
U
log f2(Xk, σ

2
W , yk)

]

= 0. (K.158)

In Appendix J.6, we explain how the correlations E
[
XiXj

]
can be com-

puted.

CRB for estimation in AR model: hybrid CRB for Xk (cf. Exam-
ple 5.10)

We derive a hybrid CRB for the variable Xk (k = 1, . . . , N) from the

marginal p(xk, y|a, σ2
W , σ2

U). The key is Lemma 5.6 with X
△

= Xk,

Z = Xk̄
△

= (X1, . . . , Xk−1, Xk+1, . . . , XN), and Θ
△

= (a, σ2
W , σ2

U); the ex-
pressions (5.402)–(5.404) can be evaluated along the lines of (5.372). In
the following, we explain how the expectations EZ|XY Θ[∇θ log p(·)] and
EZ|XY Θ[∇x log p(·)] in (5.402)–(5.404) may be determined. The compo-
nents of EZ|XY Θ[∇θ log p(·)] are similar to (5.419) and (K.152)–(K.157):
one needs to replace the expectations over p(x|a, σ2

W , σ2
U , Y) by expecta-

tions over p(xk̄|xk,a, σ
2
W , σ2

U , Y). We have:

EXk̄|Xk,a,σ2
W ,σ2

U Y [∇θ log p(θ, xk, Xk−1 . . . , Xk−M , y)]

=
N∑

k=1

EXk̄|Xk,a,σ2
W ,σ2

U Y

[
∇θ log f1(xk, Xk−1 . . . , Xk−M ,a, σ2

U)
]

+

N∑

k=1

∇θ log f2(xk, yk, σ
2
W), (K.159)

444 Appendix K. Mathematical Background of Chapter 5

and,

EXk̄|Xk,a,σ2
W ,σ2

U Y

[
∇ai

log f1(xk, Xk+1 . . . , xk−M ,a, σ2
U)
]

=
1

σ2
U

EXk̄|Xk,a,σ2
W

,σ2
U

Y

[

Xk−i

(
xk −

M∑

ℓ=1

aℓXk−ℓ

)]

(K.160)

=
xk

σ2
U

EXk̄|Xk,a,σ2
W ,σ2

U Y

[
Xk−i

]

− 1

σ2
U

M∑

ℓ=1

aℓEXk̄|Xk,a,σ2
W

,σ2
U

Y

[

Xk−iXk−ℓ

]

(K.161)

EXk̄|Xk,a,σ2
W ,σ2

U Y

[

∇σ2
U
log f1(Xk, . . . , Xk−M ,a, σ2

U)
]

= − 1

2σ2
U

+
1

2σ4
U

(

x2
k − 2

M∑

ℓ=1

aℓxkEXk̄|Xk,a,σ2
W ,σ2

U Y

[
Xk−ℓ

]

+

M∑

ℓ=1

M∑

m=1

aℓamEXk̄|Xk,a,σ2
W

,σ2
U

Y

[

Xk−ℓXk−m

])

(K.162)

EXk̄|Xk,a,σ2
W ,σ2

U Y

[

∇σ2
W

log f2(Xk, σ
2
W , yk)

]

= − 1

2σ2
W

+
1

2σ4
W

(yk − xk)2. (K.163)

Along similar lines, one obtains EZ|XY Θ[∇x log p(x, Z, y|θ)]:
EXk̄|Xk,a,σ2

W ,σ2
U Y [∇xk

log p(θ, xk, Xk−1, . . . , Xk−M , y)]

=

M∑

m=0

EXk̄|Xk,a,σ2
W

,σ2
U

Y

[
∇xk

log f1(xk+m, Xk−1+m . . . , Xk−M+m,a, σ
2
U)
]

+ ∇xk
log f2(xk, yk, σ

2
W), (K.164)

where:
M∑

m=0

EXk̄|Xk,a,σ2
W ,σ2

U Y

[
∇xk

log f1(xk+m, Xk−1+m . . . , Xk−M+m,a, σ
2
U)
]

= − xk

σ2
U

+

M∑

ℓ=1

aℓ

σ2
U

EXk̄|Xk,a,σ2
W

,σ2
U

Y

[
Xk−ℓ

]

+
1

σ2
U

M∑

m=1

amEXk̄|Xk,a,σ2
W

,σ2
U

Y

[
Xk+m

]

445

−
M∑

m=1

M∑

ℓ=1

aℓam

σ2
U

EXk̄|Xk,a,σ2
W

,σ2
U

Y

[
Xk−ℓ+m

]
, (K.165)

and

∇xk
log f2(xk, yk, σ

2
W) =

yk − xk

σ2
W

. (K.166)

In Appendix J.6, we explain how the correlations E
[
XiXj

]
can be com-

puted.

Appendix L

Alternative Message
Update Rules for the
Soft LFSR

For the convenience of the reader, we explicitly state all computations
in the soft LFSR for an alternative (more standard) version of the sum-
product algorithm, for the max-product (min-sum) algorithm, as well as
for the analog LFSR of Gershenfeld and Grinstein.

L.1 Sum-Product LFSR for Likelihood Ra-
tio Representation

If the messages represent the ratio p̃(0)/p̃(1) of the pseudo-probabilities,
the sum-product update rules of the soft LFSR are as follows.

Initialization: µk = 1 for k = −m+ 1,−m+ 2, . . . , 0.

Recursion (for k = 1, 2, 3, . . .):

µA,k =
p(yk|xk = 0)

p(yk|xk = 1)
(L.1)

447

448 Appendix L. Alternative Message Update Rules for the Soft LFSR

for AWGN
= exp(2yk/σ

2) (L.2)

µB,k =
1 + µk−ℓ · µk−m

µk−ℓ + µk−m
(L.3)

µk = µA,k · µB,k (L.4)

At any given time k, an estimate of Xk is obtained as

X̂k
△

=

{
0, if µk ≥ 1
1, if µk < 1

(L.5)

and [X̂k] = (X̂k−m+1, . . . , X̂k−1, X̂k) is an estimate of the state [Xk].

L.2 Max-Product (Max-Sum) Soft LFSR

We state the max-product soft LFSR [103], [119] for the case where the
messages represent ln (p̃(0)/p̃(1)).

Initialization: µk = 0 for k = −m+ 1,−m+ 2, . . . , 0.

Recursion (for k = 1, 2, 3, . . .):

µA,k = ln
p(yk|xk = 0)

p(yk|xk = 1)
(L.6)

for AWGN
= 2yk/σ

2 (L.7)

|µB,k| = min {|µk−ℓ|, |µk−m|} (L.8)

sgn(µB,k) = sgn(µk−ℓ) · sgn(µk−m) (L.9)

µk = µA,k + µB,k (L.10)

where sgn(x) denotes the sign of x. Finally, we have

X̂k
△

=

{
0, if µk ≥ 0
1, if µk < 0

(L.11)

In fact, (L.7) may be replaced by

µA,k = yk, (L.12)

which amounts to multiplying all messages by σ2/2 and does not change
the estimate (L.11).

L.3. Analog LFSR by Gershenfeld and Grinstein 449

L.3 Analog LFSR by Gershenfeld and Grin-

stein

In [74], Gershenfeld and Grinstein obtained a discrete-time “analog”
LFSR by embedding the discrete dynamics of the LFSR into a conti-
nuous state space. They showed that such an analog LFSR entrains to a
LFSR sequence even if the latter is modulated by a weak data signal. An
extension of this approach to continuous time (using ideal continuous-
time delay cells) is also given in [74]. In the setup of Chapter 8, the
analog LFSR of [74] can be described as follows.

Initialization: µk = 0 for k = −m+ 1,−m+ 2, . . . , 0.

Recursion (for k = 1, 2, 3, . . .):

µA,k = yk (L.13)

µB,k = cos

[

π

(
1 − µk−ℓ

2
+

1 − µk−m

2

)]

(L.14)

µk = (1 − ǫ)µB,k + ǫ µA,k (L.15)

or, alternatively,

µk =

{
µB,k if ||µA,k| − 1| > δ
(1 − ǫ)µB,k + ǫ sgn(µA,k) otherwise

(L.16)

and

X̂k
△

=

{
0, if µk ≥ 0
1, if µk < 0

(L.17)

In this formulation (and differing from [74]), the “hard” logical values 0
and 1 are represented as +1 and −1, respectively. It should be noted
that [74] does not explicitly consider noise at all.

In our simulations, we used (L.16) with δ = ∞ and optimized ǫ (≈ 0.4
for large SNR).

Abbreviations

AR Auto-Regression
AWGN Additive White Gaussian Noise
BCRB Bayesian Cramér-Rao Bound
CLT Central Limit Theorem
CRB Cramér-Rao Bound
EM Expectation Maximisation
GEM Gradient EM
HCRB Hybrid Cramér-Rao Bound
HEM Hybrid EM
HMM Hidden Markov Model
ICM Iterative Conditional Modes
i.i.d. independent identically distributed
LFSR Linear Feedback Shift Register
MAP Maximum A Posteriori
MCMC Markov Chain Monte Carlo
ML Maximum-Likelihood
MMSE Minimum Mean Squared Error
MSE Mean Squared Error
pdf probability density function
pmf probability mass function
SA Stochastic Approximation
SNR Signal-to-Noise Ratio
SPA Summary-Propagation Algorithm
w.r.t. with respect to

451

List of Symbols

Elementary

X Random variable (or vector)
x Value of random variable (or vector) X
x̂ Estimate of variable (or parameter or vector) x
X Random vector
x Value of random vector X
x̂ Estimate of vector (or parameter) x
A Matrix

, Definition
∝ Proportional to
!
= Set to equality

Algebra

Z Ring of integers
R Field of real numbers
R+ Field of positive real numbers
R

+
0 Field of non-negative real numbers

C Field of complex numbers

453

454 List of Symbols

Linear Algebra

AT Transpose of matrix A
AH Hermitian transpose of matrix A
diag (· · ·) Diagonal matrix
Trace(·) Trace operator
I Identity matrix

Probability

N
(
. | µ, σ2

) Scalar Gaussian distribution with mean µ and vari-
ance σ2

N (. | m,V)
Multivariate Gaussian distribution with mean vec-
tor m and covariance matrix V

N−1(. | m,W)
Multivariate Gaussian distribution with mean vec-
tor m and weight matrix W

W Weight matrix of a Gaussian distribution
V Covariance matrix of a Gaussian distribution
m Mean vector of a Gaussian distribution
Ig (. | α, β) Inverted-gamma distribution with parameters α, β
E[X] Expectation of r.v. X
Var[X] Variance of r.v. X
M[X] Mode (i.e. maximum) of the distribution of r.v. X

Factor graph

µf→X(x) Message leaving node f along edge X
µX→f (x) Message arriving at node f along edge X
h(θ) Local EM message

List of Symbols 455

Miscellaneous

θ̂(k) estimate of θ in the k-th iteration

[x]i i-th element of vector x
[A]ij Element of matrix A in row i and column j

Bibliography

[1] Collection of papers on “Capacity Approaching Codes, Iterative Decod-
ing Algorithms, and Their Applications” in IEEE Communications Mag.,
vol. 41, August 2003.

[2] Special Issue on “Codes on Graphs and Iterative Decoding” of IEEE
Trans. Information Theory, vol. 47, Feb. 2001.

[3] A. Abel and W. Schwarz, “Chaos Communications—Principles, Schemes,
and System Analysis,” Proc. IEEE, vol. 90, pp. 691–710, May 2002.

[4] I. C. Abou-Faycal, M. D. Trott, and S. Shamai, “The Capacity of Discrete-
Time Memoryless Rayleigh-Fading Channels,” IEEE Trans. Information
Theory, vol. 47, no. 4, pp. 1290–1301, May 2001.

[5] S. M. Aji, G. B. Horn, and R. J. McEliece, “Iterative Decoding on Graphs
with a Single Cycle,” in Proc. IEEE Intern. Symp. on Inform. Theory,
MIT, Cambridge, MA, USA, Aug. 16–21 1998, p. 276.

[6] S. M. Aji and R. J. McEliece, “The Generalized Distributive Law,” IEEE
Trans. Information Theory, vol. 46, no. 2, pp. 325–343, 2000.

[7] S. I. Amari and H. Nagaoka, Methods of Information Geometry, AMS
Translations of Mathematical Monographs, vol. 191, American Mathema-
tical Society (AMS) and Oxford University Press, 2000.

[8] S. I. Amari and S. C. Douglas, “Why Natural Gradient?”, Proceedings of
the 1998 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’98), Seattle, WA, USA, 12–15 May 1998, vol. 2
pp. 1213–1216.

[9] S. Arimoto, “An Algorithm for Computing the Capacity of Arbitrary Dis-
crete Memoryless Channels,” IEEE Trans. Information Theory, vol. 18,
pp. 14–20, 1972.

[10] D. Arnold, Computing Information Rates of Finite-State Models with
Application to Magnetic Recording, ETH Dissertation no. 14760, ETH
Zurich, Switzerland, 2002.

457

458 Bibliography

[11] D. Arnold, A. Kavčić, H.-A. Loeliger, P. O. Vontobel, and W. Zeng,
“Simulation-Based Computation of Information Rates: Upper and Lower
Bounds,” Proc. 2003 IEEE Int. Symp. Information Theory, Yokohama,
Japan, June 29–July 4, 2002, p. 119.

[12] D. Arnold and H.-A. Loeliger, “On the Information Rate of Binary-Input
Channels with Memory,” Proc. 2001 IEEE Int. Conf. on Communications,
Helsinki, Finland, June 11–14, 2001, pp. 2692–2695.

[13] D. Arnold, H.-A. Loeliger, and P. O. Vontobel, “Computation of Informa-
tion Rates from Finite-State Source/Channel Models,” Proc. 40th Annual
Allerton Conference on Communication, Control, and Computing, (Aller-
ton House, Monticello, Illinois), October 2–4, 2002, pp. 457–466.

[14] A. B. Baggeroer and H. Schmidt, “Cramér-Rao Bounds for Matched Field
Tomography and Ocean Acoustic Tomography,” Proc. 1995 International
Conference on Acoustics, Speech, and Signal Processing, Detroit, Michi-
gan, USA, May 9–12, 1995, vol. 5, pp. 2763–2766.

[15] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Lin-
ear Codes for Minimizing Symbol Error Rate,” IEEE Trans. Information
Theory, vol. 20, pp. 284–287, March 1974.

[16] R. Bamler, “Doppler Frequency Estimation and the Cramér-Rao bound,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 29, May 1991,
pp. 385–390.

[17] A. Barron, “The Strong Ergodic Theorem for Densities: Generalized
Shannon-McMillan-Breiman Theorem,” Annals of Prob., vol. 13, no. 4,
pp. 1292–1303, 1995.

[18] S. C. Beaulieu, “On the Application of the Cramér-Rao and Detection
Theory Bounds to Mean Square Error of Symbol Timing Recovery,” IEEE
Transactions on Communications, vol. 40, Oct. 1992, pp. 1635–1643.

[19] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Bel-
mont, MA, 1995.

[20] C. Berzuini, N. G. Best, W. R. Gilks, and C. Larizza, ”Dynamic Condi-
tional Independence Models and Markov-Chain-Monte-Carlo Methods”,
Journal of the American Statistical Association, vol. 92, no. 440, pp. 1403–
1412, 1997.

[21] A. Bhattacharyya, “On Some Analogues of the Amount of Information
and Their Use in Statistical Estimation,” SANHKYA, vol. 8, pp. 315–
328, 1948.

[22] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University
Press, 1995.

[23] R. Blahut, “Computation of Channel Capacity and Rate-Distortion Func-
tions,” IEEE Trans. Information Theory, vol. 18, pp. 460–473, 1972.

Bibliography 459

[24] B. Bobrovsky, E. Mayer-Wolf, and M. Zakai, “Some Classes of Global
Cramér-Rao Bounds,” A. Statistics, vol. 15, pp. 1421–1438, 1987.

[25] B. Z. Bobrovsky and M. Zakai, “A Lower Bound on the Estimation Er-
ror for Certain Diffusion Processes,” IEEE Trans. Information Theory,
vol. 22, pp. 45–52, Jan. 1976.

[26] M. G. S. Bruno and A. Pavlov, “Improved Particle Filters for Ballistic Tar-
get Tracking,” Proc. 2004 IEEE International Conference on Acoustics,
Speech, and Signal Processing, Montreal, Quebec, Canada, May 17–21,
2004, vol. 2, pp. 705–708.

[27] A. Burr and L. Zhang, “Application of Turbo-Principle to Carrier Phase
Recovery in Turbo Encoded Bit-Interleaved Coded Modulation System,”
Proc. 3rd International Symposium on Turbo Codes and Related Topics,
Brest, France, 1–5 Sept., 2003, pp. 87–90.

[28] T. Cassaro and C. N. Georghiades, “Carrier and Phase Recovery for
Coded Systems Using a Preamble Sequence with Reliability Information
over AWGN Channels,” IEEE International Conference on Communica-
tions (ICC 2000), vol. 1, pp. 326–330, June 2000.

[29] M. Chakraborty and S. Prasad, “Computation of a Useful Cramér-Rao
Bound for Multichannel ARMA Parameter Estimation,” IEEE Transac-
tions on Signal Processing, vol. 42, no. 2, Feb. 1994, pp. 466–469.

[30] T. Chan, S. Hranilovic, and F. Kschischang, “Capacity-Achieving Proba-
bility Measure for Conditionally Gaussian Channels with Bounded In-
puts,” submitted to IEEE Trans. Information Theory, Dec. 2004.

[31] C. Chang and L. D. Davisson, “On Calculating the Capacity of an Infinite-
Input Finite (Infinite)-Output Channel,” IEEE Trans. Information The-
ory, vol. 34, Sept. 1998, pp. 1004–1010.

[32] K. M. Chugg and M. Zhu, “A New Approach to Rapid PN Code Acquisi-
tion Using Iterative Message Passing Techniques,” IEEE J. Select. Areas
Comm., vol. 23, pp. 884–897, May 2005.

[33] C. K. Chui and G. Chen, Kalman filtering with Real-Time Applications,
Springer Series in Information Sciences, 1990.

[34] A. Cichocki and S. I. Amari, Adaptive Blind Signal and Image Processing,
John Wiley and Sons, 2002.

[35] G. Colavolpe, G. Ferrari, and R. Raheli, “Noncoherent Iterative
(Turbo)Decoding,” IEEE Trans. Comm. vol. 48, no. 9, pp. 1488–1498,
Sept. 2000.

[36] G. Colavolpe and G. Caire, “Iterative Decoding in the Presence of Strong
Phase Noise,” IEEE Journal on Selected Areas in Communications, Diffe-
rential and Noncoherent Wireless Communications, to appear.

460 Bibliography

[37] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[38] K. M. Cuomo and A. V. Oppenheim, “Circuit Implementation of Syn-
chronized Chaos with Applications to Communications,” Physical Review
Letters, vol. 71, July 1993.

[39] J. Dauwels, “Numerical Computation of the Capacity of Continuous
Memoryless Channels,” Proc. of the 26th Symposium on Information The-
ory in the BENELUX, 2005, to appear.

[40] J. Dauwels, “Computing Bayesian Cramér-Rao bounds,” Proc. of the
IEEE Int. Symp. Information Theory, 2005, to appear.

[41] J. Dauwels, “A Numerical Method to Compute Cramér-Rao-Type Bounds
for Challenging Estimation Problems,” Proc. International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2006, to appear.

[42] J. Dauwels, M. Frey, T. Koch, H.-A. Loeliger, P. Merkli, and B. Vigoda,
Synchronization of a Pseudo-Noise Signal using an Analog Circuit, Tech-
nical Report No. 200401, Signal and Information Processing Laboratory,
ETH Zurich, Switzerland, January 2004.

[43] J. Dauwels, M. Frey, T. Koch, H.-A. Loeliger, P. Merkli, and B. Vigoda,
An Analog Circuit that Locks onto a Pseudo-Noise Signal, Technical Re-
port No. 200403, Signal and Information Processing Laboratory, ETH
Zurich, Switzerland, June 2004.

[44] J. Dauwels, S. Korl, and H.-A. Loeliger, “Expectation Maximization for
Phase Estimation,” Proc. of the Eighth International Symposium on Com-
munication Theory and Applications, 2005, to appear.

[45] J. Dauwels, S. Korl, and H.-A. Loeliger, “Expectation Maximization as
Message Passing”, Proc. 2005 IEEE Int. Symp. Information Theory, to
appear.

[46] J. Dauwels, S. Korl, and H.-A. Loeliger, “Steepest Descent on Factor
Graphs”, Proc. 2005 IEEE ITSOC Information Theory Workshop on Cod-
ing and Complexity, to appear.

[47] J. Dauwels and H.-A. Loeliger,“Joint Decoding and Phase Estimation:
an Exercise in Factor Graphs,” Proc. 2003 IEEE Int. Symp. Information
Theory, p. 231, Yokohama, Japan, June 29–July 4, 2003.

[48] J. Dauwels and H. -A. Loeliger, “Phase Estimation by Message Passing,”
IEEE International Conference on Communications, Paris, France, June
20–24, 2004, pp. 523–527.

[49] J. Dauwels and H.-A. Loeliger, “Computation of Information Rates by
Particle Methods,” Proc. 2004 IEEE International Symposium on Infor-
mation Theory, p. 178, Chicago, USA , June 27–July 2, 2004.

Bibliography 461

[50] J. Dauwels, H.-A. Loeliger, P. Merkli, and M. Ostojic, “On Structured-
Summary Propagation, LFSR Synchronization, and Low-Complexity
Trellis Decoding,” Proc. 41st Allerton Conf. on Communication, Control,
and Computing, (Allerton House, Monticello, Illinois), Oct. 1–3, 2003.

[51] J. Dauwels, H.-A. Loeliger, P. Merkli, and M. Ostojic, “On Markov struc-
tured Summary Propagation and LFSR Synchronization,” Proc. 42nd
Allerton Conf. on Communication, Control, and Computing, (Allerton
House, Monticello, Illinois), Sept. 29–Oct. 1, 2004.

[52] J. Dauwels, H. Wymeersch, H.-A. Loeliger, and M. Moeneclaey, “Phase
Estimation and Phase Ambiguity Resolution by Message Passing,”
Proc. 11th International Conference on Telecommunications and Network-
ing, pp. 150–155, Fortaleza, Brazil, August 1–6, 2004.

[53] A. Demir and J. Roychowdhury, “On the Validity of Orthogonally Decom-
posed Perturbations in Phase Noise Analysis,” Technical Report, Lucent
Technologies, July 1997.

[54] A. Demir, A. Mehrotra, and J. Roychowdhury, “Phase Noise in Oscilla-
tors: A Unifying Theory and Numerical Methods for Characterisation,”
IEEE Trans. Circuits Syst. I, vol. 47, pp. 655–674, May 2000.

[55] A. Demir, “Floquet Theory and Nonlinear Perturbation Analysis for Os-
cillators with Differential-Algebraic Equations,” Int. J. of Circ. Theor.
Appl., vol. 28, pp. 163–185, 2000.

[56] A. Demir, A. Mehrotra, and J. Roychowdhury, “Phase Noise in Oscilla-
tors: A Unifying Theory and Numerical Methods for Characterization”
IEEE Trans. Circuits Syst. I, vol. 47, no. 5, May 2000, pp. 655–674.

[57] A. Demir, “Phase Noise and Timing Jitter in Oscillators with Colored
Noise Sources,” IEEE Transactions on Circuits and Systems-I: Funda-
mental Theory and Applications, vol. 49, no. 12, December 2002.

[58] A. P. Dempster, N. M. Laird, and D. B. Rubin “Maximum Likelihood from
Incomplete Data via the EM Algorithm,”Journal of the Royal Statistical
Society, B 39, pp. 1–38, 1977.

[59] A. Doucet, J. F. G. de Freitas, and N. J. Gordon, eds., Sequential Monte
Carlo Methods in Practice. New York: Springer-Verlag, 2001.

[60] R. L. Dobrušin, “General Formulation of Shannon’s Main Theorem in
Information Theory,” in American Mathematical Society Translations,
ser. 2, 1963, vol. 33, pp. 323–438.

[61] A. W. Eckford and S. Pasupathy, “Iterative Multiuser Detection with
Graphical Modeling” IEEE International Conference on Personal Wire-
less Communications, Hyderabad, India, 2000.

[62] S. Egner, V. B. Balakirsky, L. Tolhuizen, S. Baggen, and H. Hollmann,
“On the Entropy Rate of a Hidden Markov Model,” Proc. 2004 IEEE

462 Bibliography

International Symposium on Information Theory, p. 12, Chicago, USA ,
June 27–July 2, 2004.

[63] R. Fisher, “The Logic of Inductive Inference,” Journal of the Royal Society
of Statistics, vol. 98, pp. 39–54, 1935.

[64] J. Foo and R. J. Weber, “Low Power 5GHz Quadrature Phase CMOS LC
Oscillator with Active Inductor,” Proc. IEEE International Symposium
on Communications and Information Technology, (ISCIT 2004), vol. 2,
pp. 1084–1089, 26–29 Oct. 2004.

[65] G. D. Forney Jr., “The Viterbi Algorithm,” Proc. IEEE, vol. 61, pp. 268–
278, March 1973.

[66] G. D. Forney Jr., “Codes on Graphs: Normal Realizations,” IEEE Trans.
Information Theory, vol. 47, no. 2, pp. 520–548, 2001.

[67] L. Frenkel and M. Feder, “Recursive Estimate-Maximize (EM) Algorithms
for Time-Varying Parameters with Applications to Multiple Target Track-
ing,” IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 3, 9–12 May, 1995, pp. 2068–2071.

[68] B. Frey, Graphical Models for Machine Learning and Digital Communica-
tion, MIT Adaptive Computation And Machine Learning Series, 1998.

[69] B. Frey and N. Jojic, A Comparison of Algorithms for Inference and
Learning in Probabilistic Graphical Models, Technical Report PSI-2003-
22, University of Toronto, 2003.

[70] B. Friedlander, “On the Computation of the Cramér-Rao Bound for
ARMA Parameter Estimation,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 32, no. 4, August 1984, pp. 721–727.

[71] B. Friedlander and B. Porat, “The Exact Cramér-Rao Bound for Gaussian
Autoregressive Processes,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 25, Jan. 1989, pp. 3–7.

[72] R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. In-
form. Theory, vol. 8, pp. 21–28, Jan. 1962.

[73] R. G. Gallager, Low-Density Parity-Check Codes, MIT Press, Cambridge,
MA, 1963.

[74] N. Gershenfeld and G. Grinstein, “Entrainment and Communication with
Dissipative Pseudorandom Dynamics,” Physical Review Letters, vol. 74,
pp. 5024–5027, June 1995.

[75] R. Gill and B. Levit, “Applications of the Van Trees Inequality: a Bayesian
Cramér-Rao Bound,” Bernoulli, vol. 1, 1995, pp. 59–79.

[76] M. Ghogho, A. Nandi, and A. Swami, “Cramér-Rao Bounds and Pa-
rameter Estimation for Random Amplitude Phase Modulated Signals”,
Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’99), vol. 3, March 15–19, 1999 pp. 1577–1580.

Bibliography 463

[77] E. Hafner, “The Effects of Noise in Oscillators”, Proc. of the IEEE, vol. 54,
no. 2, p. 179, 1966.

[78] A. Hajimiri and T. Lee, The Design of Low Noise Oscillators, Springer,
1999.

[79] A. Handzel, T. Grossman, E. Domany, S. Tarem, and E. Duchovni,
“A Neural Network Classifier in Experimental Particle Physics,”
Int. J. Neural Syst., vol. 4, pp. 95–108, 1993.

[80] A. J. Hartemink, “Reverse Engineering Gene Regulatory Networks,” Na-
ture Biotechnology, vol. 23, pp. 554–555, 2005.

[81] F. Herzel and B. Razavi, “A Study of Oscillator Jitter Due to Supply and
Substrate Noise,” IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing, vol. 46, no. 1, Jan. 1999, p. 56–62.

[82] C. Herzet, V. Ramon, and L. Vandendorpe, “Turbo Synchronization: A
Combined Sum-Product and Expectation-Maximization Algorithm Ap-
proach,” SPAWC’05 - IEEE Workshop on Signal Processing Advances in
Wireless Communications, June 5–8, 2005, New-York, USA.

[83] T. Heskes, “Stable Fixed Points of Loopy Belief Propagation are Minima
of the Bethe Free Energy,” Proc. Neural Information Processing Systems
(NIPS), vol. 15, pp. 343–350, 2003.

[84] D. J. Higham, “An Algorithmic Introduction to Numerical Simulation of
Stochastic Differential Equations,” SIAM Review, Society for Industrial
and Applied Mathematics, vol. 43, no. 3, pp. 525–546, 2001.

[85] H. Holzman, Some Remarks on the Central Limit Theorem for Stationary
Markov Processes, PhD. Thesis, University of Göttingen, 1994.

[86] A. Host-Madsen and P. Handel, “Effects of Sampling and Quantiza-
tion on Single-Tone Frequency Estimation,” IEEE Transactions on Signal
Processing, vol. 48, pp. 650–662, March 2000.

[87] Q. Huang, “Phase Noise to Carrier Ratio in LC Oscillators” IEEE Trans.
Circuits Syst. I, vol. 47, no. 7., Jul. 2000, pp. 965–980.

[88] A. Ihler, E. Sudderth, W. Freeman, and A. Willsky, “Efficient Multiscale
Sampling from Products of Gaussian Mixtures,” NIPS, Dec. 2003.

[89] T. Jaakkola and D. Haussler, “Exploiting Generative Models in Discrim-
inative Classifiers,” In Advances in Neural Information Processing Sys-
tems, vol. 11, 1998.

[90] T. Jaakkola and M. Jordan, “Improving the Mean Field Approximation
via the Use of Mixture Distributions,” Proceedings of the NATO ASI on
Learning in Graphical Models, Kluwer, 1997.

[91] T. Jebara, R. Kondor, and A. Howard, “Probability Product Kernels”
Journal of Machine Learning Research, JMLR, Special Topic on Learning
Theory, no. 5, pp. 819–844, 2004.

464 Bibliography

[92] J. Johnson, “Thermal Agitation of Electricity in Conductors”,
Phys. Rev. 32, 97 (1928).

[93] Learning in Graphical Models, Editor M. I. Jordan, MIT Press Cambridge,
MA, USA, 1999.

[94] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, An Introduction
to Variational Methods for Graphical Models, Machine Learning, vol. 37,
no. 2, 1999.

[95] B. Kaulakys, “Modeling 1/f Noise,” Physics Letters E vol. 58 no. 6 (1998)
7013–7019.

[96] B. Kaulakys, “Stochastic Nonlinear Differential Equation Generating 1/f
Noise,” Physics Letters, A 257 (2004) 37–42.

[97] Z. Khan, T. Balch, and F. Dellaert, “MCMC-Based Particle Filtering for
Tracking a Variable Number of Interacting Targets,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, Accepted for publication,
to appear in 2005.

[98] J. J. Kim, Y. Lee, and S. B. Park, “Low-Noise CMOS LC Oscillator with
Dual-Ring Structure,” Electronics Letters, vol. 40, no. 17, pp. 1031–1032,
Aug. 2004.

[99] T. Koch, Continuous-Time Synchronization, Semester Project, Signal and
Information Processing Laboratory, ETH Zurich, Switzerland, July 2003.

[100] S. Korl, A Factor Graph Approach to Signal Modelling, System Identifi-
cation, and Filtering, PhD. Thesis at ETH Zurich, Diss. ETH No 16170,
July 2005.

[101] S. Korl, H.-A. Loeliger, and A.-G. Lindgren, “AR Model Parameter Es-
timation: From Factor Graphs to Algorithms,” Proc. ICASSP’04, vol. 5,
Montreal, Canada, May 17–21, 2004, pp. 509–512.

[102] V. Krishnamurthy and J.B. Moore, “On-line Estimation of Hidden
Markov Model Parameters Based on the Kullback-Leibler Information
Measure,” IEEE Transactions on Signal Processing, vol. 41, Aug. 1993,
pp. 2557–2573.

[103] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor Graphs and
the Sum-Product Algorithm,” IEEE Trans. Information Theory, vol. 47,
pp. 498–519, Feb. 2001.

[104] K. Kurokawa, “Noise in Synchronized Oscillators”, IEEE Trans. on Mi-
crowave Theory and Techniques, MTT vol. 16, pp. 234–240, 1968.

[105] J. D. Lafferty and L. A. Wasserman, “Iterative Markov Chain Monte-
Carlo computation of Reference Priors and Minimax Risk,” Proceedings
of the 17th Conference in Uncertainty in Artificial Intelligence, August
02–05, 2001, pp. 293–300.

Bibliography 465

[106] S. Lang, Undergraduate Analysis, Springer Verlag, 1997.

[107] E. K. Larsson and E. G. Larsson, “The CRB for Parameter Estimation
in Irregularly Sampled Continuous-time ARMA Systems,” IEEE Signal
Processing Letters, vol. 11, Febr. 2004, pp. 197–200.

[108] W. Lee, K. Cheun, and S. Choi, “A Hardware-Efficient Phase/Gain
Tracking Loop for the Grand Alliance VSB HDTV Television,”
IEEE Trans. on Consumer Electronics, vol. 42, no. 3, August 1996.

[109] T. Lee and A. Hajimiri, “Oscillator Phase Noise: A Tutorial,” IEEE J.
Solid-State Circuits, vol. 35, no. 3., Mar. 2000, pp. 326–336.

[110] D. Lee, “Analysis of Jitter in Phase-Locked Loops,” IEEE Trans. Circuits
Syst. II, vol. 49, no. 11, Nov. 2002, pp. 704–711.

[111] J. J. Lee and G. H. Freeman, “Accuracy of the Estimator of Gaussian
Autoregressive Process,” Conference Record of the Thirty-Sixth Asilomar
Conference on Signals, Systems and Computers, vol. 2, 3–6 Nov. 2002,
pp. 1762–1766.

[112] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and
Applications. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1983.

[113] S.-C. Liu, J. Kramer, T. Delbrück, and R. Douglas, Analog VLSI: Cir-
cuits and Principles, Bradford Book, 2002.

[114] H. Liu and J. McNeill, “Jitter in Oscillators with 1/f Noise Sources,”
Proceedings of the 2004 International Symposium on Circuits and Systems
(ISCAS ’04), vol. 1, pp. 773–776, May 2004

[115] J. Liu and M. West, “Combined Parameter and State Estimation in
Simulation-Based Filtering,” In Sequential Monte Carlo Methods in Prac-
tice, A. Doucet, J. F. G. de Freitas, and N. J. Gordon, eds., New York,
Springer-Verlag, 2001.

[116] H.-A. Loeliger, “Analog Decoding and Beyond,” Proc. 2001 IEEE Infor-
mation Theory Workshop, Cairns, Australia, Sept. 2–7, 2001, pp. 126–127.

[117] H.-A. Loeliger, “Least Squares and Kalman Filtering on Forney Graphs,”
in Codes, Graphs, and Systems, Kluwer, R. E. Blahut and R. Koetter eds.,
2001.

[118] H.-A. Loeliger, “Some Remarks on Factor Graphs”, Proc. 3rd Interna-
tional Symposium on Turbo Codes and Related Topics, 1–5 Sept., 2003,
pp. 111–115.

[119] H.-A. Loeliger, “An Introduction to Factor Graphs,” IEEE Signal
Processing Magazine, Jan. 2004, pp. 28–41.

[120] H.-A. Loeliger, Signal and Information Processing, Lecture Notes, Win-
ter Semester 2004–2005, ETH Zurich.

466 Bibliography

[121] H.-A. Loeliger, F. Lustenberger, M. Helfenstein, and F. Tarköy, “Proba-
bility Propagation and Decoding in Analog VLSI,” IEEE Trans. Informa-
tion Theory, vol. 47, pp. 837–843, Feb. 2001.

[122] V. Lottici and M. Luise, “Carrier Phase Recovery for Turbo-Coded Lin-
ear Modulations”, International Conference on Communications 2002,
New York, NJ, 28 April–2 May, 2002, vol. 3, pp. 1541–1545.

[123] F. Lustenberger, On the Design of Analog VLSI Iterative Decoders. PhD
Thesis at ETH Zurich, Diss. ETH No 13879, Nov. 2000.

[124] D. J. C. MacKay, S. T. Wilson, and M. C. Davey, “Comparison of Con-
structions of Irregular Gallager Codes,” IEEE Trans. on Comm., vol.
COMM–47, no. 10, pp. 1449–1454, 1999.

[125] G. Matz and P. Duhamel, “Information-Geometric Formulation and In-
terpretation of Accelerated Blahut-Arimoto-type Algorithms,” Proc. 2004
IEEE Information Theory Workshop, San Antonio, TX, USA, Oct. 24–29,
2004.

[126] M. Maxwell and M. Woodroofe, “Central Limit Theorems for Additive
Functionals of Markov Chains”, The Annals of Probability, vol. 28, no. 2,
pp. 713–724, 2000.

[127] R. J. McEliece and M. Yildirim, “Belief Propagation of Partially Ordered
Sets,” in Mathematical Systems Theory in Biology, Communication, Com-
putation, and Finance, IMA Volumes in Math. & Appl., D. Gilliam and
J. Rosenthal, Eds. Springer Verlag, 2003.

[128] G. McLachlan and T. Krishnan, The EM Algorithm and Extensions,
Wiley, 1997.

[129] J. A. McNeill, Jitter in Ring Oscillators, PhD. Thesis, Boston University,
1994.

[130] C. Mead, Analog VLSI and Neural Systems, Addison-Wesley VLSI Sys-
tems Series, 1989.

[131] A. Mehrotra, Simulation and Modelling Techniques for Noise in Radio
Frequency Integrated Circuits, PhD. Thesis, University of California at
Berkeley, 1999.

[132] A. Mehrotra, “Noise Analysis of Phase-Locked Loops,” IEEE Transac-
tions on Circuits and Systems I: Fundamental Theory and Applications,
vol. 49, no. 9, pp. 1309–1316, Sept. 2002.

[133] D. Megnet, H. Mathis, P. Flammant, and A. Thiel, “C/A-Code Syn-
chronization Using Analog Feedback Shift Registers (AFSR),” Proc. ION
GNSS 2004, Long Beach, CA, September 21–24, 2004, pp. 32–42.

[134] P. Merkli, Message-Passing Algorithms and Analog Electronic Circuits.
PhD. Thesis at ETH Zurich, Diss. ETH No. 15942, April 2005.

Bibliography 467

[135] M. Meyr and S. A. Fechtel, Synchronization in Digital Communications,
Volume 1: Phase-, Frequency-Locked-Loops, and Amplitude Control, New
York, John Wiley & Sons, 1990.

[136] M. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communication
Receivers: Synchronization, Channel Estimation and Signal Processing,
New York, John Wiley & Sons, 1998, pp. 246–249.

[137] B. Mielczarek and A. Svensson, “Phase Offset Estimation Using En-
hanced Turbo Decoders,” IEEE International Conference on Communi-
cations, ICC 2002, vol. 3, 28 April–2 May, 2002, pp. 1536–1540.

[138] M. Moeneclaey, “On the True and the Modified Cramér-Rao Bounds
for the Estimation of a Scalar Parameter in the Presence of Nuisance
Parameters”, IEEE Transactions on Communications, vol. 46, Nov. 1998,
pp. 1536–1544.

[139] A. F. Molisch, Wideband Wireless Digital Communications. Prentice
Hall, 2001.

[140] S. Moser, Duality-Based Bounds on Channel Capacity, ETH Dissertation
no. 15769, ETH Zurich, Switzerland, Jan. 2005.

[141] C. R. Nassar and M. R. Soleymani, “Joint Sequence Detection and Phase
Estimation Using the EM algorithm,” Conference Proceedings Canadian
Conference onElectrical and Computer Engineering, vol. 1, Sept. 1994,
pp. 296–299.

[142] B. Ninness, “The Asymptotic CRLB for the Spectrum of ARMA
Processes,” IEEE Transactions on Signal Processing, vol. 51, no. 6, June
2003, pp. 1520–1531.

[143] M. J. Nissilä, S. Pasupathy, and A. Mämmelä, “An EM Approach to Car-
rier Phase Recovery in AWGN Channel,” IEEE International Conference
on Communications (ICC 2001), no. 1, June 2001 pp. 2199–2203.

[144] N. Noels, C. Herzet, A. Dejonghe, V. Lottici, and L. Vandendorpe,
“Turbo Synchronization : an EM Algorithm Interpretation,” Interna-
tional Conference on Communications 2003, Anchorage, Alaska, May 11–
15, 2003, pp. 2933–2937.

[145] N. Noels, H. Steendam, and M. Moeneclaey, “The Cramér-Rao Bound for
Phase Estimation from Coded Linearly Modulated Signal,” IEEE Com-
munication Letters, vol. 7, No. 5, pp. 207–209, May 2003.

[146] N. Noels, H. Wymeersch, H. Steendam, and M. Moeneclaey, “The True
Cramér-Rao Bound for Timing Recovery from a Bandlimited Linearly
Modulated Waveform with Unknown Carrier Phase and Frequency,” IEEE
Transactions on Communications, vol. 52, pp. 473–483, March 2004.

[147] N. Noels, H. Steendam, and M. Moeneclaey, “The True Cramér-Rao
Bound for Carrier Frequency Estimation from a PSK Signal,” IEEE
Transactions on Communications, vol. 52, pp. 834–844, May 2004.

468 Bibliography

[148] N. Noels, H. Steendam, and M. Moeneclaey, “On the Cramér-Rao Lower
Bound and the Performance of Synchronizers for (Turbo) Encoded Sys-
tems,” Proc. IEEE Workshop on Signal Processing Advances in Wireless
Communications, Lisboa, Portugal, July 11–14, 2004.

[149] N. Noels, H. Steendam, and M. Moeneclaey, “Carrier and Clock Re-
covery in (Turbo) Coded Systems: Cramér-Rao Bound and Synchronizer
Performance,” EURASIP Journal on Applied Signal Processing, JASP,
Special issue on Turbo Processing, vol. 2005, pp. 972–980, May 2005.

[150] N. Noels, H. Steendam, and M. Moeneclaey, “Carrier Phase and Fre-
quency Estimation for Pilot-Assisted Transmission: Bounds and Algo-
rithms,” accepted for publication in IEEE Transactions on Signal Process-
ing, 2005.

[151] N. Noels, H. Steendam, M. Moeneclaey, and H. Bruneel, “A Maximum-
Likelihood Based Feedback Carrier Synchronizer for Turbo-Coded Sys-
tems,” Proc. 61st IEEE Vehicular Technology Conference, VTC spring
’05, Paper A4-3, May 29–June 1, 2005.

[152] R. Nuriyev and A. Anastasopoulos, “Analysis of Joint Iterative Decod-
ing and Phase Estimation for the Non-Coherent AWGN Channel, Us-
ing Density Evolution,” Proc. 2002 IEEE Information Theory Workshop,
Lausanne, Switzerland, June 30–July 5, 2002, p. 168.

[153] R. Nuriyev and A. Anastasopoulos, “Pilot-Symbol-Assisted Coded
Transmission Over the Block-Noncoherent AWGN Channel,” IEEE
Trans. Comm. vol. 51, no. 6, pp. 953–963, June 2003.

[154] H. Nyquist, “Thermal Agitation of Electric Charge in Conductors”,
Phys. Rev. 32, 110 (1928).

[155] M. Okumura and H. Tanimoto, “A Time-Domain Method for Numerical
Noise Analysis of Oscillators”, Proc. of the ASP-DAC, Jan. 1997.

[156] H. Park, S. I. Amari, and K. Fukumizu, “Adaptive Natural Gradient
Gradient Learning Algorithms for Various Stochastic Models,” Neural
Networks, vol. 13, 2000, pp. 755–764.

[157] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann, 1988.

[158] L. M. Pecora and T. L. Carroll, “Synchronization in Chaotic Systems,”
Physical Review Letters, vol. 64, pp. 821–824, Feb. 1990.

[159] H. Permuter and J. M. Francos, “Estimating the Orientation of Planar
Surfaces: Algorithms and Bounds,” IEEE Trans. Information Theory,
vol. 46, Aug. 2000, pp. 1908–1920.

[160] H. D. Pfister, J. B. Soriaga, and P. H. Siegel, “On the Achievable Infor-
mation Rates of Finite-State ISI Channels,” Proc. 2001 IEEE Globecom,
San Antonio, TX, pp. 2992–2996, Nov. 25–29, 2001.

Bibliography 469

[161] D. Piccinin, P. Boffi, A. Cabas, and M. Martinelli,“Free-Space System for
Metropolitan Optical Network Transparent Link,” Proc. SPIE, vol. 4635,
pp. 50–56, 2002.

[162] B. Porat and B. Friedlander, “On the Estimation of Variance for Au-
toregressive and Moving Average Processes,” IEEE Trans. Information
Theory, vol. 32, Jan. 1986, pp. 120–125.

[163] B. Porat and B. Friedlander, “Computation of the Exact Information
Matrix of Gaussian Time Series with Stationary Random Components,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34,
no. 1, Febr. 1986, pp. 118–130.

[164] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C++: The Art of Scientific Computing, Cambridge
University Press, 2002.

[165] J. G. Proakis, Digital Communications, 3rd ed. McGraw–Hill, 1995.

[166] M. H. Protter and C. B. Morrey, Jr., Intermediate Calculus, Springer
Verlag New York, 1985.

[167] B. L. S. Rao, “Cramér-Rao-Type Integral Inequalities for General Loss
Functions”, Test, Sociedad de Estad́ıstica e Investigación Operativa,
vol. 10, no. 1, pp. 105–120, 2001.

[168] I. Rapoport and Y. Oshman, “Recursive Weiss-Weinstein Lower Bounds
for Discrete-Time Nonlinear Filtering,” 43d IEEE Conference on Decision
and Control, Atlantis, Paradise Island, Bahamas, pp. 2662–2667, Dec. 14–
17, 2004.

[169] S. Reece and D. Nicholson, “Tighter Alternatives to the Cramér-Rao
Lower Bound for Discrete-Time Filtering,” Eighth IEEE International
Conference on Information Fusion, Philadelphia, Penn., 2005.

[170] I. Reuven and H. Messer, “A Barankin-type lower bound on the esti-
mation error of a hybrid parameter vector,” IEEE Trans. Information
Theory, vol. 43, no. 3, pp. 1084–1093, 1997.

[171] C. Robert and G. Casella, Monte Carlo Statistical Methods, Springer
Texts in Statistics, 2nd ed., 2004.

[172] Y. Rockah and P. Schultheiss, “Array Shape Calibration Using Sources
in Unknown Locations. I. Far-field sources,” IEEE Trans. Acoust., Speech,
and Signal Proc., vol. 35, no. 3, pp. 286–299, 1987.

[173] P. Rusmevichientong and B. Van Roy, “An Analysis of Belief Propa-
gation on the Turbo Decoding Graph with Gaussian Densities,” IEEE
Trans. Information Theory, vol. IT–47, no. 2, pp. 745–765, 2001.

[174] W. Sandham and M. Leggett (editors), Geophysical Applications of Ar-
tificial Neural Networks and Fuzzy Logic (Modern Approaches in Geo-
physics), Kluwer Academic Publishers, 2003.

470 Bibliography

[175] R. Sarpeshkar, T. Delbrück, and C.A. Mead. “White Noise in MOS Tran-
sistors and Resistors,” IEEE Circuits and Devices, Nov. 1993, pp. 23–29.

[176] M. J. Schervish, Theory of Statistics, Springer Verlag, 1995.

[177] B. Schölkopf and A. J. Smola, Learning with Kernels, MIT Press, 2002.

[178] C. E. Shannon, “A Mathematical Theory of Communication,” Bell
Syst. Tech. J., vol. 27, pp. 379–423, 623–656, July/Oct. 1948.

[179] V. Sharma and S. K. Singh, “Entropy and Channel Capacity in the
Regenerative Setup with Applications to Markov Channels”, Proc. 2001
IEEE Int. Symp. Information Theory, Washington, DC, USA, June 24–
29, 2001, p. 283.

[180] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis,
Cambridge University Press, 2004.

[181] O. Shental, N. Shental, and S. Shamai (Shitz), “On the Achievable Infor-
mation Rates of Finite-State Input Two-Dimensional Channels with Mem-
ory,” Proc. 2005 IEEE International Symposium on Information Theory,
to appear.

[182] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread
Spectrum Communications, vol. 3, Rockville, Maryland, USA, Computer
Science Press, 1985.

[183] H. Steendam and M. Moeneclaey, “Low-SNR Limit of the Cramér-Rao
Bound for Estimating the Time Delay of a PSK, QAM or PAM Wave-
form,” IEEE Communications Letters, vol. 5, pp. 31–33, Jan. 2001.

[184] H. Steendam and M. Moeneclaey,“Low-SNR Limit of the Cramér-Rao
Bound for Estimating the Carrier Phase and Frequency of a PAM, PSK
or QAM Waveform,” IEEE Communications Letters, vol. 5, pp. 218–220,
May 2001.

[185] H. Steendam, N. Noels, and M. Moeneclaey, “Iterative Carrier Phase
Synchronization for Low-Density Parity-Check Coded Systems”, Interna-
tional Conference on Communications 2003, Anchorage, Alaska, May 11–
15, 2003, pp. 3120–3124.

[186] P. Stoica and R. Moses, “On Biased Estimators and the Unbiased
Cramér-Rao Lower Bound,” IEEE Trans. Signal Proc., vol. 21, pp. 349–
350, Oct. 1990.

[187] P. Stoica and Y. Selen, “Cyclic minimizers, majorization techniques,
and the expectation-maximization algorithm: a refresher,” IEEE Signal
Processing Mag., pp. 112–114, Jan. 2004.

[188] M. Strevens, Bigger than Chaos: Understanding Complexity through
Probability, Harvard University Press, 2003.

Bibliography 471

[189] I. Sutskover, S. Shamai, and J. Ziv, “A Novel Approach to Iterative Joint
Decoding and Phase Estimation,” Proc. 3rd International Symposium on
Turbo Codes and Related Topics, Brest, France, 1–5 Sept., 2003, pp. 83–
86.

[190] R. M. Tanner, “A Recursive Approach to Low-Complexity Codes,” IEEE
Trans. on Inform. Theory, vol. IT–27, pp. 533–547, Sept. 1981.

[191] R. M. Taylor Jr., B. P. Flanagan, and J. A. Uber, “Computing the Recur-
sive Posterior Cramér-Rao Bound for a Non-Linear Non-Stationary Sys-
tem”, Proc. of 2003 IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 6, April 6–10, 2003, pp. 673–676.

[192] P. Tichavský, C. H. Muravchik, and A. Nehorai, “Posterior Cramér-Rao
Bounds for Discrete-Time Non-Linear Filtering,” IEEE Transactions on
Signal Processing, vol. 46, May 1998, pp. 1386–1396.

[193] M. Tipping, “Bayesian Inference: An Introduction to Principles and
Practice in Machine Learning,” In O. Bousquet, U. von Luxburg, and
G. Rätsch (Eds.), Advanced Lectures on Machine Learning, pp. 41–62.
Springer, 2004.

[194] D. M. Titterington, “Recursive Parameter Estimation Using Incomplete
Data,” R. Roy. Stat. Soc., vol. 46(B), pp. 256–267, 1984.

[195] P. D. Tuan, “Cramér-Rao Bounds for AR Parameter and Reflection Coef-
ficients Estimators,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 37, no. 5, May 1989, pp. 769–772.

[196] M. Unser, A. Aldroubi, and M. Eden, “B-spline Signal Processing. I.
Theory”, IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 821–
833, Feb. 1993.

[197] G. Ungerboeck, “New Application for the Viterbi Algorithm: Car-
rier Phase Tracking in Synchronous Data Transmission Systems,”
Proc. Nat. Telecomm. Conf., pp. 734–738, 1974.

[198] P. Vanassche, G. Gielen, and W. Sansen, “On the Difference Between
Two Widely Publicized Methods for Analyzing Oscillator Phase Behav-
ior,” Proceedings of the 2002 IEEE/ACM international Conference on
Computer-aided Design, San Jose, California, pp. 229–233, 2002.

[199] H. L. Van Trees, Detection, Estimation, and Modulation Theory: Part I,
Wiley, New York, 1968.

[200] B. Vigoda, Analog Logic: Continuous-Time Analog Circuits for Statisti-
cal Signal Processing. PhD. Dissertation. Cambridge, MA: Massachusetts
Institute of Technology. September, 2003.

[201] B. Vigoda, J. Dauwels, M. Frey, N. Gershenfeld, T. Koch, H.-A. Loeliger,
P. Merkli, Synchronization of Pseudo-Random Signals by Forward-Only
Message Passing with Application to Electronic Circuits, IEEE Trans.
Information Theory, to appear.

472 Bibliography

[202] A. Viterbi, Principles of Coherent Communication, McGraw-Hill, 1966.

[203] P.O. Vontobel, Algebraic Coding for Iterative Decoding, PhD. Thesis at
ETH Zurich, Diss. ETH No. 14961, ETH Zurich, 2003.

[204] P. O. Vontobel, A. Kavčić, D. Arnold, and H.-A. Loeliger, “Capacity
of Finite-State Machine Channels,” submitted to IEEE Trans. Inform.
Theory, Nov. 2004.

[205] M. J. Wainwright, T. Jaakkola, and A. S. Willsky, “A New Class of
Upper Bounds on the Log Partition Function,” Accepted for publication
in IEEE Trans. Information Theory, March 2005.

[206] X. Wautelet, C. Herzet, and L. Vandendorpe, “Cramér-Rao Bounds
for Channel Estimation with Symbol a Priori Information,” SPAWC’05,
IEEE Workshop on Signal Processing Advances in Wireless Communica-
tions, June 5–8, 2005, New-York, USA.

[207] E. Weinstein, M. Feder, and A. V. Oppenheim, “Sequential Algorithms
for Parameter Estimation Based on the Kullback-Leibler Information
Measure,” IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, vol. 38, Sept. 1990, pp. 1652–1654.

[208] E. Weinstein and A. J. Weiss, “A General Class of Lower Bounds in Pa-
rameter Estimation,” IEEE Trans. Information Theory, vol. 34, pp. 338–
342, 1988.

[209] Y. Weiss and W. T. Freeman, “On the Optimality of the Max-Product
Belief Propagation Algorithm in Arbitrary Graphs,” IEEE Trans. on In-
form. Theory, vol. IT–47, no. 2, pp. 736–744, 2001.

[210] N. Wiberg, Codes and Decoding on General Graphs. Linköping Studies in
Science and Technology, Ph.D. Thesis No. 440, Univ. Linköping, Sweden,
1996.

[211] N. Wiberg, H.-A. Loeliger, and R. Kötter, “Codes and Iterative Decod-
ing on General Graphs,” Europ. Trans. Telecomm., vol. 6, pp. 513–525,
Sept/Oct. 1995.

[212] W. Wiegerinck and T. Heskes, “Fractional Belief Propagation,”
Proc. Neural Information Processing Systems (NIPS), vol. 15, pp. 438–
445, 2002.

[213] G. Winkler, Image Analysis, Random Fields and Markov Chain Monte
Carlo Methods, Springer, 2003.

[214] A. P. Worthen and W. E. Stark, “Unified Design of Iterative Receivers
Using Factor Graphs,” IEEE Trans. Information Theory, vol. 47, Feb.
2001, pp. 843–849.

[215] M. Wu, J. Yang, and C. Lee, “A Constant Power Consumption CMOS
LC Oscillator Using Improved High-Q Active Inductor with Wide Tuning-
Range,” The 47th Midwest Symposium on Circuits and Systems (MWS-
CAS ’04), vol. 3, pp. 347–350, 25–28 July 2004.

Bibliography 473

[216] H. Wymeersch, “Software Radio Algorithms for Coded Transmission”,
PhD Thesis, Ghent University, September 2005.

[217] E. P. Xing, M. I. Jordan, and S. Russell, “A Generalized Mean Field Al-
gorithm for Variational Inference in Exponential Families,” Uncertainty in
Artificial Intelligence (UAI2003), (eds. Meek and Kjaelff) Morgan Kauf-
mann Publishers, pp. 583–591, 2003.

[218] Y. Yamamoto, Fundamentals of Noise Processes, Lecture
Notes, Autumn 2004, Stanford University. Available from
http://www.stanford.edu/~sanaka/flink/EEAP248/EEAP248.html.

[219] L.-L. Yang and L. Hanzo, “Iterative Soft Sequential Estimation Assisted
Acquisition of m-Sequences,” Electronics Letters, vol. 38, pp. 1550–1551,
Nov. 2002.

[220] L.-L. Yang and L. Hanzo, “Acquisition of m-Sequences Using Recursive
Soft Sequential Estimation,” IEEE Trans. Comm., vol. 52, pp. 199–204,
Feb. 2004.

[221] J. C. Ye, Y. Bresler, and P. Moulin, “Cramér-Rao Bounds for Paramet-
ric Shape Estimation,” Proc. 2002 International Conference on Image
Processing, Rochester, NY, USA, Sept. 22–25, 2002, vol. 2, pp. 473–476.

[222] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Understanding Belief Pro-
pagation and Its Generalization”, Exploring Artificial Intelligence in the
New Millennium, ISBN 1558608117, Chap. 8, pp. 239–236, January 2003.

[223] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing Free-Energy
Approximations and Generalized Belief Propagation Algorithms,” IEEE
Trans. Information Theory, vol. 51, no. 7, pp. 2282–2312, July 2005.

[224] O. W. Yeung and K. M. Chugg, “An Iterative Algorithm and Low Com-
plexity Hardware Architecture for Fast Acquisition of Long PN Codes in
UWB systems,” to appear.

[225] A. Yuille, “CCCP Algorithms to Minimize the Bethe and Kikuchi Free
Energies: Convergent Alternatives to Belief Propagation,” Neural Com-
putation, vol. 14, pp 1691–1722, 2002.

[226] H. Zamiri-Jafarian and S. Pasupathy, “EM-Based Recursive Estimation
of Channel Parameters,” IEEE Transactions on Communications, vol. 47,
Sept. 1999, pp. 1297–1302.

[227] J. Zhang, R. A. Kennedy, and T. D. Abhayapala, “Cramér-Rao Lower
Bounds for the Time Delay Estimation of UWB Signals”, Proc. 2004 IEEE
International Conference on Communications, Paris, France, June 20–24,
2004, vol. 6, pp. 3424–3428.

[228] A. M. Zoubir and A. Taleb, “The Cramér-Rao Bound for the Estima-
tion of Noisy Phase Signals,” Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2001 (ICASSP ’01), vol. 5, May
2001, pp. 3101–3104.

474 Bibliography

Index

1/f noise, 25, 26

A

Abel, A., 312

Abou-Faycal, I. C., 296

acquisition, 37

acquisition time, 312

adaptive quantization, 59, 69, 97, 100,
177

addition node, 382

AECM, 163, 174

AEP, 352, 353

Aji, S. M., 54

Aldroubi, A., 72

alternating maximization, 109, 297,
301, 304, 309

Amari, S.-I., 192, 193, 283, 284

analog electrical circuit, 311, 324, 328

analog waveform, 11, 13

Anastasopoulos, A., 63

AR model, 26, 40, 159, 190, 192, 255,
261, 270, 271, 282, 284

CRB, 255, 270

Arimoto, S., 296, 297, 301, 302

ARMA model, 40, 41, 190, 192, 255,
261, 270, 271, 282, 284

CRB, 255, 270

Arnold, D., 288, 290, 292–294, 296,
309, 332

artificial evolution, 89, 90, 94

ASE, 362, 364, 365, 376, 379

asymptotic CRB, 195

asymptotic equipartition property,
352, 353

attractor, 28
auxiliary-channel bound, 294
average cost, 338, 355
average expense, 298, 338

B

back-propagation algorithm, 47, 48,
377, 379, 382, 383

message passing, 379
Bahl, L. R., 44, 135, 289, 315, 369
Balch, T., 92
Barron, A., 353, 354
baseband receiver, 15, 16, 18, 21
Bayes’ rule, 338
Bayesian

CRB, 199
detection, 342, 343
estimation, 338, 339
learning, 342
network, 44

BCJR algorithm, 135, 289, 315, 369
BCRB, 190, 191, 197, 199, 203–205,

215, 218, 222, 226–230, 234,
236, 239, 241, 243, 248, 252,
254, 261, 263, 265, 266, 268,
269, 271, 274, 279–281, 283

alternative unconditional, 200–
202, 265

from joint density, 218
from marginal, 265

conditional, 265
from joint density, 217

475

476 INDEX

from marginal, 265
dynamical system

linear, 237
non-linear, 234

extended, 254
marginalization, 204
standard unconditional, 199,

201, 205, 215, 221, 222,
226–229, 234, 236, 238, 239,
241, 248, 249, 252, 265, 266,
274, 283

extended, 254
from joint density, 210
from marginal, 263

state-space model, 226, 239, 248,
268

unconditional, 201, 202, 265
unmodulated phase, 227

belief propagation, 44
Bertsekas, D., 103, 189, 296
Berzuini, C., 92
Bessel function, 38
Best, N. G., 92
Bethe free energy, 54
Bethe method, 44
Bhattacharyya, A., 283
BI-AWGNC, 12
biasedness, 337, 338
Bishop, C., 44, 47, 109
bit, 348
bit mapper node, 64, 66
bit node, 70
Blahut, R., 296–299
Blahut-Arimoto algorithm, 296–300,

309, 355
accelerated, 298
natural-gradient based, 298

Blahut-Arimoto-type algorithm, 296,
299, 300, 309

block diagram, 45
Bobrovsky, B., 199, 206, 431
Boffi, DP, 307, 308
boxing, 145
Bruno, M. G. S, 191

BSC, 12
Burr, A., 63

C

C-AWGNC, 12
Cabas, A, 307, 308
Caire, G., 63
canonical distribution, 63, 107
capacity, 295–298, 300, 303–309, 347,

348, 352, 354–356
achieving input distribution, 300,

303, 305, 306, 309, 354, 356
uniqueness, 354

AWGNC, 355
channels with memory, 356
continuous channel, 356
discrete channel, 354, 355
properties, 355

carrier
local, 18, 19
transmitted, 19

carrier-phase estimation, 60, 62, 63
Carroll, T. L., 312
Carson’s theorem, 24
Casella, C., 75, 80, 85, 90, 92–94, 190
Cassaro, T., 63
central limit theorem, 32, 34
chain rule, 349
Chan, T., 300, 306
Chang, C., 296
channel, 9, 12, 13, 60, 62, 64, 127, 175

AWGN, 12
binary-input, 12
continuous-input, 12, 295,

304–309
binary symmetric, 12
coding, 10
constrained, 298, 299
continuous, 356
decoder, 12, 14, 343
decoding, 12, 14, 343
delay, 13
discrete, 354, 355

constrained, 355

INDEX 477

unconstrained, 354
encoder, 10
estimation, 60, 62
Gaussian, 295, 304–309
information stable, 356
law, 12
memoryless, 11, 295, 296, 298,

299, 309, 318, 320, 348, 354,
355

model, 9, 12
noisy, 9
physical, 11, 347
with memory, 356

Chen, G., 426
Cheun, K., 40
Choi, S., 40
Chugg, K. M., 312, 317, 320
Chui, C. K., 426
Cichocki, A., 284
classification, 361–363, 365–367, 376,

377
clock, 9, 16, 18, 20–22, 27, 32, 34, 36,

39, 41, 42
free-running, 16, 22

cloning variables, 47
CLT, 32, 34
clustering, 55, 56, 67, 83, 361, 362, 367

algorithm, 98
edge, 56
Gibbs sampling, 83
ICM, 110
Metropolis-Hastings algorithm,

92
node, 56

Cocke, J., 44, 135, 289, 315, 369
code

binary, 358
block, 357
codeword, 357
convolutional, 344
generator matrix, 358
LDPC, 359
length, 357
linear, 357

low-density parity-check, 359
membership indicator function,

357
parity-check matrix, 358
rate, 358
size, 357
symbol

channel, 358
information, 358

systematic, 358
trellis, 344

coding
channel, 10
line, 11
source, 10
theory, 357

Colavolpe, G., 63
communications

channel, 44
free-space optical, 307
mobile, 13
radio, 13
rate, 12
reliable, 347
spread spectrum, 312
systems

baseband, 13
passband, 13, 16

wireless, 13
conditional BCRB, 265
conditional expectation, 339
configuration, 46

space, 47
valid, 47

consistency, 336, 337
constant-phase model, 20, 61, 63–66,

73, 95, 114–116, 168, 170
control theory, 44
convergence, 54
convex-concave-procedure, 54
convexified belief propagation, 54
coordinate descent, 109
cost, 335, 336, 338–340, 343

average, 338, 340, 355

478 INDEX

conditional, 339
function, 336, 339, 340

invariance, 340
matrix, 403
worst-case, 336

Costello, D., 357
Cover, T. M., 348
Cramér-Rao

-type bound, 189–192, 194, 198,
206, 208, 210, 217, 238, 256,
261, 263, 270, 283

bound, 190, 196, 197, 219, 221–
223, 225, 257, 261, 273–278

AR model, 255, 270
asymptotic, 195
Bayesian, 190, 191, 199, 203–

205, 215, 222, 226–230, 234,
236, 239, 241, 243, 248, 252,
254, 261, 263, 265, 266, 268,
269, 271, 274, 279–281, 283

code-aided channel estima-
tion, 274

cyclic graphs, 238
Fisher-Bayesian, 201
from joint density, 210
from marginal, 261
hybrid, 191, 206, 207, 256,

257, 261, 270, 273
random-walk phase model,

279
standard, 190, 193, 273, 275,

277, 278
state-space model, 226, 239,

248, 268
Cramér-Rao bound

Bayesian, 197
CRB, 190, 196, 197, 219, 221–223,

225, 257, 261, 273–278
AR model, 255, 270
asymptotic, 195
Bayesian, 190, 191, 197, 199,

203–205, 215, 222, 226–230,
234, 236, 239, 241, 243, 248,
252, 254, 261, 263, 265, 266,

268, 269, 271, 274, 279–281,
283

alternative unconditional,
200–202, 265

conditional, 265
extended, 254
standard unconditional, 199,

201, 205, 215, 221, 222, 226–
229, 234, 236, 238, 239, 241,
248, 249, 252, 265, 266, 274,
283

state-space model, 226, 239,
248, 268

unconditional, 201, 202, 265
unmodulated phase, 227

code-aided channel estimation,
274

cyclic graphs, 238
Fisher-Bayesian, 201
from joint density, 210

update rules revisited, 252
from marginal, 261
hybrid, 191, 206, 207, 256, 257,

261, 270, 273
from joint density, 224, 225
from marginal, 266
marginalization, 208

posterior, 199
random-walk phase model, 279
standard, 190, 193, 273, 275, 277,

278
from joint density, 219
from marginal, 261

state-space model
constant parameters, 239
time-dependent parameters,

248
Cristianini, N., 361, 367, 368
Cuomo, K. M., 312
cycle, 56
cycle slip, 37, 41
cycle-free graph, 56
cyclic graph, 53–55
cyclic maximization, 109

INDEX 479

D

data
storage, 10
transmission, 10

Davey, M. C., 359
Davisson, L. D., 296
de Freitas, J. F. G., 87, 90, 190, 288,

291
decision

region, 373
theory, 342

decoder
channel, 12, 14
line, 14
source, 12

decoding
algorithm, 12
block-wise, 343, 345
channel, 12, 14
line, 14
source, 12
symbol-wise, 344, 345

degeneracy, 90, 93
Dejonghe, A., 63
Delbrück, T., 23, 25, 329
Dellaert, F., 92
Demir, A., 32, 35, 37
demodulation, 11, 13, 17
demodulator, 11, 13, 17
Dempster, A. P., 190
density tree, 79
detection, 345

Bayesian, 342, 343
maximum a-posteriori, 343
maximum likelihood, 343
theory, 342

deterministic annealing, 94
deterministic mapping, 63, 65, 78,

105, 106, 108, 119, 138
deterministic node, 139, 149, 174, 382
differentiation under the integral sign,

106, 124, 407
digital data transmission, 9
divergence, 349

convexity, 350
Dobrušin, R. L., 356
Domany, E., 45
Doucet, A., 87, 90, 190, 288, 291
Douglas, R., 329
Douglas, S. C., 283
drift, 21
Duchovni, E., 45
Duhamel, P., 296–299, 304
dynamical system, 135, 311, 312, 320,

328
linear, 237

BCRB, 237
non-linear, 234

BCRB, 234

E

E-log message, 131–133, 136, 137, 143,
145, 148, 150, 154, 160, 162,
173

gradient, 167
E-log update rule, 136, 139, 145, 147
E-step, 121, 136, 162, 174
Eckford, A., 121
ECM, 162
ECME, 163
Eden, M., 72
efficiency, 337
Einstein’s relation, 25
electrical network, 44, 311, 324, 328
EM, 59, 63, 69, 120–125, 127, 128,

130, 133, 137–139, 143–146,
149–151, 154–156, 158, 159,
162, 163, 166–168, 170, 172–
175, 189, 328, 370, 380

gradient, 163, 174
Monte-Carlo, 162, 174
stochastic, 162, 174

encoder
channel, 10
line, 11

entrainment, 311, 312, 328
entropy, 348, 349, 351

conditional, 349

480 INDEX

differential, 288, 349, 354
ensemble, 353
joint, 348, 349
rate, 288, 351–354

conditional, 351
i.i.d. process, 351
Markov chain, 352
per-symbol, 351

relative, 350
sample, 353, 354

equality constraint node, 47, 63, 65,
66, 68, 69, 74, 78, 79, 82,
83, 86, 92, 95, 97, 104, 105,
110–112, 114–117, 120, 165,
169, 171, 173

ergodic channel, 352
ergodicity, 352, 356
error-correcting code, 44
estimation, 345

Bayesian, 338, 339
blockwise, 340
error, 339
maximum a-posterior, 340
maximum likelihood, 338, 341
minimax, 336
symbolwise, 340
theory, 335, 336, 379

estimator
biased, 337, 338
consistent, 336, 337
efficient, 337
minimum mean squared error,

339
blockwise, 341
symbolwise, 341

regular, 195
unbiased, 337, 338

Euler-Lagrange differential equation,
337

Euler-Maruyama method, 292
expectation conditional maximiza-

tion, 162
expectation maximization, 59, 63, 69,

120–125, 127, 128, 130, 133,

137–139, 143–146, 149–151,
154–156, 158, 159, 162, 163,
166–168, 170, 172–175, 189,
328, 370, 380

gradient, 163, 174
Monte-Carlo, 162, 174
stochastic, 162, 174

expectation step, 121, 136, 162, 174
expense, 298, 335, 336, 338–340, 343

average, 298, 338, 340
conditional, 339
worst-case, 336

eye safety, 307

F

factor graph, 43–48, 53–56, 59, 60, 62,
63, 65, 73, 74, 81–83, 91, 92,
95–98, 102, 104, 109, 110,
115–117, 119–121, 125–128,
134–136, 145, 147, 151, 155,
156, 158, 167–169, 171, 174,
175, 191, 211, 222, 223, 226–
228, 230, 234, 238, 239, 252,
256, 270, 282, 284, 289, 311–
313, 315–317, 324, 328, 345,
369, 373, 379–382, 398, 399,
403

Fechtel, S. A., 19, 21, 36, 39, 115
Feder, M., 166
feed-forward neural network, 47, 60,

109, 373, 379, 380, 384, 385
feedback loop, 36, 328
Ferrari, G., 63
filter

band-pass, 16
Butterworth, 320
high-pass, 41
linear, 16
low-pass, 18, 19, 37–41, 320
matched, 14
pre-, 17
receiver, 14, 15, 19
transmit, 13

Fisher kernel, 368, 369, 371

INDEX 481

Fisher, R., 194
Fisher-Bayesian Cramér-Rao bound,

201
fixed point, 103, 123–125, 132, 137,

138, 151, 154–156, 158, 167–
169, 174, 175

stable, 125
unstable, 125

Flammant, P., 312
Flanagan, B. P., 191
Flannery, B. P., 72
flicker noise, 22, 25, 32, 34, 41
Floquet theory, 35, 37
Foo, J., 20
Forney, D., 44
fractional belief propagation, 54
free-running oscillator, 16, 22, 27, 32,

36, 37, 39, 41, 42
free-space optical communication, 307
Freeman, W. T., 44, 54, 79, 87, 137,

288
Frenkel, L., 166
Frey, B., 43, 44, 47, 54, 55, 121, 238,

239, 316, 448
Frey, M., 311, 322
Fukumizu, K., 284

G

Gallager, R. G., 44
Gaussian distribution, 391
Gaussian max/int theorem, 394
generalized belief propagation, 54,

137, 288
generalized ICM, 110
Georghiades, T. N., 63
Gershenfeld, N., 311, 312, 318, 319,

321, 322, 449
Ghahramani, Z., 137
Gibbs sampling, 48, 60, 80–84, 91, 92,

97, 101, 109, 110
from joint densities, 83

Gielen, G., 35
Gilks, R. G., 92
Gill, R., 195

global function, 46
global maximum, 123
Gordon, N. J, 87, 90, 190, 288, 291
gradient

descent, 101, 355
EM, 163, 174
methods, 59, 69, 96, 103, 104,

110, 113, 114, 120, 147, 163,
175, 177, 180, 189, 309, 328,
355, 370, 377, 382

graphical model, 44, 47
Gray encoding, 17
grid-based integration, 71
Grinstein, G., 312, 318, 319, 321, 449
Grossman, T., 45
grouping, 83

H

Hafner, E., 34
Hajimiri, A., 29, 35
Handzel, A., 45
Hanzo, L., 312, 318
hard decision, 96, 101, 107, 108, 120
Hartemink, A. J., 44
Haussler, D., 193, 284, 332, 369
hearing aid, 329
Helfenstein, M., 323
Herzel, F., 21
Herzet, C., 63, 121, 137, 201
Heskes, T., 54
hidden node, 375
hidden variable, 150, 151, 155, 163,

375
hidden-Markov model, 44
high-pass filter, 41
Higham, D. J., 292
Hilbert space, 363
Holzman, H., 32, 34
Horn, G. B., 54
Howard, A., 368
Hranilovic, S., 300, 306
Huang, Q., 34
hybrid CRB, 191, 206, 207, 256, 257,

261, 270, 273

482 INDEX

from joint density, 224, 225
from marginal, 266
marginalization, 208

hybrid E-rule, 148–150, 154, 156, 158,
160, 174, 175

hybrid EM, 147–151, 154–156, 158,
168, 169

algorithm, 149
cycle-free graphs, 151
cyclic graphs, 155

hyperbolic tangent function, 375

I

ICM, 109, 120, 147, 162, 163, 370, 380
clustering, 110
generalized, 110
multi-cycle, 162

Ihler, A., 79, 87
importance

function, 86
sample, 86
sampling, 79, 80, 85–87, 89, 90,

92, 94, 95, 97
information geometry, 192, 193, 283
information matrix, 190, 191, 193–

200, 204–211, 239, 241, 246,
256, 261, 263, 270, 282–284

Bayesian, 197–200, 204, 205, 211,
239, 241, 246

Fisher, 190, 193–196, 263, 283,
284

singular, 194
information rate, 12, 287, 288, 292,

294, 296, 308, 352
injection locking, 35
inner product, 363
instability

long-term, 21
short-term, 21

integral-product rule, 51, 71, 101
integrated operational amplifier, 325
inter-symbol interference, 15, 16, 19,

307
interference, 11

internal variable, 83, 130, 147, 150,
151, 155

inverted gamma distribution, 391
ISI, 15, 16, 19, 307
ISND, 13
iterative conditional modes, 109, 120,

147, 162, 163, 370, 380
generalized, 110
multicycle, 162

J

Jaakkola, T., 54, 137, 193, 284, 332,
369

Jebara, T., 368
Jelinek, F., 44, 135, 289, 315, 369
jitter, 21, 32, 34, 40, 41
Johnson, J., 24
Jojic, N., 121
Jordan, M., 83, 137
junction-tree method, 55

K

Kalman filter, 44, 135, 136, 369, 397,
399, 402, 403

scalar case, 397
vector case, 402

Kalman gain, 403
Kalman smoother, 399
Kaulakys, B., 26, 27
Kavčić, A., 288, 296, 309
kernel, 362, 367, 368, 370

construction, 366
Fisher, 368, 369, 371
function, 362, 363, 366
Gaussian, 366
methods, 361–364, 367

graphical model, 361, 367, 371
optimal, 371
probabilistic, 367, 368, 370
product, 368, 370
properties, 366
theorem, 366

Khan, Z., 92
Kickuchi method, 44

INDEX 483

Kim, J. J., 20
Koch, T., 311, 322
Koetter, R., 43
Kondor, R., 368
Korl, S., 60, 101, 121, 135, 139, 147,

148, 273, 275, 276, 278
Kramer, J., 329
Krishnan, T., 162, 163
Kschischang, F., 43, 44, 47, 54, 55,

238, 239, 300, 306, 316, 448
Kullback-Leibler distance, 350
Kurokawa, K., 34

L

Lafferty, J. D., 296
Laird, N. M., 190
LAN, 13
Lang, S., 407, 408
Larizza, C., 92
laser diode, 307
LD, 307
LDPC, 60, 63, 66, 70
learning

algorithms, 342
Bayesian, 342
classical, 341
parameters, 342

LED, 307
Lee, C., 20
Lee, D., 29, 32, 35, 39
Lee, T., 35
Lee, W., 40
Lee, Y., 20
Leggett, M., 45
Levitt, B. K., 195, 312, 314
LFSR, 312, 313, 316, 318, 319, 321,

328
soft, 312, 313, 317–319, 321, 322,

328
light emitting diode, 307
likelihood function, 340
limit cycle, 28
Lin, L., 357
Lindgren, A.-G., 273

line
coding, 11
decoder, 14
decoding, 14
encoder, 11

line-of-sight path, 307
linear function, 376
linear perturbation theory, 34
linear-feedback shift register, 312, 313
Liu, J., 89, 90, 94
Liu, S.-C., 329
local function, 46
Loeliger, H.-A., 43–45, 47, 54, 55, 60,

66, 101, 121, 135, 137, 189,
227, 238, 239, 273, 288, 290,
292–294, 296, 309, 311, 312,
316, 318, 320, 322, 323, 332,
361, 373, 393, 397, 403, 448

logistic sigmoid function, 375, 376
Lorentzian, 26, 27, 31, 32
low-density parity check code, 60
low-pass filter, 37–41, 320
Lustenberger, F., 323, 328

M

M-law, 115
M-PSK, 60, 66
M-step, 122, 162, 163, 165, 168, 174
Mämmelä, A., 63
MacKay, D. J. C., 359
magnetic recording, 13
MAP, 61, 343
MAP estimation, 199, 316, 340
mapper node, 64, 70
marginal, 43, 45, 48, 52–54, 56, 83, 98,

102, 121, 128, 157, 158, 191,
192, 205, 206, 208–210, 256,
261, 268, 270, 273, 278, 279,
282

marginalization, 342, 345
parameters, 209

Markov random field, 44, 47
Markov-Chain Monte Carlo, 77, 78,

80, 90, 92, 93, 97, 190, 296,

484 INDEX

370, 380
Martinelli, M., 307, 308
Mathis, H, 312
matrix

generator, 358
parity-check, 358

Matz, G., 296–299, 304
max-product algorithm, 317, 320, 369,

370, 380
max-product rule, 51, 316–318
maximization, 345
maximization step, 122, 162, 163, 165,

168, 174
maximum a-posteriori

detection, 343
estimation, 189, 340

block-wise, 340
symbol-wise, 340

maximum likelihood
detection, 343
estimation, 189, 313, 314, 316,

338, 341, 368
blockwise, 341
symbolwise, 341

Maxwell, M., 32, 34
Mayer-Wolf, E., 199, 206, 431
McEliece, R. J., 54
McLachlan, G., 162, 163
MCMC, 77, 78, 80, 90, 92, 93, 97, 190,

296, 370, 380
hybrid, 92

McNeill, J. A., 34
Mead, C. A., 23, 25, 329
mean squared estimation error, 190,

196, 197, 199, 203, 204, 206,
208, 210, 219, 223, 224, 229,
231, 273, 275, 276, 278–280

mean-field, 137
structured, 137

median, 101
medium

noisy, 11, 13, 14
Megnet, D., 312
Mehrotra, A., 32, 34, 35, 37–39

Mercer kernel, 363
Merkli, P., 137, 311, 312, 318, 320,

322, 324
message, 43, 49–54, 56
message type, 59, 62
message-passing algorithm, 60, 63
message-update schedule, 53, 54, 62,

63, 66, 69, 70, 72, 73, 94,
120, 137, 138, 162, 165, 174,
383

Messer, H., 206, 207, 209, 436
Metropolis-Hastings algorithm, 90–94
Meyer, H., 19, 21, 36, 39, 115
Mielczarek, B., 63
minimax estimation, 336
minimum mean squared error

estimation, 189, 190, 194, 196,
201, 203, 206, 337, 339

blockwise, 341
symbolwise, 341

mixture of Gaussian distributions, 79
ML

detection, 343
estimation, 102, 189, 313, 314,

316, 338, 341, 368
estimator, 195, 196

MMSE, 189, 190, 194, 196, 201, 203,
206, 337, 339

blockwise, 341
symbolwise, 341

mode, 101–103, 109–111
model

constant-phase, 20, 61, 63–66,
73, 95, 114–116, 168, 170

random-walk phase, 41, 42, 61,
63–66, 74, 96, 116, 117, 119,
168, 172, 287, 288, 292, 295

unmodulated phase
BCRB, 227

modulation, 11, 13
non-offset, 16, 18
offset, 16, 18
offset quadriphase, 17
passband, 16

INDEX 485

phase shift keying, 17
quadrature amplitude, 17

modulator, 11, 13
Moeneclaey, M., 19, 60, 63, 115, 171,

173, 206, 262, 278
Molisch, A. F., 312
Monte-Carlo EM, 162
Monte-Carlo method, 75, 300
Morrey, C. B., 408
Moser, S., 307, 308
Moses, R., 297, 301, 338
MSE, 190, 196, 197, 199, 203, 204,

206, 208, 210, 219, 223, 224,
229, 231, 273, 275, 276, 278–
280

multicycle ICM, 162
multiply node, 64, 66, 67, 114, 116,

171, 382
Muravchik, C. H., 190, 227, 236, 283
mutual information, 300, 301, 347,

350, 351, 354, 356
and entropies, 350
as divergence, 351
convexity, 351

N

Nagaoka, H., 192, 193, 283
Nassar, C. R., 63
nat, 348
Nehorai, A., 190, 227, 236, 283
neural network, 44, 361–363

feed-forward, 47, 60, 109, 373,
379, 380, 383–385

training, 375, 376
neuromorphic engineering, 329
neutral message, 54
Newton

method, 296
Nicholson, D., 283
Nissilä, M. J., 63
Noels, N., 63, 171, 173, 206, 262, 278
noise

flicker, 20–22, 25, 32, 34, 41
phase, 20–22, 27, 28, 30, 32–41

shot, 11, 20–22, 24–26, 31
thermal, 11, 20–22, 24–26, 31

noisy medium, 11, 13, 14
non-linear perturbation theory, 35
non-offset modulation, 18
non-unitary operation, 329
normal distribution, 391
numerical integration, 59, 69, 71, 90,

97, 99, 176, 177, 180, 370
Nuriyev, R., 63
Nyquist criterion, 14, 15
Nyquist, H., 24

O

offset
frequency, 18
modulation, 18
timing, 15

Okumura, M., 34
Omura, J. K., 312, 314
Oppenheim, A. V., 166, 312
OQPSK, 17
orbit, 28
oscillator, 9, 20–22, 32, 34–37, 41, 42

voltage-controlled, 37–39, 41
Oshman, Y., 283
Ostojic, M., 137, 312, 318, 320

P

parity check node, 63
Park, H., 284
Park, S. B., 20
particle, 75–81, 83, 85–98, 107, 110,

135, 162, 165, 176, 291, 292,
294, 296, 297, 301, 303–306

filter, 80, 86, 87, 92, 93, 97, 98,
190, 288, 291

basic, 87
constant parameter, 88
pro and con, 90
SIR, 87, 90
smoothing, 87

methods, 59, 60, 69, 75, 76, 87,
89, 90, 96, 97, 180, 288,

486 INDEX

290–292, 294, 297
passband receiver, 19, 21, 36
Pasupathy, S., 63, 166
Pavlov, A., 191
Pearl, J., 44
Pecora, L. M., 312
perceptron, 373, 374

multi-layer, 375, 377
two-layer, 374, 376, 377

Pfister, H. D., 288
phase

detector, 36, 39
estimation algorithm, 59, 62, 189
instabilities, 20
jitter, 32, 40, 41
mapper node, 65, 67, 68
model, 61, 64, 66, 69, 70
noise, 20–22, 27, 28, 30, 32–41,

295
node, 65, 67, 73, 95, 116, 117

offset, 9, 18–21, 28, 36, 42
physical medium, 11
Piccinin, D., 307, 308
PLL, 22, 27, 36–41
PN, 311, 312, 322, 326, 488
pn-junction, 22
Poisson process, 23, 25
posterior CRB, 190, 199
pre-filter, 17
pre-processing, 381
Press, H., 72
Proakis, J., 9, 13
probabilistic kernel, 367, 368, 370
probability of error, 343
probability propagation, 44
product kernel, 368, 370
Protter, M. H., 408
pseudo-noise signal, 311, 312, 322, 326
pseudo-random signal, 312, 322, 326
PSK, 17, 60, 66, 292

Q

QAM, 17
quadratic form, 132, 393, 394

sum, 394
quantization, 71, 294

level, 71–73, 75, 97, 98, 100, 107
quantized message, 72–75, 78, 79, 96,

100, 107, 135, 165
quantum computing system, 329

R

Raheli, R., 63
raised cosine pulse, 14
Ramon, V., 63, 121, 137
random-walk phase model, 41, 42, 61,

63–66, 74, 96, 116, 117, 119,
168, 172, 287, 288, 292, 295

Rao, B. L. S., 283
Rapoport, I., 283
Raviv, J., 44, 135, 289, 315, 369
Razavi, B., 21
RC filter, 325
receiver

baseband, 15, 16, 18, 21
filter, 19
passband, 19, 21, 36

rectangular rule, 71, 72
Reece, S., 283
regression, 361–366, 376
regular, 195, 199, 201, 480, 486
regularity, 195
reliable communications, 347
replication node, 47
resampling, 77, 87, 291
resistor, 22, 25
Reuven, I., 206, 207, 209, 436
Robert, C., 75, 80, 85, 90, 92–94, 190
Rockah, Y., 191, 207
roll-off factor, 14
Roychowdhury, J., 32, 35, 37
Rubin, D. B., 190
Rusmevichientong, P., 54
Russell, S., 137

S

SA, 111–120, 166, 172, 173
filtering, 112

INDEX 487

pro and con, 113
smoothing, 112, 113

SAGE, 163
sample, 75–81, 83, 85–98, 107, 110,

135, 162, 165, 176, 291, 292,
294, 296, 297, 301, 303–306

impoverishment, 90, 93
sampler, 15, 16
Sandham, W., 45
Sansen, W., 35
Sarpeshkar, R., 23, 25
Saul, L., 137
scaling of messages, 53
Schölkopf, B., 361, 367
Schervish, M. J., 190, 193, 196, 335,

336
Scholtz, R. A., 312, 314
Schultheiss, P., 191, 207
Schwarz, W., 312
Shamai, S., 63, 288, 296
Shannon, C. E., 347, 352, 354–356
Shannon-McMillan-Breiman theorem,

288, 353, 354
generalized, 354

Sharma, V., 288
Shawe-Taylor, J., 361, 367, 368
Shental, N., 288
Shental, O., 288
shot noise, 22, 24–26, 31
shrinkage, 90, 94, 98–100
Siegel, P. H., 288
signal

baseband, 13, 16
passband, 13, 16
powerline, 11

silicon cochlea, 329
silicon retina, 329
Simon, M. K., 312, 314
simulated annealing, 80, 93, 94, 97
Singh, S. K., 288
single value, 78, 79, 101
sink, 12
Smola, A. J., 361, 367
smoothing

particle filter, 87

stochastic approximation, 112

soft LFSR, 312, 313, 317–319, 321,
322, 328

Soleymani, M. R., 63

Soriaga, J. B., 288

source, 10

coding, 10

compressed, 10

decoder, 12

decoding, 12

spectrogram, 32

spin glass, 44

spline, 72

Stark, W. E., 62

state-space model, 190–192, 226, 230,
270, 397, 398

stationary point, 123, 124, 132, 151,
154, 155, 158, 167–169, 174

statistical physics, 45

Steendam, H., 63, 171, 173, 206, 262,
278

steepest

ascent, 101, 355

descent, 101, 103, 104, 110, 111,
119, 120, 164, 165, 168, 173,
296, 304, 355, 377, 380

step function, 375

step size, 103

stochastic

annealing, 94

approximation, 111–120, 166,
172, 173, 383

filtering, 112

pro and con, 113

smoothing, 112, 113

EM, 162, 174

Stoica, P., 297, 301, 338

stretching, 55

Strevens, M., 45

structured-summary propagation, 137

Sudderth, E., 79, 87

sum-only rule, 316

488 INDEX

sum-product algorithm, 56, 59, 63, 65,
66, 104, 119, 120, 126, 128,
133, 134, 158, 159, 168, 173,
290, 317, 320, 369, 370, 380,
382, 399

sum-product rule, 49, 51, 62, 67, 68,
82, 83, 88, 92, 98, 104, 106,
108, 110, 119, 147, 316–318

summary-product algorithm, 43, 44,
47, 53, 54

summary-product rule, 52
summary-propagation algorithm, 53,

54
support vector machine, 365, 366
Sutskover, I., 63
Svensson, A., 63
SVM, 365, 366
symbol rate, 14
synchronization

PN, 311
timing, 16

T

Tanimoto, H., 34
Tanner, M., 43
Tarem, S., 45
Tarköy, F., 323
Taylor, R. M., 191
Teukolsky, S. A., 72
theory

coding, 357
detection, 342
estimation, 335

thermal noise, 22, 24–26, 31
thermal skin damage, 307
Thiel, A., 312
Thomas, J. A., 348
threshold element, 320, 324
Tichavský, P., 190, 227, 236, 283
Tikhonov distribution, 38, 39
timing

jitter, 21, 32, 34
offset, 15
synchronization, 16

Tipping, M., 342
Titterington, D. M., 166

training sample, 361, 362, 365
transistor, 22
transition times, 21, 32
trellis, 134, 135

code, 135
trend, 21
Trott, M. D., 296
typical

sequence, 353
set, 353

typicality, 352

U

Uber, J. A., 191
unbiasedness, 337, 338
unconditional BCRB, 201, 202, 205,

215, 221, 222, 226–229, 234,
236, 238, 239, 241, 248, 249,
252, 265, 266, 274, 283

alternative, 200–202, 265
extended, 254

Ungerboeck, G., 63
unit-delay cell, 313, 320
Unser, M., 72
unweighted sampling, 77, 78, 87, 90

V

Van Roy, B., 54
Van Trees bound, 190, 199
Van Trees, H. L., 190, 193, 198, 339
Vanassche, P., 35
Vandendorpe, L., 63, 121, 137, 201
VCO, 37–39, 41
Vetterling, W. T, 72
Vigoda, B., 311, 322
Viterbi algorithm, 44, 344
Viterbi, A., 38, 39
voltage-controlled oscillator, 37–39,

41
Vontobel, P. O., 9, 288, 290, 292–294,

296, 309, 357

INDEX 489

W

Wainwright, M. J., 54
Wasserman, L. A., 296
Wautelet, X., 201
weak law of large numbers, 352
Weber, R. J., 20
weighted sampling, 78, 86, 87
Weinstein, E., 166, 283
Weiss, A. J., 283
Weiss, Y., 44, 54, 137, 288
West, M., 89, 90, 94
Wiberg, N., 44, 62
Wiegerinck, W., 54
Willsky, A. J., 54, 79, 87
Wilson, S. T., 359
Winkler, G., 44
Woodroofe, M., 32, 34
Worthen, A. P., 62
Wu, M., 20
Wymeersch, H., 60, 178

X

Xing, E. P., 137

Y

Yamamoto, Y., 23, 24
Yang L.-L., 312, 318
Yang, J., 20
Yedidia, J. S., 44, 54, 137, 288
Yeung, O. W., 317, 320
Yildirim, M., 54
Yuille, A., 54

Z

Zakai, M., 199, 206, 431
Zamiri-Jafarian, H., 166
Zeng, W., 288
zero-gradient points, 124
Zhang, L., 63
Zhu, M., 312, 317, 320
Ziv, J., 63

About the Author

Justin Dauwels was born in Eeklo, Belgium, on November 2, 1977. Af-
ter visiting primary school in Zelzate, Belgium, he attended the Sint-
Barbaracollege in Gent with Ancient Greek and Mathematics as ma-
jors. In 1995, he joined Gent University, Belgium, to study Engineering
Physics. He was an exchange student in 1999–2000 at the the Swiss Fed-
eral Institute of Technology (ETH) in Zurich, Switzerland. In Summer
2000, he carried out his diploma thesis at the Institute of Neuroinformat-
ics (ETH Zurich/ University of Zurich) in Zurich. In September 2000,
he graduated from Gent University, Belgium, and later that year, he
started as research and teaching assistant at the Signal and Information
Processing Laboratory (ISI) at the Swiss Federal Institute of Technology
(ETH) in Zurich, Switzerland. In Fall 2003, he was a visiting scientist
at the Media Laboratory at the Massachusetts Institute of Technology
(MIT), Cambridge, MA, USA, and in January 2004 at the Digital Com-
munications Laboratory at Gent University, Belgium. In Spring 2004,
he was an intern at the Mitsubishi Electric Research Labs, Cambridge,
MA, USA. He is currently a JSPS Post-Doctoral Fellow at the RIKEN
Brain Science Institute in Wako-shi, Saitama, Japan.

491

Series in Signal and Information Processing

edited by Hans-Andrea Loeliger

Vol. 1: Hanspeter Schmid, Single-Amplifier Biquadratic MOSFET-C

Filters. ISBN 3-89649-616-6

Vol. 2: Felix Lustenberger, On the Design of Analog VLSI Iterative

Decoders. ISBN 3-89649-622-0

Vol. 3: Peter Theodor Wellig, Zerlegung von Langzeit-Elektromyo-

grammen zur Prävention von arbeitsbedingten Muskelschäden.

ISBN 3-89649-623-9

Vol. 4: Thomas P. von Hoff, On the Convergence of Blind Source

Separation and Deconvolution. ISBN 3-89649-624-7

Vol. 5: Markus Erne, Signal Adaptive Audio Coding using Wavelets

and Rate Optimization. ISBN 3-89649-625-5

Vol. 6: Marcel Joho, A Systematic Approach to Adaptive Algorithms

for Multichannel System Identification, Inverse Modeling, and

Blind Identification. ISBN 3-89649-632-8

Vol. 7: Heinz Mathis, Nonlinear Functions for Blind Separation and

Equalization. ISBN 3-89649-728-6

Vol. 8: Daniel Lippuner, Model-Based Step-Size Control for Adaptive

Filters. ISBN 3-89649-755-3

Vol. 9: Ralf Kretzschmar, A Survey of Neural Network Classifiers for

Local Wind Prediction. ISBN 3-89649-798-7

Vol. 10: Dieter M. Arnold, Computing Information Rates of Finite State

Models with Application to Magnetic Recording.

ISBN 3-89649-852-5

Vol. 11: Pascal O. Vontobel, Algebraic Coding for Iterative Decoding.

ISBN 3-89649-865-7

Vol. 12: Qun Gao, Fingerprint Verification using Cellular Neural

Networks. ISBN 3-89649-894-0

Vol. 13: Patrick P. Merkli, Message-Passing Algorithms and Analog

Electronic Circuits. ISBN 3-89649-987-4

Vol. 14: Markus Hofbauer, Optimal Linear Separation and

Deconvolution of Acoustical Convolutive Mixtures.

ISBN 3-89649-996-3

Vol. 15: Sascha Korl, A Factor Graph Approach to Signal Modelling,

System Identification and Filtering. ISBN 3-86628-032-7

Vol. 16: Matthias Frey, On Analog Decoders and Digitally Corrected

Converters. ISBN 3-86628-074-2

Hartung-Gorre Verlag Konstanz −−−− http://www.hartung-gorre.de

